powernow-k8: support acpi

From: Pavel Machek
Date: Fri Mar 26 2004 - 07:34:42 EST


Hi!

> Other than that, I'd strongly appreciate pushing the change "upstream" to
> Dave Jones / Andrew Morton / Linus Torvalds

Here it is.

This is new version of powernow-k8 driver. It adds SMP support, and
support for getting tables through ACPI. (ACPI support is really
important, because many machines have broken "legacy" tables). Please
apply,

Pavel

--- clean/arch/i386/kernel/cpu/cpufreq/powernow-k8.c 2004-03-11 18:10:38.000000000 +0100
+++ linux-pn/arch/i386/kernel/cpu/cpufreq/powernow-k8.c 2004-03-26 13:23:08.000000000 +0100
@@ -1,22 +1,24 @@
/*
- * (c) 2003 Advanced Micro Devices, Inc.
+ * (c) 2003, 2004 Advanced Micro Devices, Inc.
* Your use of this code is subject to the terms and conditions of the
- * GNU general public license version 2. See "../../../COPYING" or
+ * GNU general public license version 2. See "COPYING" or
* http://www.gnu.org/licenses/gpl.html
*
* Support : paul.devriendt@xxxxxxx
*
* Based on the powernow-k7.c module written by Dave Jones.
- * (C) 2003 Dave Jones <davej@xxxxxxxxxxxxxxxxx> on behalf of SuSE Labs
+ * (C) 2003 Dave Jones <davej@xxxxxxxxxxxxxxxxx> on behalf of SuSE Labs
* (C) 2004 Dominik Brodowski <linux@xxxxxxxx>
* (C) 2004 Pavel Machek <pavel@xxxxxxx>
* Licensed under the terms of the GNU GPL License version 2.
* Based upon datasheets & sample CPUs kindly provided by AMD.
*
+ * Valuable input gratefully received from Dave Jones, Pavel Machek, Dominik
+ * Brodowski, and others.
+ *
* Processor information obtained from Chapter 9 (Power and Thermal Management)
* of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
- * Opteron Processors", revision 3.03, available for download from www.amd.com
- *
+ * Opteron Processors" available for download from www.amd.com
*/

#include <linux/kernel.h>
@@ -31,55 +33,47 @@
#include <asm/io.h>
#include <asm/delay.h>

+#ifdef CONFIG_ACPI
+#define CONFIG_X86_POWERNOW_K8_ACPI
+#endif
+#ifdef CONFIG_X86_POWERNOW_K8_ACPI
+
+#include <linux/acpi.h>
+#include <acpi/processor.h>
+
+#endif /* CONFIG_X86_POWERNOW_K8_ACPI */
+
+
#define PFX "powernow-k8: "
-#define BFX PFX "BIOS error: "
-#define VERSION "version 1.00.08a"
+#define VERSION "version 1.20.08b - March 20, 2004"
#include "powernow-k8.h"

-static u32 vstable; /* voltage stabalization time, from PSB, units 20 us */
-static u32 plllock; /* pll lock time, from PSB, units 1 us */
-static u32 numps; /* number of p-states, from PSB */
-static u32 rvo; /* ramp voltage offset, from PSB */
-static u32 irt; /* isochronous relief time, from PSB */
-static u32 vidmvs; /* usable value calculated from mvs, from PSB */
-static u32 currvid; /* keep track of the current fid / vid */
-static u32 currfid;
+/* serialize freq changes */
+static DECLARE_MUTEX(fidvid_sem);

-static struct cpufreq_frequency_table *powernow_table;
+static struct powernow_k8_data *powernow_data[NR_CPUS];

-/*
-The PSB table supplied by BIOS allows for the definition of the number of
-p-states that can be used when running on a/c, and the number of p-states
-that can be used when running on battery. This allows laptop manufacturers
-to force the system to save power when running from battery. The relationship
-is :
- 1 <= number_of_battery_p_states <= maximum_number_of_p_states
-
-This driver does NOT have the support in it to detect transitions from
-a/c power to battery power, and thus trigger the transition to a lower
-p-state if required. This is because I need ACPI and the 2.6 kernel to do
-this, and this is a 2.4 kernel driver. Check back for a new improved driver
-for the 2.6 kernel soon.
-
-This code therefore assumes it is on battery at all times, and thus
-restricts performance to number_of_battery_p_states. For desktops,
- number_of_battery_p_states == maximum_number_of_pstates,
-so this is not actually a restriction.
-*/

-static u32 batps; /* limit on the number of p states when on battery */
- /* - set by BIOS in the PSB/PST */
+/* Return a frequency in MHz, given an input fid */
+static inline u32 find_freq_from_fid(u32 fid)
+{
+ return 800 + (fid * 100);
+}

- /* Return a frequency in MHz, given an input fid */
-static u32 find_freq_from_fid(u32 fid)
+/* Return a frequency in KHz, given an input fid */
+static inline u32 find_khz_freq_from_fid(u32 fid)
{
- return 800 + (fid * 100);
+ return 1000 * find_freq_from_fid(fid);
}

+/* Return a voltage in miliVolts, given an input vid */
+static inline u32 find_milivolts_from_vid(struct powernow_k8_data *data, u32 vid)
+{
+ return 1550-vid*25;
+}

/* Return the vco fid for an input fid */
-static u32
-convert_fid_to_vco_fid(u32 fid)
+static u32 convert_fid_to_vco_fid(u32 fid)
{
if (fid < HI_FID_TABLE_BOTTOM) {
return 8 + (2 * fid);
@@ -89,11 +83,10 @@
}

/*
- * Return 1 if the pending bit is set. Unless we are actually just told the
- * processor to transition a state, seeing this bit set is really bad news.
+ * Return 1 if the pending bit is set. Unless we just instructed the processor
+ * to transition to a new state, seeing this bit set is really bad news.
*/
-static inline int
-pending_bit_stuck(void)
+static inline int pending_bit_stuck(void)
{
u32 lo, hi;

@@ -102,11 +95,10 @@
}

/*
- * Update the global current fid / vid values from the status msr. Returns 1
- * on error.
+ * Update the global current fid / vid values from the status msr. Returns
+ * 1 on error.
*/
-static int
-query_current_values_with_pending_wait(void)
+static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
{
u32 lo, hi;
u32 i = 0;
@@ -120,63 +112,69 @@
rdmsr(MSR_FIDVID_STATUS, lo, hi);
}

- currvid = hi & MSR_S_HI_CURRENT_VID;
- currfid = lo & MSR_S_LO_CURRENT_FID;
+ data->currvid = hi & MSR_S_HI_CURRENT_VID;
+ data->currfid = lo & MSR_S_LO_CURRENT_FID;

return 0;
}

/* the isochronous relief time */
-static inline void
-count_off_irt(void)
+static inline void count_off_irt(struct powernow_k8_data *data)
{
- udelay((1 << irt) * 10);
+ udelay((1 << data->irt) * 10);
return;
}

-/* the voltage stabalization time */
-static inline void
-count_off_vst(void)
+/* the voltage stabilization time */
+static inline void count_off_vst(struct powernow_k8_data *data)
{
- udelay(vstable * VST_UNITS_20US);
+ udelay(data->vstable * VST_UNITS_20US);
return;
}

