Re: 8139too in 2.6.x tx timeout

From: OGAWA Hirofumi
Date: Sun Jul 04 2004 - 06:11:19 EST


Zinx Verituse <zinx@xxxxxxxxxxx> writes:

> This problem appears similar to the thread earlier this year with
> the subject '2.6.3 - 8139too timeout debug info', but I don't think
> it is, since the 2.6.2 driver and patches given in that thread
> don't appear to work.
>
> I have enabled debug in the stock Linux 2.6.7 8139too.c and posted it at:
> http://zinx.xmms.org/misc/tmp/8139too.debug
> The debug shows init, DHCP request (succeeded), then a ping -f that lasts
> until shortly after it timed out.

Already solved?

NETDEV WATCHDOG: eth0: transmit timed out
eth0: Transmit timeout, status 0d 0000 c07f media 08.
eth0: Tx queue start entry 25 dirty entry 21.
eth0: Tx descriptor 0 is 10080062.
eth0: Tx descriptor 1 is 00080062. (queue head)
eth0: Tx descriptor 2 is 00080062.
eth0: Tx descriptor 3 is 00080062.
eth0: link up, 10Mbps, half-duplex, lpa 0x0000
rtl8139_hw_start: init buffer addresses

Tx status registers seems still not complete to transmit the packets.
So this problem may not be the lost interrupt problem.

The attached file is the ported 2.4.24's 8139too.c. Can you try this
driver? This driver solve the problem?

Also, please send the .config.

Thanks.
--
OGAWA Hirofumi <hirofumi@xxxxxxxxxxxxxxxxxx>

/*

8139too.c: A RealTek RTL-8139 Fast Ethernet driver for Linux.

Maintained by Jeff Garzik <jgarzik@xxxxxxxxx>
Copyright 2000-2002 Jeff Garzik

Much code comes from Donald Becker's rtl8139.c driver,
versions 1.13 and older. This driver was originally based
on rtl8139.c version 1.07. Header of rtl8139.c version 1.13:

-----<snip>-----

Written 1997-2001 by Donald Becker.
This software may be used and distributed according to the
terms of the GNU General Public License (GPL), incorporated
herein by reference. Drivers based on or derived from this
code fall under the GPL and must retain the authorship,
copyright and license notice. This file is not a complete
program and may only be used when the entire operating
system is licensed under the GPL.

This driver is for boards based on the RTL8129 and RTL8139
PCI ethernet chips.

The author may be reached as becker@xxxxxxxxx, or C/O Scyld
Computing Corporation 410 Severn Ave., Suite 210 Annapolis
MD 21403

Support and updates available at
http://www.scyld.com/network/rtl8139.html

Twister-tuning table provided by Kinston
<shangh@xxxxxxxxxxxxxx>.

-----<snip>-----

This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.

Contributors:

Donald Becker - he wrote the original driver, kudos to him!
(but please don't e-mail him for support, this isn't his driver)

Tigran Aivazian - bug fixes, skbuff free cleanup

Martin Mares - suggestions for PCI cleanup

David S. Miller - PCI DMA and softnet updates

Ernst Gill - fixes ported from BSD driver

Daniel Kobras - identified specific locations of
posted MMIO write bugginess

Gerard Sharp - bug fix, testing and feedback

David Ford - Rx ring wrap fix

Dan DeMaggio - swapped RTL8139 cards with me, and allowed me
to find and fix a crucial bug on older chipsets.

Donald Becker/Chris Butterworth/Marcus Westergren -
Noticed various Rx packet size-related buglets.

Santiago Garcia Mantinan - testing and feedback

Jens David - 2.2.x kernel backports

Martin Dennett - incredibly helpful insight on undocumented
features of the 8139 chips

Jean-Jacques Michel - bug fix

Tobias Ringstr.ANvm - Rx interrupt status checking suggestion

Andrew Morton - Clear blocked signals, avoid
buffer overrun setting current->comm.

Kalle Olavi Niemitalo - Wake-on-LAN ioctls

Robert Kuebel - Save kernel thread from dying on any signal.

Submitting bug reports:

"rtl8139-diag -mmmaaavvveefN" output
enable RTL8139_DEBUG below, and look at 'dmesg' or kernel log

See 8139too.txt for more details.

*/

#define DRV_NAME "8139too"
#define DRV_VERSION "0.9.26"


#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/completion.h>
#include <linux/crc32.h>
#include <asm/io.h>
#include <asm/uaccess.h>

#define RTL8139_DRIVER_NAME DRV_NAME " Fast Ethernet driver " DRV_VERSION
#define PFX DRV_NAME ": "


/* enable PIO instead of MMIO, if CONFIG_8139TOO_PIO is selected */
#ifdef CONFIG_8139TOO_PIO
#define USE_IO_OPS 1
#endif

/* use a 16K rx ring buffer instead of the default 32K */
#ifdef CONFIG_SH_DREAMCAST
#define USE_BUF16K 1
#endif

/* define to 1 to enable copious debugging info */
#undef RTL8139_DEBUG

/* define to 1 to disable lightweight runtime debugging checks */
#undef RTL8139_NDEBUG


#ifdef RTL8139_DEBUG
/* note: prints function name for you */
# define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __FUNCTION__ , ## args)
#else
# define DPRINTK(fmt, args...)
#endif

#ifdef RTL8139_NDEBUG
# define assert(expr) do {} while (0)
#else
# define assert(expr) \
if(!(expr)) { \
printk( "Assertion failed! %s,%s,%s,line=%d\n", \
#expr,__FILE__,__FUNCTION__,__LINE__); \
}
#endif


/* A few user-configurable values. */
/* media options */
#define MAX_UNITS 8
static int media[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;

/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static int multicast_filter_limit = 32;

/* bitmapped message enable number */
static int debug = -1;

/* Size of the in-memory receive ring. */
#ifdef USE_BUF16K
#define RX_BUF_LEN_IDX 1 /* 0==8K, 1==16K, 2==32K, 3==64K */
#else
#define RX_BUF_LEN_IDX 2 /* 0==8K, 1==16K, 2==32K, 3==64K */
#endif
#define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX)
#define RX_BUF_PAD 16
#define RX_BUF_WRAP_PAD 2048 /* spare padding to handle lack of packet wrap */
#define RX_BUF_TOT_LEN (RX_BUF_LEN + RX_BUF_PAD + RX_BUF_WRAP_PAD)

/* Number of Tx descriptor registers. */
#define NUM_TX_DESC 4

/* max supported ethernet frame size -- must be at least (dev->mtu+14+4).*/
#define MAX_ETH_FRAME_SIZE 1536

/* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */
#define TX_BUF_SIZE MAX_ETH_FRAME_SIZE
#define TX_BUF_TOT_LEN (TX_BUF_SIZE * NUM_TX_DESC)

/* PCI Tuning Parameters
Threshold is bytes transferred to chip before transmission starts. */
#define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */

/* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
#define RX_FIFO_THRESH 7 /* Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
#define TX_RETRY 8 /* 0-15. retries = 16 + (TX_RETRY * 16) */

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (6*HZ)


enum {
HAS_MII_XCVR = 0x010000,
HAS_CHIP_XCVR = 0x020000,
HAS_LNK_CHNG = 0x040000,
};

#define RTL_NUM_STATS 4 /* number of ETHTOOL_GSTATS u64's */
#define RTL_REGS_VER 1 /* version of reg. data in ETHTOOL_GREGS */
#define RTL_MIN_IO_SIZE 0x80
#define RTL8139B_IO_SIZE 256

#define RTL8129_CAPS HAS_MII_XCVR
#define RTL8139_CAPS HAS_CHIP_XCVR|HAS_LNK_CHNG

typedef enum {
RTL8139 = 0,
RTL8129,
} board_t;


/* indexed by board_t, above */
static struct {
const char *name;
u32 hw_flags;
} board_info[] __devinitdata = {
{ "RealTek RTL8139", RTL8139_CAPS },
{ "RealTek RTL8129", RTL8129_CAPS },
};


static struct pci_device_id rtl8139_pci_tbl[] = {
{0x10ec, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x10ec, 0x8138, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1113, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1500, 0x1360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x4033, 0x1360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1186, 0x1300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1186, 0x1340, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x13d1, 0xab06, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1259, 0xa117, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1259, 0xa11e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x14ea, 0xab06, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x14ea, 0xab07, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x11db, 0x1234, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x1432, 0x9130, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
{0x02ac, 0x1012, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },

#ifdef CONFIG_SH_SECUREEDGE5410
/* Bogus 8139 silicon reports 8129 without external PROM :-( */
{0x10ec, 0x8129, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
#endif
#ifdef CONFIG_8139TOO_8129
{0x10ec, 0x8129, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8129 },
#endif

/* some crazy cards report invalid vendor ids like
* 0x0001 here. The other ids are valid and constant,
* so we simply don't match on the main vendor id.
*/
{PCI_ANY_ID, 0x8139, 0x10ec, 0x8139, 0, 0, RTL8139 },
{PCI_ANY_ID, 0x8139, 0x1186, 0x1300, 0, 0, RTL8139 },
{PCI_ANY_ID, 0x8139, 0x13d1, 0xab06, 0, 0, RTL8139 },

{0,}
};
MODULE_DEVICE_TABLE (pci, rtl8139_pci_tbl);

static struct {
const char str[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "early_rx" },
{ "tx_buf_mapped" },
{ "tx_timeouts" },
{ "rx_lost_in_ring" },
};

/* The rest of these values should never change. */

/* Symbolic offsets to registers. */
enum RTL8139_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAR0 = 8, /* Multicast filter. */
TxStatus0 = 0x10, /* Transmit status (Four 32bit registers). */
TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
RxBuf = 0x30,
ChipCmd = 0x37,
RxBufPtr = 0x38,
RxBufAddr = 0x3A,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
Timer = 0x48, /* A general-purpose counter. */
RxMissed = 0x4C, /* 24 bits valid, write clears. */
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
FlashReg = 0x54,
MediaStatus = 0x58,
Config3 = 0x59,
Config4 = 0x5A, /* absent on RTL-8139A */
HltClk = 0x5B,
MultiIntr = 0x5C,
TxSummary = 0x60,
BasicModeCtrl = 0x62,
BasicModeStatus = 0x64,
NWayAdvert = 0x66,
NWayLPAR = 0x68,
NWayExpansion = 0x6A,
/* Undocumented registers, but required for proper operation. */
FIFOTMS = 0x70, /* FIFO Control and test. */
CSCR = 0x74, /* Chip Status and Configuration Register. */
PARA78 = 0x78,
PARA7c = 0x7c, /* Magic transceiver parameter register. */
Config5 = 0xD8, /* absent on RTL-8139A */
};

enum ClearBitMasks {
MultiIntrClear = 0xF000,
ChipCmdClear = 0xE2,
Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
};

enum ChipCmdBits {
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
};

/* Interrupt register bits, using my own meaningful names. */
enum IntrStatusBits {
PCIErr = 0x8000,
PCSTimeout = 0x4000,
RxFIFOOver = 0x40,
RxUnderrun = 0x20,
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,

RxAckBits = RxFIFOOver | RxOverflow | RxOK,
};

enum TxStatusBits {
TxHostOwns = 0x2000,
TxUnderrun = 0x4000,
TxStatOK = 0x8000,
TxOutOfWindow = 0x20000000,
TxAborted = 0x40000000,
TxCarrierLost = 0x80000000,
};
enum RxStatusBits {
RxMulticast = 0x8000,
RxPhysical = 0x4000,
RxBroadcast = 0x2000,
RxBadSymbol = 0x0020,
RxRunt = 0x0010,
RxTooLong = 0x0008,
RxCRCErr = 0x0004,
RxBadAlign = 0x0002,
RxStatusOK = 0x0001,
};

/* Bits in RxConfig. */
enum rx_mode_bits {
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
};

/* Bits in TxConfig. */
enum tx_config_bits {
TxIFG1 = (1 << 25), /* Interframe Gap Time */
TxIFG0 = (1 << 24), /* Enabling these bits violates IEEE 802.3 */
TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
TxClearAbt = (1 << 0), /* Clear abort (WO) */
TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */

TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
};

/* Bits in Config1 */
enum Config1Bits {
Cfg1_PM_Enable = 0x01,
Cfg1_VPD_Enable = 0x02,
Cfg1_PIO = 0x04,
Cfg1_MMIO = 0x08,
LWAKE = 0x10, /* not on 8139, 8139A */
Cfg1_Driver_Load = 0x20,
Cfg1_LED0 = 0x40,
Cfg1_LED1 = 0x80,
SLEEP = (1 << 1), /* only on 8139, 8139A */
PWRDN = (1 << 0), /* only on 8139, 8139A */
};

/* Bits in Config3 */
enum Config3Bits {
Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
};

/* Bits in Config4 */
enum Config4Bits {
LWPTN = (1 << 2), /* not on 8139, 8139A */
};

/* Bits in Config5 */
enum Config5Bits {
Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
};

enum RxConfigBits {
/* rx fifo threshold */
RxCfgFIFOShift = 13,
RxCfgFIFONone = (7 << RxCfgFIFOShift),