+/* need to init the control msr to a safe value (for each cpu) */
+static void fidvid_msr_init(void)
+{
+ u32 lo, hi;
+ u8 fid, vid;
+
+ rdmsr(MSR_FIDVID_STATUS, lo, hi);
+ vid = hi & MSR_S_HI_CURRENT_VID;
+ fid = lo & MSR_S_LO_CURRENT_FID;
+ lo = fid | (vid << MSR_C_LO_VID_SHIFT);
+ hi = MSR_C_HI_STP_GNT_BENIGN;
+ dprintk(PFX "cpu%d, init lo %x, hi %x\n", smp_processor_id(), lo, hi);
+ wrmsr(MSR_FIDVID_CTL, lo, hi);
+}
+
/* write the new fid value along with the other control fields to the msr */
-static int
-write_new_fid(u32 fid)
+static int write_new_fid(struct powernow_k8_data *data, u32 fid)
{
u32 lo;
- u32 savevid = currvid;
+ u32 savevid = data->currvid;

- if ((fid & INVALID_FID_MASK) || (currvid & INVALID_VID_MASK)) {
+ if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
printk(KERN_ERR PFX "internal error - overflow on fid write\n");
return 1;
}

- lo = fid | (currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
-
+ lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
dprintk(KERN_DEBUG PFX "writing fid %x, lo %x, hi %x\n",
- fid, lo, plllock * PLL_LOCK_CONVERSION);
-
- wrmsr(MSR_FIDVID_CTL, lo, plllock * PLL_LOCK_CONVERSION);
-
- if (query_current_values_with_pending_wait())
+ fid, lo, data->plllock * PLL_LOCK_CONVERSION);
+ wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
+ if (query_current_values_with_pending_wait(data))
return 1;
+ count_off_irt(data);

- count_off_irt();
-
- if (savevid != currvid) {
- printk(KERN_ERR PFX
- "vid changed on fid transition, save %x, currvid %x\n",
- savevid, currvid);
+ if (savevid != data->currvid) {
+ printk(KERN_ERR PFX "vid change on fid trans, old %x, new %x\n",
+ savevid, data->currvid);
return 1;
}

- if (fid != currfid) {
- printk(KERN_ERR PFX
- "fid transition failed, fid %x, currfid %x\n",
- fid, currfid);
+ if (fid != data->currfid) {
+ printk(KERN_ERR PFX "fid trans failed, fid %x, curr %x\n", fid,
+ data->currfid);
return 1;
}

@@ -184,40 +182,33 @@
}

/* Write a new vid to the hardware */
-static int
-write_new_vid(u32 vid)
+static int write_new_vid(struct powernow_k8_data *data, u32 vid)
{
u32 lo;
- u32 savefid = currfid;
+ u32 savefid = data->currfid;

- if ((currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
+ if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
printk(KERN_ERR PFX "internal error - overflow on vid write\n");
return 1;
}

- lo = currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
-
+ lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
dprintk(KERN_DEBUG PFX "writing vid %x, lo %x, hi %x\n",
vid, lo, STOP_GRANT_5NS);
-
wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
-
- if (query_current_values_with_pending_wait()) {
+ if (query_current_values_with_pending_wait(data))
return 1;
- }

- if (savefid != currfid) {
- printk(KERN_ERR PFX
- "fid changed on vid transition, save %x currfid %x\n",
- savefid, currfid);
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX "fid changed on vid trans, old %x new %x\n",
+ savefid, data->currfid);
return 1;
}

- if (vid != currvid) {
- printk(KERN_ERR PFX
- "vid transition failed, vid %x, currvid %x\n",
- vid, currvid);
- return 1;
+ if (vid != data->currvid) {
+ printk(KERN_ERR PFX "vid trans failed, vid %x, curr %x\n", vid,
+ data->currvid);
+ return 1;
}

return 0;
@@ -228,300 +219,279 @@
* Decreasing vid codes represent increasing voltages:
* vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of 0x1f is off.
*/
-static int
-decrease_vid_code_by_step(u32 reqvid, u32 step)
+static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
{
- if ((currvid - reqvid) > step)
- reqvid = currvid - step;
-
- if (write_new_vid(reqvid))
+ if ((data->currvid - reqvid) > step)
+ reqvid = data->currvid - step;
+ if (write_new_vid(data, reqvid))
return 1;
-
- count_off_vst();
-
+ count_off_vst(data);
return 0;
}

/* Change the fid and vid, by the 3 phases. */
-static inline int
-transition_fid_vid(u32 reqfid, u32 reqvid)
+static inline int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
{
- if (core_voltage_pre_transition(reqvid))
+ if (core_voltage_pre_transition(data, reqvid))
return 1;
-
- if (core_frequency_transition(reqfid))
+ if (core_frequency_transition(data, reqfid))
return 1;
-
- if (core_voltage_post_transition(reqvid))
+ if (core_voltage_post_transition(data, reqvid))
return 1;
-
- if (query_current_values_with_pending_wait())
+ if (query_current_values_with_pending_wait(data))
return 1;

- if ((reqfid != currfid) || (reqvid != currvid)) {
- printk(KERN_ERR PFX "failed: req 0x%x 0x%x, curr 0x%x 0x%x\n",
- reqfid, reqvid, currfid, currvid);
+ if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
+ printk(KERN_ERR PFX "failed (cpu%d): req %x %x, curr %x %x\n",
+ smp_processor_id(),
+ reqfid, reqvid, data->currfid, data->currvid);
return 1;
}

- dprintk(KERN_INFO PFX
- "transitioned: new fid 0x%x, vid 0x%x\n", currfid, currvid);
-
+ dprintk(KERN_INFO PFX "transitioned (cpu%d): new fid %x, vid %x\n",
+ smp_processor_id(), data->currfid, data->currvid);
return 0;
}

-/*
- * Phase 1 - core voltage transition ... setup appropriate voltage for the
- * fid transition.
- */
-static inline int
-core_voltage_pre_transition(u32 reqvid)
+/* Phase 1 - core voltage transition ... setup voltage */
+static inline int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
{
- u32 rvosteps = rvo;
- u32 savefid = currfid;
+ u32 rvosteps = data->rvo;
+ u32 savefid = data->currfid;

dprintk(KERN_DEBUG PFX
- "ph1: start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo %x\n",
- currfid, currvid, reqvid, rvo);
-
- while (currvid > reqvid) {
- dprintk(KERN_DEBUG PFX "ph1: curr 0x%x, requesting vid 0x%x\n",
- currvid, reqvid);
- if (decrease_vid_code_by_step(reqvid, vidmvs))
+ "ph1 (cpu%d): start, currfid %x, currvid %x, reqvid %x, rvo %x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid, reqvid, data->rvo);
+
+ while (data->currvid > reqvid) {
+ dprintk(KERN_DEBUG PFX "ph1: curr %x, req vid %x\n",
+ data->currvid, reqvid);
+ if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
return 1;
}

while (rvosteps > 0) {
- if (currvid == 0) {
+ if (data->currvid == 0) {
rvosteps = 0;
} else {
dprintk(KERN_DEBUG PFX
- "ph1: changing vid for rvo, requesting 0x%x\n",
- currvid - 1);
- if (decrease_vid_code_by_step(currvid - 1, 1))
+ "ph1: changing vid for rvo, req %x\n",
+ data->currvid - 1);
+ if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
return 1;
rvosteps--;
}
}