/* Max DMA burst */
RxCfgDMAShift = 8,
RxCfgDMAUnlimited = (7 << RxCfgDMAShift),

/* rx ring buffer length */
RxCfgRcv8K = 0,
RxCfgRcv16K = (1 << 11),
RxCfgRcv32K = (1 << 12),
RxCfgRcv64K = (1 << 11) | (1 << 12),

/* Disable packet wrap at end of Rx buffer */
RxNoWrap = (1 << 7),
};

/* Twister tuning parameters from RealTek.
Completely undocumented, but required to tune bad links on some boards. */
enum CSCRBits {
CSCR_LinkOKBit = 0x0400,
CSCR_LinkChangeBit = 0x0800,
CSCR_LinkStatusBits = 0x0f000,
CSCR_LinkDownOffCmd = 0x003c0,
CSCR_LinkDownCmd = 0x0f3c0,
};

enum Cfg9346Bits {
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xC0,
};

typedef enum {
CH_8139 = 0,
CH_8139_K,
CH_8139A,
CH_8139A_G,
CH_8139B,
CH_8130,
CH_8139C,
CH_8100,
CH_8100B_8139D,
CH_8101,
} chip_t;

enum chip_flags {
HasHltClk = (1 << 0),
HasLWake = (1 << 1),
};

#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
(b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
#define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)

/* directly indexed by chip_t, above */
const static struct {
const char *name;
u32 version; /* from RTL8139C/RTL8139D docs */
u32 flags;
} rtl_chip_info[] = {
{ "RTL-8139",
HW_REVID(1, 0, 0, 0, 0, 0, 0),
HasHltClk,
},

{ "RTL-8139 rev K",
HW_REVID(1, 1, 0, 0, 0, 0, 0),
HasHltClk,
},

{ "RTL-8139A",
HW_REVID(1, 1, 1, 0, 0, 0, 0),
HasHltClk, /* XXX undocumented? */
},

{ "RTL-8139A rev G",
HW_REVID(1, 1, 1, 0, 0, 1, 0),
HasHltClk, /* XXX undocumented? */
},

{ "RTL-8139B",
HW_REVID(1, 1, 1, 1, 0, 0, 0),
HasLWake,
},

{ "RTL-8130",
HW_REVID(1, 1, 1, 1, 1, 0, 0),
HasLWake,
},

{ "RTL-8139C",
HW_REVID(1, 1, 1, 0, 1, 0, 0),
HasLWake,
},

{ "RTL-8100",
HW_REVID(1, 1, 1, 1, 0, 1, 0),
HasLWake,
},

{ "RTL-8100B/8139D",
HW_REVID(1, 1, 1, 0, 1, 0, 1),
HasLWake,
},

{ "RTL-8101",
HW_REVID(1, 1, 1, 0, 1, 1, 1),
HasLWake,
},
};

struct rtl_extra_stats {
unsigned long early_rx;
unsigned long tx_buf_mapped;
unsigned long tx_timeouts;
unsigned long rx_lost_in_ring;
};

struct rtl8139_private {
void *mmio_addr;
int drv_flags;
struct pci_dev *pci_dev;
u32 pci_state[16];
struct net_device_stats stats;
unsigned char *rx_ring;
unsigned int cur_rx; /* Index into the Rx buffer of next Rx pkt. */
unsigned int tx_flag;
unsigned long cur_tx;
unsigned long dirty_tx;
unsigned char *tx_buf[NUM_TX_DESC]; /* Tx bounce buffers */
unsigned char *tx_bufs; /* Tx bounce buffer region. */
dma_addr_t rx_ring_dma;
dma_addr_t tx_bufs_dma;
signed char phys[4]; /* MII device addresses. */
char twistie, twist_row, twist_col; /* Twister tune state. */
unsigned int default_port:4; /* Last dev->if_port value. */
spinlock_t lock;
chip_t chipset;
pid_t thr_pid;
wait_queue_head_t thr_wait;
struct completion thr_exited;
u32 rx_config;
struct rtl_extra_stats xstats;
int time_to_die;
struct mii_if_info mii;
unsigned int regs_len;
};

MODULE_AUTHOR ("Jeff Garzik <jgarzik@xxxxxxxxx>");
MODULE_DESCRIPTION ("RealTek RTL-8139 Fast Ethernet driver");
MODULE_LICENSE("GPL");

MODULE_PARM (multicast_filter_limit, "i");
MODULE_PARM (max_interrupt_work, "i");
MODULE_PARM (media, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM (full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM (debug, "i");
MODULE_PARM_DESC (debug, "8139too bitmapped message enable number");
MODULE_PARM_DESC (multicast_filter_limit, "8139too maximum number of filtered multicast addresses");
MODULE_PARM_DESC (max_interrupt_work, "8139too maximum events handled per interrupt");
MODULE_PARM_DESC (media, "8139too: Bits 4+9: force full duplex, bit 5: 100Mbps");
MODULE_PARM_DESC (full_duplex, "8139too: Force full duplex for board(s) (1)");

static int read_eeprom (void *ioaddr, int location, int addr_len);
static int rtl8139_open (struct net_device *dev);
static int mdio_read (struct net_device *dev, int phy_id, int location);
static void mdio_write (struct net_device *dev, int phy_id, int location,
int val);
static inline void rtl8139_start_thread(struct net_device *dev);
static void rtl8139_tx_timeout (struct net_device *dev);
static void rtl8139_init_ring (struct net_device *dev);
static int rtl8139_start_xmit (struct sk_buff *skb,
struct net_device *dev);
static irqreturn_t rtl8139_interrupt (int irq, void *dev_instance,
struct pt_regs *regs);
static int rtl8139_close (struct net_device *dev);
static int netdev_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static struct net_device_stats *rtl8139_get_stats (struct net_device *dev);
static void rtl8139_set_rx_mode (struct net_device *dev);
static void __set_rx_mode (struct net_device *dev);
static void rtl8139_hw_start (struct net_device *dev);
static struct ethtool_ops rtl8139_ethtool_ops;