- if (query_current_values_with_pending_wait())
+ if (query_current_values_with_pending_wait(data))
return 1;

- if (savefid != currfid) {
- printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", currfid);
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX "ph1: err, currfid changed %x\n", data->currfid);
return 1;
}

- dprintk(KERN_DEBUG PFX "ph1 complete, currfid 0x%x, currvid 0x%x\n",
- currfid, currvid);
+ dprintk(KERN_DEBUG PFX "ph1: complete, currfid %x, currvid %x\n",
+ data->currfid, data->currvid);

return 0;
}

/* Phase 2 - core frequency transition */
-static inline int
-core_frequency_transition(u32 reqfid)
+static inline int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
{
u32 vcoreqfid;
u32 vcocurrfid;
u32 vcofiddiff;
- u32 savevid = currvid;
+ u32 savevid = data->currvid;

- if ((reqfid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) {
- printk(KERN_ERR PFX "ph2 illegal lo-lo transition 0x%x 0x%x\n",
- reqfid, currfid);
+ if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
+ printk(KERN_ERR PFX "ph2: illegal lo-lo transition %x %x\n",
+ reqfid, data->currfid);
return 1;
}

- if (currfid == reqfid) {
- printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", currfid);
+ if (data->currfid == reqfid) {
+ printk(KERN_ERR PFX "ph2: null fid transition %x\n", data->currfid);
return 0;
}

dprintk(KERN_DEBUG PFX
- "ph2 starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
- currfid, currvid, reqfid);
+ "ph2 (cpu%d): starting, currfid %x, currvid %x, reqfid %x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid, reqfid);

vcoreqfid = convert_fid_to_vco_fid(reqfid);
- vcocurrfid = convert_fid_to_vco_fid(currfid);
+ vcocurrfid = convert_fid_to_vco_fid(data->currfid);
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
: vcoreqfid - vcocurrfid;

while (vcofiddiff > 2) {
- if (reqfid > currfid) {
- if (currfid > LO_FID_TABLE_TOP) {
- if (write_new_fid(currfid + 2)) {
+ if (reqfid > data->currfid) {
+ if (data->currfid > LO_FID_TABLE_TOP) {
+ if (write_new_fid(data, data->currfid + 2)) {
return 1;
}
} else {
if (write_new_fid
- (2 + convert_fid_to_vco_fid(currfid))) {
+ (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
return 1;
}
}
} else {
- if (write_new_fid(currfid - 2))
+ if (write_new_fid(data, data->currfid - 2))
return 1;
}

- vcocurrfid = convert_fid_to_vco_fid(currfid);
+ vcocurrfid = convert_fid_to_vco_fid(data->currfid);
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
: vcoreqfid - vcocurrfid;
}

- if (write_new_fid(reqfid))
+ if (write_new_fid(data, reqfid))
return 1;
-
- if (query_current_values_with_pending_wait())
+ if (query_current_values_with_pending_wait(data))
return 1;

- if (currfid != reqfid) {
+ if (data->currfid != reqfid) {
printk(KERN_ERR PFX
- "ph2 mismatch, failed fid transition, curr %x, req %x\n",
- currfid, reqfid);
+ "ph2: mismatch, failed fid transition, curr %x, req %x\n",
+ data->currfid, reqfid);
return 1;
}

- if (savevid != currvid) {
- printk(KERN_ERR PFX
- "ph2 vid changed, save %x, curr %x\n", savevid,
- currvid);
+ if (savevid != data->currvid) {
+ printk(KERN_ERR PFX "ph2: vid changed, save %x, curr %x\n",
+ savevid, data->currvid);
return 1;
}

- dprintk(KERN_DEBUG PFX "ph2 complete, currfid 0x%x, currvid 0x%x\n",
- currfid, currvid);
+ dprintk(KERN_DEBUG PFX "ph2: complete, currfid %x, currvid %x\n",
+ data->currfid, data->currvid);

return 0;
}

/* Phase 3 - core voltage transition flow ... jump to the final vid. */
-static inline int
-core_voltage_post_transition(u32 reqvid)
+static inline int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
{
- u32 savefid = currfid;
+ u32 savefid = data->currfid;
u32 savereqvid = reqvid;

- dprintk(KERN_DEBUG PFX "ph3 starting, currfid 0x%x, currvid 0x%x\n",
- currfid, currvid);
+ dprintk(KERN_DEBUG PFX "ph3 (cpu%d): starting, currfid %x, currvid %x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid);

- if (reqvid != currvid) {
- if (write_new_vid(reqvid))
+ if (reqvid != data->currvid) {
+ if (write_new_vid(data, reqvid))
return 1;

- if (savefid != currfid) {
+ if (savefid != data->currfid) {
printk(KERN_ERR PFX
"ph3: bad fid change, save %x, curr %x\n",
- savefid, currfid);
+ savefid, data->currfid);
return 1;
}

- if (currvid != reqvid) {
+ if (data->currvid != reqvid) {
printk(KERN_ERR PFX
"ph3: failed vid transition\n, req %x, curr %x",
- reqvid, currvid);
+ reqvid, data->currvid);
return 1;
}
}

- if (query_current_values_with_pending_wait())
+ if (query_current_values_with_pending_wait(data))
return 1;

- if (savereqvid != currvid) {
- dprintk(KERN_ERR PFX "ph3 failed, currvid 0x%x\n", currvid);
+ if (savereqvid != data->currvid) {
+ printk(KERN_ERR PFX "ph3: failed, currvid %x\n", data->currvid);
return 1;
}

- if (savefid != currfid) {
- dprintk(KERN_ERR PFX "ph3 failed, currfid changed 0x%x\n",
- currfid);
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX "ph3: failed, currfid changed %x\n",
+ data->currfid);
return 1;
}

- dprintk(KERN_DEBUG PFX "ph3 complete, currfid 0x%x, currvid 0x%x\n",
- currfid, currvid);
-
+ dprintk(KERN_DEBUG PFX "ph3: complete, currfid %x, currvid %x\n",
+ data->currfid, data->currvid);
return 0;
}

-static inline int
-check_supported_cpu(void)
+static inline int check_supported_cpu(unsigned int cpu)
{
- struct cpuinfo_x86 *c = cpu_data;
+ cpumask_t oldmask = CPU_MASK_ALL;
u32 eax, ebx, ecx, edx;
+ unsigned int rc = 0;

- if (num_online_cpus() != 1) {
- printk(KERN_INFO PFX "multiprocessor systems not supported\n");
- return 0;
- }
+ oldmask = current->cpus_allowed;
+ set_cpus_allowed(current, cpumask_of_cpu(cpu));
+ schedule();