#ifdef USE_IO_OPS

#define RTL_R8(reg) inb (((unsigned long)ioaddr) + (reg))
#define RTL_R16(reg) inw (((unsigned long)ioaddr) + (reg))
#define RTL_R32(reg) ((unsigned long) inl (((unsigned long)ioaddr) + (reg)))
#define RTL_W8(reg, val8) outb ((val8), ((unsigned long)ioaddr) + (reg))
#define RTL_W16(reg, val16) outw ((val16), ((unsigned long)ioaddr) + (reg))
#define RTL_W32(reg, val32) outl ((val32), ((unsigned long)ioaddr) + (reg))
#define RTL_W8_F RTL_W8
#define RTL_W16_F RTL_W16
#define RTL_W32_F RTL_W32
#undef readb
#undef readw
#undef readl
#undef writeb
#undef writew
#undef writel
#define readb(addr) inb((unsigned long)(addr))
#define readw(addr) inw((unsigned long)(addr))
#define readl(addr) inl((unsigned long)(addr))
#define writeb(val,addr) outb((val),(unsigned long)(addr))
#define writew(val,addr) outw((val),(unsigned long)(addr))
#define writel(val,addr) outl((val),(unsigned long)(addr))

#else

/* write MMIO register, with flush */
/* Flush avoids rtl8139 bug w/ posted MMIO writes */
#define RTL_W8_F(reg, val8) do { writeb ((val8), ioaddr + (reg)); readb (ioaddr + (reg)); } while (0)
#define RTL_W16_F(reg, val16) do { writew ((val16), ioaddr + (reg)); readw (ioaddr + (reg)); } while (0)
#define RTL_W32_F(reg, val32) do { writel ((val32), ioaddr + (reg)); readl (ioaddr + (reg)); } while (0)


#define MMIO_FLUSH_AUDIT_COMPLETE 1
#if MMIO_FLUSH_AUDIT_COMPLETE

/* write MMIO register */
#define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg))

#else

/* write MMIO register, then flush */
#define RTL_W8 RTL_W8_F
#define RTL_W16 RTL_W16_F
#define RTL_W32 RTL_W32_F

#endif /* MMIO_FLUSH_AUDIT_COMPLETE */

/* read MMIO register */
#define RTL_R8(reg) readb (ioaddr + (reg))
#define RTL_R16(reg) readw (ioaddr + (reg))
#define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg)))

#endif /* USE_IO_OPS */


static const u16 rtl8139_intr_mask =
PCIErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver |
TxErr | TxOK | RxErr | RxOK;

#ifdef USE_BUF16K
static const unsigned int rtl8139_rx_config =
RxCfgRcv16K | RxNoWrap |
(RX_FIFO_THRESH << RxCfgFIFOShift) |
(RX_DMA_BURST << RxCfgDMAShift);
#else
static const unsigned int rtl8139_rx_config =
RxCfgRcv32K | RxNoWrap |
(RX_FIFO_THRESH << RxCfgFIFOShift) |
(RX_DMA_BURST << RxCfgDMAShift);
#endif

static const unsigned int rtl8139_tx_config =
(TX_DMA_BURST << TxDMAShift) | (TX_RETRY << TxRetryShift);

static void __rtl8139_cleanup_dev (struct net_device *dev)
{
struct rtl8139_private *tp;
struct pci_dev *pdev;

assert (dev != NULL);
assert (dev->priv != NULL);

tp = dev->priv;
assert (tp->pci_dev != NULL);
pdev = tp->pci_dev;

#ifndef USE_IO_OPS
if (tp->mmio_addr)
iounmap (tp->mmio_addr);
#endif /* !USE_IO_OPS */

/* it's ok to call this even if we have no regions to free */
pci_release_regions (pdev);

free_netdev(dev);

pci_set_drvdata (pdev, NULL);
}


static void rtl8139_chip_reset (void *ioaddr)
{
int i;

/* Soft reset the chip. */
RTL_W8 (ChipCmd, CmdReset);

/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--) {
barrier();
if ((RTL_R8 (ChipCmd) & CmdReset) == 0)
break;
udelay (10);
}
}


static int __devinit rtl8139_init_board (struct pci_dev *pdev,
struct net_device **dev_out)
{
void *ioaddr;
struct net_device *dev;
struct rtl8139_private *tp;
u8 tmp8;
int rc;
unsigned int i;
u32 pio_start, pio_end, pio_flags, pio_len;
unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
u32 version;

assert (pdev != NULL);

*dev_out = NULL;

/* dev and dev->priv zeroed in alloc_etherdev */
dev = alloc_etherdev (sizeof (*tp));
if (dev == NULL) {
printk (KERN_ERR PFX "%s: Unable to alloc new net device\n", pci_name(pdev));
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);

tp = dev->priv;
tp->pci_dev = pdev;

/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pci_enable_device (pdev);
if (rc)
goto err_out;

pio_start = pci_resource_start (pdev, 0);
pio_end = pci_resource_end (pdev, 0);
pio_flags = pci_resource_flags (pdev, 0);
pio_len = pci_resource_len (pdev, 0);

mmio_start = pci_resource_start (pdev, 1);
mmio_end = pci_resource_end (pdev, 1);
mmio_flags = pci_resource_flags (pdev, 1);
mmio_len = pci_resource_len (pdev, 1);

/* set this immediately, we need to know before
* we talk to the chip directly */
DPRINTK("PIO region size == 0x%02X\n", pio_len);
DPRINTK("MMIO region size == 0x%02lX\n", mmio_len);

#ifdef USE_IO_OPS
/* make sure PCI base addr 0 is PIO */
if (!(pio_flags & IORESOURCE_IO)) {
printk (KERN_ERR PFX "%s: region #0 not a PIO resource, aborting\n", pci_name(pdev));
rc = -ENODEV;
goto err_out;
}
/* check for weird/broken PCI region reporting */
if (pio_len < RTL_MIN_IO_SIZE) {
printk (KERN_ERR PFX "%s: Invalid PCI I/O region size(s), aborting\n", pci_name(pdev));
rc = -ENODEV;
goto err_out;
}
#else
/* make sure PCI base addr 1 is MMIO */
if (!(mmio_flags & IORESOURCE_MEM)) {
printk (KERN_ERR PFX "%s: region #1 not an MMIO resource, aborting\n", pci_name(pdev));
rc = -ENODEV;
goto err_out;
}
if (mmio_len < RTL_MIN_IO_SIZE) {
printk (KERN_ERR PFX "%s: Invalid PCI mem region size(s), aborting\n", pci_name(pdev));
rc = -ENODEV;
goto err_out;
}
#endif

rc = pci_request_regions (pdev, "8139too");
if (rc)
goto err_out;

/* enable PCI bus-mastering */
pci_set_master (pdev);

#ifdef USE_IO_OPS
ioaddr = (void *) pio_start;
dev->base_addr = pio_start;
tp->mmio_addr = ioaddr;
tp->regs_len = pio_len;
#else
/* ioremap MMIO region */
ioaddr = ioremap (mmio_start, mmio_len);
if (ioaddr == NULL) {
printk (KERN_ERR PFX "%s: cannot remap MMIO, aborting\n", pci_name(pdev));
rc = -EIO;
goto err_out;
}
dev->base_addr = (long) ioaddr;
tp->mmio_addr = ioaddr;
tp->regs_len = mmio_len;
#endif /* USE_IO_OPS */

/* Bring old chips out of low-power mode. */
RTL_W8 (HltClk, 'R');

/* check for missing/broken hardware */
if (RTL_R32 (TxConfig) == 0xFFFFFFFF) {
printk (KERN_ERR PFX "%s: Chip not responding, ignoring board\n",
pci_name(pdev));
rc = -EIO;
goto err_out;
}

/* identify chip attached to board */
version = RTL_R32 (TxConfig) & HW_REVID_MASK;
for (i = 0; i < ARRAY_SIZE (rtl_chip_info); i++)
if (version == rtl_chip_info[i].version) {
tp->chipset = i;
goto match;
}

/* if unknown chip, assume array element #0, original RTL-8139 in this case */
printk (KERN_DEBUG PFX "%s: unknown chip version, assuming RTL-8139\n",
pci_name(pdev));
printk (KERN_DEBUG PFX "%s: TxConfig = 0x%lx\n", pci_name(pdev), RTL_R32 (TxConfig));
tp->chipset = 0;

match:
DPRINTK ("chipset id (%d) == index %d, '%s'\n",
tmp,
tp->chipset,
rtl_chip_info[tp->chipset].name);

if (tp->chipset >= CH_8139B) {
u8 new_tmp8 = tmp8 = RTL_R8 (Config1);
DPRINTK("PCI PM wakeup\n");
if ((rtl_chip_info[tp->chipset].flags & HasLWake) &&
(tmp8 & LWAKE))
new_tmp8 &= ~LWAKE;
new_tmp8 |= Cfg1_PM_Enable;
if (new_tmp8 != tmp8) {
RTL_W8 (Cfg9346, Cfg9346_Unlock);
RTL_W8 (Config1, tmp8);
RTL_W8 (Cfg9346, Cfg9346_Lock);
}
if (rtl_chip_info[tp->chipset].flags & HasLWake) {
tmp8 = RTL_R8 (Config4);
if (tmp8 & LWPTN) {
RTL_W8 (Cfg9346, Cfg9346_Unlock);
RTL_W8 (Config4, tmp8 & ~LWPTN);
RTL_W8 (Cfg9346, Cfg9346_Lock);
}
}
} else {
DPRINTK("Old chip wakeup\n");
tmp8 = RTL_R8 (Config1);
tmp8 &= ~(SLEEP | PWRDN);
RTL_W8 (Config1, tmp8);
}

rtl8139_chip_reset (ioaddr);

*dev_out = dev;
return 0;

err_out:
__rtl8139_cleanup_dev (dev);
return rc;
}


static int __devinit rtl8139_init_one (struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
struct rtl8139_private *tp;
int i, addr_len, option;
void *ioaddr;
static int board_idx = -1;
u8 pci_rev;

assert (pdev != NULL);
assert (ent != NULL);

board_idx++;

/* when we're built into the kernel, the driver version message
* is only printed if at least one 8139 board has been found
*/
#ifndef MODULE
{
static int printed_version;
if (!printed_version++)
printk (KERN_INFO RTL8139_DRIVER_NAME "\n");
}
#endif

pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);

if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev >= 0x20) {
printk(KERN_INFO PFX "pci dev %s (id %04x:%04x rev %02x) is an enhanced 8139C+ chip\n",
pci_name(pdev), pdev->vendor, pdev->device, pci_rev);
printk(KERN_INFO PFX "Use the \"8139cp\" driver for improved performance and stability.\n");
}

i = rtl8139_init_board (pdev, &dev);
if (i < 0)
return i;

tp = dev->priv;
ioaddr = tp->mmio_addr;

assert (ioaddr != NULL);
assert (dev != NULL);
assert (tp != NULL);

addr_len = read_eeprom (ioaddr, 0, 8) == 0x8129 ? 8 : 6;
for (i = 0; i < 3; i++)
((u16 *) (dev->dev_addr))[i] =
le16_to_cpu (read_eeprom (ioaddr, i + 7, addr_len));

/* The Rtl8139-specific entries in the device structure. */
dev->open = rtl8139_open;
dev->hard_start_xmit = rtl8139_start_xmit;
dev->stop = rtl8139_close;
dev->get_stats = rtl8139_get_stats;
dev->set_multicast_list = rtl8139_set_rx_mode;
dev->do_ioctl = netdev_ioctl;
dev->ethtool_ops = &rtl8139_ethtool_ops;
dev->tx_timeout = rtl8139_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;

/* note: the hardware is not capable of sg/csum/highdma, however
* through the use of skb_copy_and_csum_dev we enable these
* features
*/
dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA;

dev->irq = pdev->irq;

/* dev->priv/tp zeroed and aligned in alloc_etherdev */
tp = dev->priv;

/* note: tp->chipset set in rtl8139_init_board */
tp->drv_flags = board_info[ent->driver_data].hw_flags;
tp->mmio_addr = ioaddr;
spin_lock_init (&tp->lock);
init_waitqueue_head (&tp->thr_wait);
init_completion (&tp->thr_exited);
tp->mii.dev = dev;
tp->mii.mdio_read = mdio_read;
tp->mii.mdio_write = mdio_write;
tp->mii.phy_id_mask = 0x3f;
tp->mii.reg_num_mask = 0x1f;

/* dev is fully set up and ready to use now */
DPRINTK("about to register device named %s (%p)...\n", dev->name, dev);
i = register_netdev (dev);
if (i) goto err_out;

pci_set_drvdata (pdev, dev);

printk (KERN_INFO "%s: %s at 0x%lx, "
"%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
"IRQ %d\n",
dev->name,
board_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr[0], dev->dev_addr[1],
dev->dev_addr[2], dev->dev_addr[3],
dev->dev_addr[4], dev->dev_addr[5],
dev->irq);

printk (KERN_DEBUG "%s: Identified 8139 chip type '%s'\n",
dev->name, rtl_chip_info[tp->chipset].name);