- if (c->x86_vendor != X86_VENDOR_AMD) {
-#ifdef MODULE
- printk(KERN_INFO PFX "Not an AMD processor\n");
-#endif
- return 0;
+ if (smp_processor_id() != cpu) {
+ printk(KERN_ERR "limiting to cpu %u failed\n", cpu);
+ goto out;
}

+ if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
+ goto out;
+
eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
if ((eax & CPUID_XFAM_MOD) == ATHLON64_XFAM_MOD) {
dprintk(KERN_DEBUG PFX "AMD Althon 64 Processor found\n");
- if ((eax & CPUID_F1_STEP) < ATHLON64_REV_C0) {
- printk(KERN_INFO PFX "Revision C0 or better "
- "AMD Athlon 64 processor required\n");
- return 0;
- }
} else if ((eax & CPUID_XFAM_MOD) == OPTERON_XFAM_MOD) {
dprintk(KERN_DEBUG PFX "AMD Opteron Processor found\n");
} else {
printk(KERN_INFO PFX
"AMD Athlon 64 or AMD Opteron processor required\n");
- return 0;
+ goto out;
}

eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
- printk(KERN_INFO PFX
- "No frequency change capabilities detected\n");
- return 0;
+ printk(KERN_INFO PFX "No freq change capabilities\n");
+ goto out;
}

cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
printk(KERN_INFO PFX "Power state transitions not supported\n");
- return 0;
+ goto out;
}

- printk(KERN_INFO PFX "Found AMD64 processor supporting PowerNow (" VERSION ")\n");
- return 1;
+ rc = 1;
+
+ out:
+ set_cpus_allowed(current, oldmask);
+ schedule();
+ return rc;
}

-static int check_pst_table(struct pst_s *pst, u8 maxvid)
+static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
{
unsigned int j;
- u8 lastfid = 0xFF;
+ u8 lastfid = 0xff;

- for (j = 0; j < numps; j++) {
+ for (j = 0; j < data->numps; j++) {
if (pst[j].vid > LEAST_VID) {
- printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
+ printk(KERN_ERR PFX "vid %d bad: %x\n", j, pst[j].vid);
return -EINVAL;
}
- if (pst[j].vid < rvo) { /* vid + rvo >= 0 */
- printk(KERN_ERR PFX
- "BIOS error - 0 vid exceeded with pstate %d\n",
- j);
+ if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
+ printk(KERN_ERR PFX "0 vid exceeded with pst %d\n", j);
return -ENODEV;
}
- if (pst[j].vid < maxvid + rvo) { /* vid + rvo >= maxvid */
- printk(KERN_ERR PFX
- "BIOS error - maxvid exceeded with pstate %d\n",
- j);
+ if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
+ printk(KERN_ERR PFX "maxvid exceeded with pst %d\n", j);
return -ENODEV;
}
if ((pst[j].fid > MAX_FID)
|| (pst[j].fid & 1)
|| (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) {
- /* Only first fid is allowed to be in "low" range */
- printk(KERN_ERR PFX "fid %d invalid : 0x%x\n", j, pst[j].fid);
+ printk(KERN_ERR PFX "fid %d bad: %x\n", j, pst[j].fid);
return -EINVAL;
}
if (pst[j].fid < lastfid)
@@ -531,20 +501,87 @@
printk(KERN_ERR PFX "lastfid invalid\n");
return -EINVAL;
}
- if (lastfid > LO_FID_TABLE_TOP) {
- printk(KERN_INFO PFX "first fid not from lo freq table\n");
+ if (lastfid > LO_FID_TABLE_TOP)
+ printk(KERN_INFO PFX "first fid not from lo freq table\n");
+
+ return 0;
+}
+
+static void print_basics(struct powernow_k8_data *data)
+{
+ int j;
+ for (j = 0; j < data->numps; j++) {
+ printk(KERN_INFO PFX " %d : fid %x (%d MHz), vid %x (%d mV)\n", j,
+ data->powernow_table[j].index & 0xff,
+ data->powernow_table[j].frequency/1000,
+ data->powernow_table[j].index >> 8,
+ find_milivolts_from_vid(data, data->powernow_table[j].index >> 8));
+ }
+ if (data->batps)
+ printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
+}
+
+static inline int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
+{
+ struct cpufreq_frequency_table *powernow_table;
+ unsigned int j;
+
+ if (data->batps) { /* use ACPI support to get full speed on mains power */
+ printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
+ data->numps = data->batps;
}

+ for ( j=1; j<data->numps; j++ )
+ if (pst[j-1].fid >= pst[j].fid) {
+ printk(KERN_ERR PFX "PST out of sequence\n");
+ return -EINVAL;
+ }
+
+ if (data->numps < 2) {
+ printk(KERN_ERR PFX "no p states to transition\n");
+ return -ENODEV;
+ }
+
+ if (check_pst_table(data, pst, maxvid))
+ return -EINVAL;
+
+ powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
+ * (data->numps + 1)), GFP_KERNEL);
+ if (!powernow_table) {
+ printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
+ return -ENOMEM;
+ }
+
+ for (j = 0; j < data->numps; j++) {
+ powernow_table[j].index = pst[j].fid; /* lower 8 bits */
+ powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
+ powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
+ }
+ powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
+ powernow_table[data->numps].index = 0;
+
+ if (query_current_values_with_pending_wait(data)) {
+ kfree(powernow_table);
+ return -EIO;
+ }
+
+ dprintk(KERN_INFO PFX "cfid %x, cvid %x\n", data->currfid, data->currvid);
+ data->powernow_table = powernow_table;
+ print_basics(data);
+
+ for (j = 0; j < data->numps; j++)
+ if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
+ return 0;
+
+ dprintk(KERN_ERR PFX "currfid/vid do not match PST, ignoring\n");
return 0;
}

/* Find and validate the PSB/PST table in BIOS. */
-static inline int
-find_psb_table(void)
+static inline int find_psb_table(struct powernow_k8_data *data)
{
struct psb_s *psb;
- struct pst_s *pst;
- unsigned int i, j;
+ unsigned int i;
u32 mvs;
u8 maxvid;

@@ -556,276 +593,427 @@
if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
continue;

- dprintk(KERN_DEBUG PFX "found PSB header at 0x%p\n", psb);
-
- dprintk(KERN_DEBUG PFX "table vers: 0x%x\n", psb->tableversion);
+ dprintk(KERN_DEBUG PFX "found PSB header at %p\n", psb);
+ dprintk(KERN_DEBUG PFX "table version: %x\n",
+ psb->tableversion);
if (psb->tableversion != PSB_VERSION_1_4) {
- printk(KERN_INFO BFX "PSB table is not v1.4\n");
+ printk(KERN_INFO PFX "PSB table is not v1.4\n");
return -ENODEV;
}

- dprintk(KERN_DEBUG PFX "flags: 0x%x\n", psb->flags1);
+ dprintk(KERN_DEBUG PFX "flags: %x\n", psb->flags1);
if (psb->flags1) {
- printk(KERN_ERR BFX "unknown flags\n");
+ printk(KERN_ERR PFX "unknown flags\n");
return -ENODEV;
}