/* Find the connected MII xcvrs.
Doing this in open() would allow detecting external xcvrs later, but
takes too much time. */
#ifdef CONFIG_8139TOO_8129
if (tp->drv_flags & HAS_MII_XCVR) {
int phy, phy_idx = 0;
for (phy = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) {
int mii_status = mdio_read(dev, phy, 1);
if (mii_status != 0xffff && mii_status != 0x0000) {
u16 advertising = mdio_read(dev, phy, 4);
tp->phys[phy_idx++] = phy;
printk(KERN_INFO "%s: MII transceiver %d status 0x%4.4x "
"advertising %4.4x.\n",
dev->name, phy, mii_status, advertising);
}
}
if (phy_idx == 0) {
printk(KERN_INFO "%s: No MII transceivers found! Assuming SYM "
"transceiver.\n",
dev->name);
tp->phys[0] = 32;
}
} else
#endif
tp->phys[0] = 32;
tp->mii.phy_id = tp->phys[0];

/* The lower four bits are the media type. */
option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx];
if (option > 0) {
tp->mii.full_duplex = (option & 0x210) ? 1 : 0;
tp->default_port = option & 0xFF;
if (tp->default_port)
tp->mii.force_media = 1;
}
if (board_idx < MAX_UNITS && full_duplex[board_idx] > 0)
tp->mii.full_duplex = full_duplex[board_idx];
if (tp->mii.full_duplex) {
printk(KERN_INFO "%s: Media type forced to Full Duplex.\n", dev->name);
/* Changing the MII-advertised media because might prevent
re-connection. */
tp->mii.force_media = 1;
}
if (tp->default_port) {
printk(KERN_INFO " Forcing %dMbps %s-duplex operation.\n",
(option & 0x20 ? 100 : 10),
(option & 0x10 ? "full" : "half"));
mdio_write(dev, tp->phys[0], 0,
((option & 0x20) ? 0x2000 : 0) | /* 100Mbps? */
((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
}

/* Put the chip into low-power mode. */
if (rtl_chip_info[tp->chipset].flags & HasHltClk)
RTL_W8 (HltClk, 'H'); /* 'R' would leave the clock running. */

return 0;

err_out:
__rtl8139_cleanup_dev (dev);
return i;
}


static void __devexit rtl8139_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata (pdev);
struct rtl8139_private *np;

assert (dev != NULL);
np = dev->priv;
assert (np != NULL);

unregister_netdev (dev);

__rtl8139_cleanup_dev (dev);
}


/* Serial EEPROM section. */

/* EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
#define EE_CS 0x08 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
#define EE_WRITE_0 0x00
#define EE_WRITE_1 0x02
#define EE_DATA_READ 0x01 /* EEPROM chip data out. */
#define EE_ENB (0x80 | EE_CS)

/* Delay between EEPROM clock transitions.
No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
*/

#define eeprom_delay() readl(ee_addr)

/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD (5)
#define EE_READ_CMD (6)
#define EE_ERASE_CMD (7)

static int __devinit read_eeprom (void *ioaddr, int location, int addr_len)
{
int i;
unsigned retval = 0;
void *ee_addr = ioaddr + Cfg9346;
int read_cmd = location | (EE_READ_CMD << addr_len);

writeb (EE_ENB & ~EE_CS, ee_addr);
writeb (EE_ENB, ee_addr);
eeprom_delay ();

/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
writeb (EE_ENB | dataval, ee_addr);
eeprom_delay ();
writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
eeprom_delay ();
}
writeb (EE_ENB, ee_addr);
eeprom_delay ();

for (i = 16; i > 0; i--) {
writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
eeprom_delay ();
retval =
(retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
0);
writeb (EE_ENB, ee_addr);
eeprom_delay ();
}

/* Terminate the EEPROM access. */
writeb (~EE_CS, ee_addr);
eeprom_delay ();

return retval;
}

/* MII serial management: mostly bogus for now. */
/* Read and write the MII management registers using software-generated
serial MDIO protocol.
The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
met by back-to-back PCI I/O cycles, but we insert a delay to avoid
"overclocking" issues. */
#define MDIO_DIR 0x80
#define MDIO_DATA_OUT 0x04
#define MDIO_DATA_IN 0x02
#define MDIO_CLK 0x01
#define MDIO_WRITE0 (MDIO_DIR)
#define MDIO_WRITE1 (MDIO_DIR | MDIO_DATA_OUT)

#define mdio_delay(mdio_addr) readb(mdio_addr)


static char mii_2_8139_map[8] = {
BasicModeCtrl,
BasicModeStatus,
0,
0,
NWayAdvert,
NWayLPAR,
NWayExpansion,
0
};


#ifdef CONFIG_8139TOO_8129
/* Syncronize the MII management interface by shifting 32 one bits out. */
static void mdio_sync (void *mdio_addr)
{
int i;

for (i = 32; i >= 0; i--) {
writeb (MDIO_WRITE1, mdio_addr);
mdio_delay (mdio_addr);
writeb (MDIO_WRITE1 | MDIO_CLK, mdio_addr);
mdio_delay (mdio_addr);
}
}
#endif

static int mdio_read (struct net_device *dev, int phy_id, int location)
{
struct rtl8139_private *tp = dev->priv;
int retval = 0;
#ifdef CONFIG_8139TOO_8129
void *mdio_addr = tp->mmio_addr + Config4;
int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
int i;
#endif

if (phy_id > 31) { /* Really a 8139. Use internal registers. */
return location < 8 && mii_2_8139_map[location] ?
readw (tp->mmio_addr + mii_2_8139_map[location]) : 0;
}

#ifdef CONFIG_8139TOO_8129
mdio_sync (mdio_addr);
/* Shift the read command bits out. */
for (i = 15; i >= 0; i--) {
int dataval = (mii_cmd & (1 << i)) ? MDIO_DATA_OUT : 0;

writeb (MDIO_DIR | dataval, mdio_addr);
mdio_delay (mdio_addr);
writeb (MDIO_DIR | dataval | MDIO_CLK, mdio_addr);
mdio_delay (mdio_addr);
}

/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; i--) {
writeb (0, mdio_addr);
mdio_delay (mdio_addr);
retval = (retval << 1) | ((readb (mdio_addr) & MDIO_DATA_IN) ? 1 : 0);
writeb (MDIO_CLK, mdio_addr);
mdio_delay (mdio_addr);
}
#endif

return (retval >> 1) & 0xffff;
}


static void mdio_write (struct net_device *dev, int phy_id, int location,
int value)
{
struct rtl8139_private *tp = dev->priv;
#ifdef CONFIG_8139TOO_8129
void *mdio_addr = tp->mmio_addr + Config4;
int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;
int i;
#endif

if (phy_id > 31) { /* Really a 8139. Use internal registers. */
void *ioaddr = tp->mmio_addr;
if (location == 0) {
RTL_W8 (Cfg9346, Cfg9346_Unlock);
RTL_W16 (BasicModeCtrl, value);
RTL_W8 (Cfg9346, Cfg9346_Lock);
} else if (location < 8 && mii_2_8139_map[location])
RTL_W16 (mii_2_8139_map[location], value);
return;
}

#ifdef CONFIG_8139TOO_8129
mdio_sync (mdio_addr);

/* Shift the command bits out. */
for (i = 31; i >= 0; i--) {
int dataval =
(mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
writeb (dataval, mdio_addr);
mdio_delay (mdio_addr);
writeb (dataval | MDIO_CLK, mdio_addr);
mdio_delay (mdio_addr);
}
/* Clear out extra bits. */
for (i = 2; i > 0; i--) {
writeb (0, mdio_addr);
mdio_delay (mdio_addr);
writeb (MDIO_CLK, mdio_addr);
mdio_delay (mdio_addr);
}
#endif
}


static int rtl8139_open (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
int retval;
#ifdef RTL8139_DEBUG
void *ioaddr = tp->mmio_addr;
#endif

retval = request_irq (dev->irq, rtl8139_interrupt, SA_SHIRQ, dev->name, dev);
if (retval)
return retval;

tp->tx_bufs = pci_alloc_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
&tp->tx_bufs_dma);
tp->rx_ring = pci_alloc_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
&tp->rx_ring_dma);
if (tp->tx_bufs == NULL || tp->rx_ring == NULL) {
free_irq(dev->irq, dev);

if (tp->tx_bufs)
pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
tp->tx_bufs, tp->tx_bufs_dma);
if (tp->rx_ring)
pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
tp->rx_ring, tp->rx_ring_dma);

return -ENOMEM;

}

tp->mii.full_duplex = tp->mii.force_media;
tp->tx_flag = (TX_FIFO_THRESH << 11) & 0x003f0000;

rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

DPRINTK ("%s: rtl8139_open() ioaddr %#lx IRQ %d"
" GP Pins %2.2x %s-duplex.\n",
dev->name, pci_resource_start (tp->pci_dev, 1),
dev->irq, RTL_R8 (MediaStatus),
tp->mii.full_duplex ? "full" : "half");

rtl8139_start_thread(dev);

return 0;
}


static void rtl_check_media (struct net_device *dev, unsigned int init_media)
{
struct rtl8139_private *tp = dev->priv;

if (tp->phys[0] >= 0) {
mii_check_media(&tp->mii, 1, init_media);
}
}

/* Start the hardware at open or resume. */
static void rtl8139_hw_start (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
u32 i;
u8 tmp;

/* Bring old chips out of low-power mode. */
if (rtl_chip_info[tp->chipset].flags & HasHltClk)
RTL_W8 (HltClk, 'R');

rtl8139_chip_reset (ioaddr);

/* unlock Config[01234] and BMCR register writes */
RTL_W8_F (Cfg9346, Cfg9346_Unlock);
/* Restore our idea of the MAC address. */
RTL_W32_F (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
RTL_W32_F (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));

/* Must enable Tx/Rx before setting transfer thresholds! */
RTL_W8 (ChipCmd, CmdRxEnb | CmdTxEnb);

tp->rx_config = rtl8139_rx_config | AcceptBroadcast | AcceptMyPhys;
RTL_W32 (RxConfig, tp->rx_config);

/* Check this value: the documentation for IFG contradicts ifself. */
RTL_W32 (TxConfig, rtl8139_tx_config);

tp->cur_rx = 0;

rtl_check_media (dev, 1);

if (tp->chipset >= CH_8139B) {
/* Disable magic packet scanning, which is enabled
* when PM is enabled in Config1. It can be reenabled
* via ETHTOOL_SWOL if desired. */
RTL_W8 (Config3, RTL_R8 (Config3) & ~Cfg3_Magic);
}

DPRINTK("init buffer addresses\n");

/* Lock Config[01234] and BMCR register writes */
RTL_W8 (Cfg9346, Cfg9346_Lock);

/* init Rx ring buffer DMA address */
RTL_W32_F (RxBuf, tp->rx_ring_dma);

/* init Tx buffer DMA addresses */
for (i = 0; i < NUM_TX_DESC; i++)
RTL_W32_F (TxAddr0 + (i * 4), tp->tx_bufs_dma + (tp->tx_buf[i] - tp->tx_bufs));

RTL_W32 (RxMissed, 0);

rtl8139_set_rx_mode (dev);

/* no early-rx interrupts */
RTL_W16 (MultiIntr, RTL_R16 (MultiIntr) & MultiIntrClear);

/* make sure RxTx has started */
tmp = RTL_R8 (ChipCmd);
if ((!(tmp & CmdRxEnb)) || (!(tmp & CmdTxEnb)))
RTL_W8 (ChipCmd, CmdRxEnb | CmdTxEnb);

/* Enable all known interrupts by setting the interrupt mask. */
RTL_W16 (IntrMask, rtl8139_intr_mask);

netif_start_queue (dev);
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void rtl8139_init_ring (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
int i;

tp->cur_rx = 0;
tp->cur_tx = 0;
tp->dirty_tx = 0;

for (i = 0; i < NUM_TX_DESC; i++)
tp->tx_buf[i] = &tp->tx_bufs[i * TX_BUF_SIZE];
}


/* This must be global for CONFIG_8139TOO_TUNE_TWISTER case */
static int next_tick = 3 * HZ;

#ifndef CONFIG_8139TOO_TUNE_TWISTER
static inline void rtl8139_tune_twister (struct net_device *dev,
struct rtl8139_private *tp) {}
#else
enum TwisterParamVals {
PARA78_default = 0x78fa8388,
PARA7c_default = 0xcb38de43, /* param[0][3] */
PARA7c_xxx = 0xcb38de43,
};

static const unsigned long param[4][4] = {
{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
};

static void rtl8139_tune_twister (struct net_device *dev,
struct rtl8139_private *tp)
{
int linkcase;
void *ioaddr = tp->mmio_addr;