- vstable = psb->voltagestabilizationtime;
- dprintk(KERN_DEBUG PFX "flags2: 0x%x\n", psb->flags2);
- rvo = psb->flags2 & 3;
- irt = ((psb->flags2) >> 2) & 3;
+ data->vstable = psb->voltagestabilizationtime;
+ dprintk(KERN_INFO PFX "voltage stabilization time: %d(*20us)\n", data->vstable);
+
+ dprintk(KERN_DEBUG PFX "flags2: %x\n", psb->flags2);
+
+ data->rvo = psb->flags2 & 3;
+ data->irt = ((psb->flags2) >> 2) & 3;
mvs = ((psb->flags2) >> 4) & 3;
- vidmvs = 1 << mvs;
- batps = ((psb->flags2) >> 6) & 3;
+ data->vidmvs = 1 << mvs;
+ data->batps = ((psb->flags2) >> 6) & 3;

- printk(KERN_INFO PFX "voltage stable in %d usec", vstable * 20);
- if (batps)
- printk(", only %d lowest states on battery", batps);
- printk(", ramp voltage offset: %d", rvo);
- printk(", isochronous relief time: %d", irt);
- printk(", maximum voltage step: %d\n", mvs);
+ dprintk(KERN_INFO PFX "ramp voltage offset: %d\n", data->rvo);
+ dprintk(KERN_INFO PFX "isochronous relief time: %d\n", data->irt);
+ dprintk(KERN_INFO PFX "maximum voltage step: %d - %x\n",
+ mvs, data->vidmvs);

dprintk(KERN_DEBUG PFX "numpst: 0x%x\n", psb->numpst);
if (psb->numpst != 1) {
- printk(KERN_ERR BFX "numpst must be 1\n");
+ printk(KERN_ERR PFX "numpst must be 1\n");
return -ENODEV;
}

- dprintk(KERN_DEBUG PFX "cpuid: 0x%x\n", psb->cpuid);
-
- plllock = psb->plllocktime;
- printk(KERN_INFO PFX "pll lock time: 0x%x, ", plllock);
-
+ data->plllock = psb->plllocktime;
+ dprintk(KERN_INFO PFX "plllocktime: %x (units 1us)\n",
+ psb->plllocktime);
+ dprintk(KERN_INFO PFX "maxfid: %x\n", psb->maxfid);
+ dprintk(KERN_INFO PFX "maxvid: %x\n", psb->maxvid);
maxvid = psb->maxvid;
- printk("maxfid 0x%x (%d MHz), maxvid 0x%x\n",
- psb->maxfid, find_freq_from_fid(psb->maxfid), maxvid);

- numps = psb->numpstates;
- if (numps < 2) {
- printk(KERN_ERR BFX "no p states to transition\n");
- return -ENODEV;
- }
+ data->numps = psb->numpstates;
+ dprintk(KERN_INFO PFX "numpstates: %x\n", data->numps);
+ return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
+ }

- if (batps == 0) {
- batps = numps;
- } else if (batps > numps) {
- printk(KERN_ERR BFX "batterypstates > numpstates\n");
- batps = numps;
- } else {
- printk(KERN_ERR PFX
- "Restricting operation to %d p-states\n", batps);
- printk(KERN_ERR PFX
- "Check for an updated driver to access all "
- "%d p-states\n", numps);
- }
+ /*
+ * If you see this message, complain to BIOS manufacturer. If
+ * he tells you "we do not support Linux" or some similar
+ * nonsense, remember that Windows 2000 uses the same legacy
+ * mechanism that the old Linux PSB driver uses. Tell them it
+ * is broken with Windows 2000.
+ *
+ * The reference to the AMD documentation is chapter 9 in the
+ * BIOS and Kernel Developer's Guide, which is available on
+ * www.amd.com
+ */
+ printk(KERN_ERR PFX "BIOS error - no PSB\n");
+ return -ENODEV;
+}

- if (numps <= 1) {
- printk(KERN_ERR PFX "only 1 p-state to transition\n");
- return -ENODEV;
- }

- pst = (struct pst_s *) (psb + 1);
- if (check_pst_table(pst, maxvid))
- return -EINVAL;
+#ifdef CONFIG_X86_POWERNOW_K8_ACPI

- powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) * (numps + 1)), GFP_KERNEL);
- if (!powernow_table) {
- printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
- return -ENOMEM;
- }
+static inline void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
+{
+ if (!data->acpi_data.state_count)
+ return;

- for (j = 0; j < psb->numpstates; j++) {
- powernow_table[j].index = pst[j].fid; /* lower 8 bits */
- powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
- }
+ data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
+ data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
+ data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
+ data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
+ data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
+}

- /* If you want to override your frequency tables, this
- is right place. */
+static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
+{
+ int i;
+ int cntlofreq = 0;
+ struct cpufreq_frequency_table *powernow_table;

- for (j = 0; j < numps; j++) {
- powernow_table[j].frequency = find_freq_from_fid(powernow_table[j].index & 0xff)*1000;
- printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n", j,
- powernow_table[j].index & 0xff,
- powernow_table[j].frequency/1000,
- powernow_table[j].index >> 8);
+ if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
+ dprintk(KERN_DEBUG PFX "register performance failed\n");
+ return -EIO;
+ }
+
+ /* verify the data contained in the ACPI structures */
+ if (data->acpi_data.state_count <= 1) {
+ dprintk(KERN_DEBUG PFX "No ACPI P-States\n");
+ goto err_out;
+ }
+
+ if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
+ (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
+ dprintk(KERN_DEBUG PFX "Invalid control/status registers\n");
+ goto err_out;
+ }
+
+ /* fill in data->powernow_table */
+ powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
+ * (data->acpi_data.state_count + 1)), GFP_KERNEL);
+ if (!powernow_table) {
+ dprintk(KERN_ERR PFX "powernow_table memory alloc failure\n");
+ goto err_out;
+ }
+
+ for (i = 0; i < data->acpi_data.state_count; i++) {
+ u32 fid = data->acpi_data.states[i].control & FID_MASK;
+ u32 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
+
+ dprintk(KERN_INFO PFX " %d : fid %x, vid %x\n", i, fid, vid);
+
+ powernow_table[i].index = fid; /* lower 8 bits */
+ powernow_table[i].index |= (vid << 8); /* upper 8 bits */
+ powernow_table[i].frequency = find_khz_freq_from_fid(fid);
+
+ /* verify frequency is OK */
+ if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
+ (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
+ dprintk(KERN_INFO PFX "invalid freq %u kHz\n", powernow_table[i].frequency);
+ powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
+ continue;
}

- powernow_table[numps].frequency = CPUFREQ_TABLE_END;
- powernow_table[numps].index = 0;
+ /* verify only 1 entry from the lo frequency table */
+ if ((fid < HI_FID_TABLE_BOTTOM) && (cntlofreq++)) {
+ printk(KERN_ERR PFX "Too many lo freq table entries\n");
+ goto err_out;
+ }

- if (query_current_values_with_pending_wait()) {
- kfree(powernow_table);
- return -EIO;
+ if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
+ printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
+ powernow_table[i].frequency,
+ (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
+ powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
+ continue;
}
+ }
+ powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
+ powernow_table[data->acpi_data.state_count].index = 0;
+ data->powernow_table = powernow_table;
+
+ /* fill in data */
+ data->numps = data->acpi_data.state_count;
+ print_basics(data);

- printk(KERN_INFO PFX "currfid 0x%x (%d MHz), currvid 0x%x\n",
- currfid, find_freq_from_fid(currfid), currvid);
+ powernow_k8_acpi_pst_values(data, 0);

- for (j = 0; j < numps; j++)
- if ((pst[j].fid==currfid) && (pst[j].vid==currvid))
- return 0;
+ return 0;

- printk(KERN_ERR BFX "currfid/vid do not match PST, ignoring\n");
- return 0;
- }
+ err_out:
+ acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
+
+ /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
+ data->acpi_data.state_count = 0;

- printk(KERN_ERR BFX "no PSB\n");
return -ENODEV;
}

+static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
+{
+ if (data->acpi_data.state_count)
+ acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
+}
+
+#else
+static inline int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
+static inline void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
+static inline void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
+#endif /* CONFIG_X86_POWERNOW_K8_ACPI */
+
+
/* Take a frequency, and issue the fid/vid transition command */
-static inline int
-transition_frequency(unsigned int index)
+static inline int transition_frequency(struct powernow_k8_data *data, unsigned int index)
{
u32 fid;
u32 vid;
int res;
struct cpufreq_freqs freqs;

+ dprintk(KERN_DEBUG PFX "cpu %d transition to index %u\n",
+ smp_processor_id(), index );
+
/* fid are the lower 8 bits of the index we stored into
* the cpufreq frequency table in find_psb_table, vid are
* the upper 8 bits.
*/

- fid = powernow_table[index].index & 0xFF;
- vid = (powernow_table[index].index & 0xFF00) >> 8;
+ fid = data->powernow_table[index].index & 0xFF;
+ vid = (data->powernow_table[index].index & 0xFF00) >> 8;

- dprintk(KERN_DEBUG PFX "table matched fid 0x%x, giving vid 0x%x\n",
- fid, vid);
+ dprintk(KERN_DEBUG PFX "matched fid %x, giving vid %x\n", fid, vid);

- if (query_current_values_with_pending_wait())
+ if (query_current_values_with_pending_wait(data))
return 1;

- if ((currvid == vid) && (currfid == fid)) {
- dprintk(KERN_DEBUG PFX
- "target matches current values (fid 0x%x, vid 0x%x)\n",
+ if ((data->currvid == vid) && (data->currfid == fid)) {
+ dprintk(KERN_DEBUG PFX "target matches curr (fid %x, vid %x)\n",
fid, vid);
return 0;
}

- if ((fid < HI_FID_TABLE_BOTTOM) && (currfid < HI_FID_TABLE_BOTTOM)) {
+ if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
printk(KERN_ERR PFX
"ignoring illegal change in lo freq table-%x to %x\n",
- currfid, fid);
+ data->currfid, fid);
return 1;
}

- dprintk(KERN_DEBUG PFX "changing to fid 0x%x, vid 0x%x\n", fid, vid);
-
- freqs.cpu = 0; /* only true because SMP not supported */
+ dprintk(KERN_DEBUG PFX "cpu %d, changing to fid %x, vid %x\n",
+ smp_processor_id(), fid, vid);
+ freqs.cpu = data->cpu;

- freqs.old = find_freq_from_fid(currfid);
- freqs.new = find_freq_from_fid(fid);
+ freqs.old = find_khz_freq_from_fid(data->currfid);
+ freqs.new = find_khz_freq_from_fid(fid);
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);

- res = transition_fid_vid(fid, vid);
+ down(&fidvid_sem);
+ res = transition_fid_vid(data, fid, vid);
+ up(&fidvid_sem);

- freqs.new = find_freq_from_fid(currfid);
+ freqs.new = find_khz_freq_from_fid(data->currfid);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);

return res;
}

/* Driver entry point to switch to the target frequency */
-static int
-powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
+static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
{
- u32 checkfid = currfid;
- u32 checkvid = currvid;
+ cpumask_t oldmask = CPU_MASK_ALL;
+ struct powernow_k8_data *data = powernow_data[pol->cpu];
+ u32 checkfid = data->currfid;
+ u32 checkvid = data->currvid;
unsigned int newstate;
+ int ret = -EIO;
+
+ /* only run on specific CPU from here on */
+ oldmask = current->cpus_allowed;
+ set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
+ schedule();
+
+ if (smp_processor_id() != pol->cpu) {
+ printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
+ goto err_out;
+ }
+
+ /* from this point, do not exit without restoring preempt and cpu */
+ preempt_disable();

if (pending_bit_stuck()) {
- printk(KERN_ERR PFX "drv targ fail: change pending bit set\n");
- return -EIO;
+ printk(KERN_ERR PFX "failing targ, change pending bit set\n");
+ goto err_out;
}

- dprintk(KERN_DEBUG PFX "targ: %d kHz, min %d, max %d, relation %d\n",
- targfreq, pol->min, pol->max, relation);
+ dprintk(KERN_DEBUG PFX "targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
+ pol->cpu, targfreq, pol->min, pol->max, relation);

- if (query_current_values_with_pending_wait())
- return -EIO;
+ if (query_current_values_with_pending_wait(data)) {
+ ret = -EIO;
+ goto err_out;
+ }

- dprintk(KERN_DEBUG PFX "targ: curr fid 0x%x, vid 0x%x\n",
- currfid, currvid);
+ dprintk(KERN_DEBUG PFX "targ: curr fid %x, vid %x\n",
+ data->currfid, data->currvid);

- if ((checkvid != currvid) || (checkfid != currfid)) {
- printk(KERN_ERR PFX
- "error - out of sync, fid 0x%x 0x%x, vid 0x%x 0x%x\n",
- checkfid, currfid, checkvid, currvid);
+ if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
+ printk(KERN_ERR PFX "out of sync, fid %x %x, vid %x %x\n",
+ checkfid, data->currfid, checkvid, data->currvid);
}

- if (cpufreq_frequency_table_target(pol, powernow_table, targfreq, relation, &newstate))
- return -EINVAL;
-
- if (transition_frequency(newstate))
+ if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
+ goto err_out;
+
+ powernow_k8_acpi_pst_values(data, newstate);
+
+ if (transition_frequency(data, newstate))
{
printk(KERN_ERR PFX "transition frequency failed\n");
- return 1;
+ ret = 1;
+ goto err_out;
}

- pol->cur = 1000 * find_freq_from_fid(currfid);
+ pol->cur = find_khz_freq_from_fid(data->currfid);
+ ret = 0;

- return 0;
+ err_out:
+ preempt_enable_no_resched();
+ set_cpus_allowed(current, oldmask);
+ schedule();
+
+ return ret;
}

/* Driver entry point to verify the policy and range of frequencies */
-static int
-powernowk8_verify(struct cpufreq_policy *pol)
+static int powernowk8_verify(struct cpufreq_policy *pol)
{
- if (pending_bit_stuck()) {
- printk(KERN_ERR PFX "failing verify, change pending bit set\n");
- return -EIO;
- }
+ struct powernow_k8_data *data = powernow_data[pol->cpu];

- return cpufreq_frequency_table_verify(pol, powernow_table);
+ return cpufreq_frequency_table_verify(pol, data->powernow_table);
}

/* per CPU init entry point to the driver */
-static int __init
-powernowk8_cpu_init(struct cpufreq_policy *pol)
+static int __init powernowk8_cpu_init(struct cpufreq_policy *pol)
{
- if (pol->cpu != 0) {
- printk(KERN_ERR PFX "init not cpu 0\n");
+ cpumask_t oldmask = CPU_MASK_ALL;
+ int rc;
+ struct powernow_k8_data *data;
+
+ if (!check_supported_cpu(pol->cpu))
return -ENODEV;
+
+ data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
+ if (!data) {
+ printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
+ return -ENOMEM;
+ }
+ memset(data,0,sizeof(struct powernow_k8_data));
+
+ data->cpu = pol->cpu;
+
+ if (powernow_k8_cpu_init_acpi(data)) {
+ /*
+ * Use the PSB BIOS structure. This is only availabe on
+ * an UP version, and is deprecated by AMD.
+ */
+
+ if (pol->cpu != 0) {
+ printk(KERN_ERR PFX "init - cpu 0\n");
+ kfree(data);
+ return -ENODEV;
+ }
+
+ if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
+ printk(KERN_INFO PFX "MP systems not supported by PSB BIOS structure\n");
+ kfree(data);
+ return 0;
+ }
+
+ rc = find_psb_table(data);
+ if (rc) {
+ kfree(data);
+ return -ENODEV;
+ }
}

+ /* only run on specific CPU from here on */
+ oldmask = current->cpus_allowed;
+ set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
+ schedule();
+
+ if (smp_processor_id() != pol->cpu) {
+ printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
+ goto err_out;
+ }
+
+ if (pending_bit_stuck()) {
+ printk(KERN_ERR PFX "failing init, change pending bit set\n");
+ goto err_out;
+ }
+
+ if (query_current_values_with_pending_wait(data)) {
+ goto err_out;
+ }
+
+ fidvid_msr_init();
+
+
+ /* run on any CPU again */
+ set_cpus_allowed(current, oldmask);
+ schedule();
+
pol->governor = CPUFREQ_DEFAULT_GOVERNOR;

/* Take a crude guess here.
- * That guess was in microseconds, so multply with 1000 */
- pol->cpuinfo.transition_latency = (((rvo + 8) * vstable * VST_UNITS_20US)
- + (3 * (1 << irt) * 10)) * 1000;
-
- if (query_current_values_with_pending_wait())
- return -EIO;
+ * That guess was in microseconds, so multiply with 1000 */
+ pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
+ + (3 * (1 << data->irt) * 10)) * 1000;

- pol->cur = 1000 * find_freq_from_fid(currfid);
+ pol->cur = find_khz_freq_from_fid(data->currfid);
dprintk(KERN_DEBUG PFX "policy current frequency %d kHz\n", pol->cur);

/* min/max the cpu is capable of */
- if (cpufreq_frequency_table_cpuinfo(pol, powernow_table)) {
+ if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
printk(KERN_ERR PFX "invalid powernow_table\n");
- kfree(powernow_table);
+ kfree(data->powernow_table);
+ kfree(data);
return -EINVAL;
}
+ cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);

- cpufreq_frequency_table_get_attr(powernow_table, pol->cpu);
+ dprintk(KERN_INFO PFX "init, curr fid %x vid %x\n", data->currfid, data->currvid);

- printk(KERN_INFO PFX "cpu_init done, current fid 0x%x, vid 0x%x\n",
- currfid, currvid);
+ powernow_data[pol->cpu] = data;

return 0;
+
+ err_out:
+ set_cpus_allowed(current, oldmask);
+ schedule();
+
+ kfree(data);
+ return -ENODEV;
}

static int __exit powernowk8_cpu_exit (struct cpufreq_policy *pol)
{
- if (pol->cpu != 0)
+ struct powernow_k8_data *data = powernow_data[pol->cpu];
+
+ if (!data)
return -EINVAL;

+ powernow_k8_cpu_exit_acpi(data);
+
cpufreq_frequency_table_put_attr(pol->cpu);

- if (powernow_table)
- kfree(powernow_table);
+ kfree(data->powernow_table);
+ kfree(data);

return 0;
}
@@ -845,33 +1033,31 @@
.attr = powernow_k8_attr,
};

-
/* driver entry point for init */
-static int __init
-powernowk8_init(void)
+static int __init powernowk8_init(void)
{
- int rc;
-
- if (check_supported_cpu() == 0)
- return -ENODEV;
+ unsigned int i, supported_cpus = 0;

- rc = find_psb_table();
- if (rc)
- return rc;
+ for (i=0; i<NR_CPUS; i++) {
+ if (!cpu_online(i))
+ continue;
+ if (check_supported_cpu(i))
+ supported_cpus++;
+ }

- if (pending_bit_stuck()) {
- printk(KERN_ERR PFX "powernowk8_init fail, change pending bit set\n");
- return -EIO;
+ if (supported_cpus == num_online_cpus()) {
+ printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
+ supported_cpus);
+ return cpufreq_register_driver(&cpufreq_amd64_driver);
}

- return cpufreq_register_driver(&cpufreq_amd64_driver);
+ return -ENODEV;
}

/* driver entry point for term */
-static void __exit
-powernowk8_exit(void)
+static void __exit powernowk8_exit(void)
{
- dprintk(KERN_INFO PFX "powernowk8_exit\n");
+ dprintk(KERN_INFO PFX "exit\n");

cpufreq_unregister_driver(&cpufreq_amd64_driver);
}
@@ -880,5 +1066,5 @@
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");

-module_init(powernowk8_init);
+late_initcall(powernowk8_init);
module_exit(powernowk8_exit);
--- clean/arch/i386/kernel/cpu/cpufreq/powernow-k8.h 2004-02-20 12:29:10.000000000 +0100
+++ linux-pn/arch/i386/kernel/cpu/cpufreq/powernow-k8.h 2004-03-26 12:44:27.000000000 +0100
@@ -1,20 +1,46 @@
/*
- * (c) 2003 Advanced Micro Devices, Inc.
+ * (c) 2003, 2004 Advanced Micro Devices, Inc.
* Your use of this code is subject to the terms and conditions of the
- * GNU general public license version 2. See "../../../COPYING" or
+ * GNU general public license version 2. See "COPYING" or
* http://www.gnu.org/licenses/gpl.html
*/

+struct powernow_k8_data {
+ unsigned int cpu;
+
+ u32 numps; /* number of p-states */
+ u32 batps; /* number of p-states supported on battery */
+
+ /* these values are constant when the PSB is used to determine
+ * vid/fid pairings, but are modified during the ->target() call
+ * when ACPI is used */
+ u32 rvo; /* ramp voltage offset */
+ u32 irt; /* isochronous relief time */
+ u32 vidmvs; /* usable value calculated from mvs */
+ u32 vstable; /* voltage stabilization time, units 20 us */
+ u32 plllock; /* pll lock time, units 1 us */
+
+ /* keep track of the current fid / vid */
+ u32 currvid;
+ u32 currfid;
+
+ /* the powernow_table includes all frequency and vid/fid pairings:
+ * fid are the lower 8 bits of the index, vid are the upper 8 bits.
+ * frequency is in kHz */
+ struct cpufreq_frequency_table *powernow_table;
+
+#ifdef CONFIG_X86_POWERNOW_K8_ACPI
+ /* the acpi table needs to be kept. it's only available if ACPI was
+ * used to determine valid frequency/vid/fid states */
+ struct acpi_processor_performance acpi_data;
+#endif
+};
+
/* processor's cpuid instruction support */
-#define CPUID_PROCESSOR_SIGNATURE 1 /* function 1 */
-#define CPUID_F1_FAM 0x00000f00 /* family mask */
-#define CPUID_F1_XFAM 0x0ff00000 /* extended family mask */
-#define CPUID_F1_MOD 0x000000f0 /* model mask */
-#define CPUID_F1_STEP 0x0000000f /* stepping level mask */
-#define CPUID_XFAM_MOD 0x0ff00ff0 /* xtended fam, fam + model */
-#define ATHLON64_XFAM_MOD 0x00000f40 /* xtended fam, fam + model */
-#define OPTERON_XFAM_MOD 0x00000f50 /* xtended fam, fam + model */
-#define ATHLON64_REV_C0 8
+#define CPUID_PROCESSOR_SIGNATURE 1 /* function 1 */
+#define CPUID_XFAM_MOD 0x0ff00ff0 /* extended fam, fam + model */
+#define ATHLON64_XFAM_MOD 0x00000f40 /* extended fam, fam + model */
+#define OPTERON_XFAM_MOD 0x00000f50 /* extended fam, fam + model */
#define CPUID_GET_MAX_CAPABILITIES 0x80000000
#define CPUID_FREQ_VOLT_CAPABILITIES 0x80000007
#define P_STATE_TRANSITION_CAPABLE 6
@@ -23,7 +49,6 @@
/* writes (wrmsr - opcode 0f 30), the register number is placed in ecx, and */
/* the value to write is placed in edx:eax. For reads (rdmsr - opcode 0f 32), */
/* the register number is placed in ecx, and the data is returned in edx:eax. */
-
#define MSR_FIDVID_CTL 0xc0010041
#define MSR_FIDVID_STATUS 0xc0010042

@@ -47,10 +72,24 @@
#define MSR_S_HI_MAX_WORKING_VID 0x001f0000
#define MSR_S_HI_START_VID 0x00001f00
#define MSR_S_HI_CURRENT_VID 0x0000001f
+#define MSR_C_HI_STP_GNT_BENIGN 0x00000001
+
+/*
+ There are restrictions frequencies have to follow:
+ - only 1 entry in the low fid table ( <=1.4GHz )
+ - lowest entry in the high fid table must be >= 2 * the
+ entry in the low fid table
+ - lowest entry in the high fid table must be a <= 200MHz +
+ 2 * the entry in the low fid table
+ - the parts can only step at 200 MHz intervals, so 1.9 GHz is
+ never valid
+ - lowest frequency must be >= interprocessor hypertransport link
+ speed (only applies to MP systems obviously)
+ */

/* fids (frequency identifiers) are arranged in 2 tables - lo and hi */
-#define LO_FID_TABLE_TOP 6
-#define HI_FID_TABLE_BOTTOM 8
+#define LO_FID_TABLE_TOP 6 /* fid values marking the boundary */
+#define HI_FID_TABLE_BOTTOM 8 /* between the low and high tables */

#define LO_VCOFREQ_TABLE_TOP 1400 /* corresponding vco frequency values */
#define HI_VCOFREQ_TABLE_BOTTOM 1600
@@ -58,33 +97,44 @@
#define MIN_FREQ_RESOLUTION 200 /* fids jump by 2 matching freq jumps by 200 */

#define MAX_FID 0x2a /* Spec only gives FID values as far as 5 GHz */
-
#define LEAST_VID 0x1e /* Lowest (numerically highest) useful vid value */
-
#define MIN_FREQ 800 /* Min and max freqs, per spec */
#define MAX_FREQ 5000

-#define INVALID_FID_MASK 0xffffffc1 /* not a valid fid if these bits are set */
-
-#define INVALID_VID_MASK 0xffffffe0 /* not a valid vid if these bits are set */
+#define INVALID_FID_MASK 0xffffffc1 /* not a valid fid if these bits are set */
+#define INVALID_VID_MASK 0xffffffe0 /* not a valid vid if these bits are set */

#define STOP_GRANT_5NS 1 /* min poss memory access latency for voltage change */
-
#define PLL_LOCK_CONVERSION (1000/5) /* ms to ns, then divide by clock period */
-
#define MAXIMUM_VID_STEPS 1 /* Current cpus only allow a single step of 25mV */
+#define VST_UNITS_20US 20 /* Voltage Stabilization Time is in units of 20us */

-#define VST_UNITS_20US 20 /* Voltage Stabalization Time is in units of 20us */
+/*
+ * Most values of interest are enocoded in a single field of the _PSS
+ * entries: the "control" value.
+ */

+#define IRT_SHIFT 30
+#define RVO_SHIFT 28
+#define PLL_L_SHIFT 20
+#define MVS_SHIFT 18
+#define VST_SHIFT 11
+#define VID_SHIFT 6
+#define IRT_MASK 3
+#define RVO_MASK 3
+#define PLL_L_MASK 0x7f
+#define MVS_MASK 3
+#define VST_MASK 0x7f
+#define VID_MASK 0x1f
+#define FID_MASK 0x3f
+
/*
-Version 1.4 of the PSB table. This table is constructed by BIOS and is
-to tell the OS's power management driver which VIDs and FIDs are
-supported by this particular processor. This information is obtained from
-the data sheets for each processor model by the system vendor and
-incorporated into the BIOS.
-If the data in the PSB / PST is wrong, then this driver will program the
-wrong values into hardware, which is very likely to lead to a crash.
-*/
+ * Version 1.4 of the PSB table. This table is constructed by BIOS and is
+ * to tell the OS's power management driver which VIDs and FIDs are
+ * supported by this particular processor.
+ * If the data in the PSB / PST is wrong, then this driver will program the
+ * wrong values into hardware, which is very likely to lead to a crash.
+ */

#define PSB_ID_STRING "AMDK7PNOW!"
#define PSB_ID_STRING_LEN 10
@@ -117,6 +167,7 @@
#define dprintk(msg...) do { } while(0)
#endif

-static inline int core_voltage_pre_transition(u32 reqvid);
-static inline int core_voltage_post_transition(u32 reqvid);
-static inline int core_frequency_transition(u32 reqfid);
+static inline int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid);
+static inline int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid);
+static inline int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid);
+static inline void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index);




--
When do you have a heart between your knees?
[Johanka's followup: and *two* hearts?]
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/