/* This is a complicated state machine to configure the "twister" for
impedance/echos based on the cable length.
All of this is magic and undocumented.
*/
switch (tp->twistie) {
case 1:
if (RTL_R16 (CSCR) & CSCR_LinkOKBit) {
/* We have link beat, let us tune the twister. */
RTL_W16 (CSCR, CSCR_LinkDownOffCmd);
tp->twistie = 2; /* Change to state 2. */
next_tick = HZ / 10;
} else {
/* Just put in some reasonable defaults for when beat returns. */
RTL_W16 (CSCR, CSCR_LinkDownCmd);
RTL_W32 (FIFOTMS, 0x20); /* Turn on cable test mode. */
RTL_W32 (PARA78, PARA78_default);
RTL_W32 (PARA7c, PARA7c_default);
tp->twistie = 0; /* Bail from future actions. */
}
break;
case 2:
/* Read how long it took to hear the echo. */
linkcase = RTL_R16 (CSCR) & CSCR_LinkStatusBits;
if (linkcase == 0x7000)
tp->twist_row = 3;
else if (linkcase == 0x3000)
tp->twist_row = 2;
else if (linkcase == 0x1000)
tp->twist_row = 1;
else
tp->twist_row = 0;
tp->twist_col = 0;
tp->twistie = 3; /* Change to state 2. */
next_tick = HZ / 10;
break;
case 3:
/* Put out four tuning parameters, one per 100msec. */
if (tp->twist_col == 0)
RTL_W16 (FIFOTMS, 0);
RTL_W32 (PARA7c, param[(int) tp->twist_row]
[(int) tp->twist_col]);
next_tick = HZ / 10;
if (++tp->twist_col >= 4) {
/* For short cables we are done.
For long cables (row == 3) check for mistune. */
tp->twistie =
(tp->twist_row == 3) ? 4 : 0;
}
break;
case 4:
/* Special case for long cables: check for mistune. */
if ((RTL_R16 (CSCR) &
CSCR_LinkStatusBits) == 0x7000) {
tp->twistie = 0;
break;
} else {
RTL_W32 (PARA7c, 0xfb38de03);
tp->twistie = 5;
next_tick = HZ / 10;
}
break;
case 5:
/* Retune for shorter cable (column 2). */
RTL_W32 (FIFOTMS, 0x20);
RTL_W32 (PARA78, PARA78_default);
RTL_W32 (PARA7c, PARA7c_default);
RTL_W32 (FIFOTMS, 0x00);
tp->twist_row = 2;
tp->twist_col = 0;
tp->twistie = 3;
next_tick = HZ / 10;
break;

default:
/* do nothing */
break;
}
}
#endif /* CONFIG_8139TOO_TUNE_TWISTER */

static inline void rtl8139_thread_iter (struct net_device *dev,
struct rtl8139_private *tp,
void *ioaddr)
{
int mii_lpa;

mii_lpa = mdio_read (dev, tp->phys[0], MII_LPA);

if (!tp->mii.force_media && mii_lpa != 0xffff) {
int duplex = (mii_lpa & LPA_100FULL)
|| (mii_lpa & 0x01C0) == 0x0040;
if (tp->mii.full_duplex != duplex) {
tp->mii.full_duplex = duplex;

if (mii_lpa) {
printk (KERN_INFO
"%s: Setting %s-duplex based on MII #%d link"
" partner ability of %4.4x.\n",
dev->name,
tp->mii.full_duplex ? "full" : "half",
tp->phys[0], mii_lpa);
} else {
printk(KERN_INFO"%s: media is unconnected, link down, or incompatible connection\n",
dev->name);
}
#if 0
RTL_W8 (Cfg9346, Cfg9346_Unlock);
RTL_W8 (Config1, tp->mii.full_duplex ? 0x60 : 0x20);
RTL_W8 (Cfg9346, Cfg9346_Lock);
#endif
}
}

next_tick = HZ * 60;

rtl8139_tune_twister (dev, tp);

DPRINTK ("%s: Media selection tick, Link partner %4.4x.\n",
dev->name, RTL_R16 (NWayLPAR));
DPRINTK ("%s: Other registers are IntMask %4.4x IntStatus %4.4x\n",
dev->name, RTL_R16 (IntrMask), RTL_R16 (IntrStatus));
DPRINTK ("%s: Chip config %2.2x %2.2x.\n",
dev->name, RTL_R8 (Config0),
RTL_R8 (Config1));
}

static int rtl8139_thread (void *data)
{
struct net_device *dev = data;
struct rtl8139_private *tp = dev->priv;
unsigned long timeout;

daemonize("%s", dev->name);
allow_signal(SIGTERM);

while (1) {
timeout = next_tick;
do {
timeout = interruptible_sleep_on_timeout (&tp->thr_wait, timeout);
} while (!signal_pending (current) && (timeout > 0));

if (signal_pending (current)) {
flush_signals(current);
}

if (tp->time_to_die)
break;

rtnl_lock ();
rtl8139_thread_iter (dev, tp, tp->mmio_addr);
rtnl_unlock ();
}

complete_and_exit (&tp->thr_exited, 0);
}

static inline void rtl8139_start_thread(struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;

tp->thr_pid = -1;
tp->twistie = 0;
tp->time_to_die = 0;
if (tp->chipset == CH_8139_K)
tp->twistie = 1;
else if (tp->drv_flags & HAS_LNK_CHNG)
return;

tp->thr_pid = kernel_thread(rtl8139_thread, dev, CLONE_FS|CLONE_FILES);
if (tp->thr_pid < 0) {
printk (KERN_WARNING "%s: unable to start kernel thread\n",
dev->name);
}
}

static void rtl8139_tx_clear (struct rtl8139_private *tp)
{
tp->cur_tx = 0;
tp->dirty_tx = 0;

/* XXX account for unsent Tx packets in tp->stats.tx_dropped */
}


static void rtl8139_tx_timeout (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
int i;
u8 tmp8;
unsigned long flags;

DPRINTK ("%s: Transmit timeout, status %2.2x %4.4x "
"media %2.2x.\n", dev->name,
RTL_R8 (ChipCmd),
RTL_R16 (IntrStatus),
RTL_R8 (MediaStatus));

tp->xstats.tx_timeouts++;

/* disable Tx ASAP, if not already */
tmp8 = RTL_R8 (ChipCmd);
if (tmp8 & CmdTxEnb)
RTL_W8 (ChipCmd, CmdRxEnb);

/* Disable interrupts by clearing the interrupt mask. */
RTL_W16 (IntrMask, 0x0000);

/* Emit info to figure out what went wrong. */
printk (KERN_DEBUG "%s: Tx queue start entry %ld dirty entry %ld.\n",
dev->name, tp->cur_tx, tp->dirty_tx);
for (i = 0; i < NUM_TX_DESC; i++)
printk (KERN_DEBUG "%s: Tx descriptor %d is %8.8lx.%s\n",
dev->name, i, RTL_R32 (TxStatus0 + (i * 4)),
i == tp->dirty_tx % NUM_TX_DESC ?
" (queue head)" : "");

/* Stop a shared interrupt from scavenging while we are. */
spin_lock_irqsave (&tp->lock, flags);
rtl8139_tx_clear (tp);
spin_unlock_irqrestore (&tp->lock, flags);

/* ...and finally, reset everything */
rtl8139_hw_start (dev);

netif_wake_queue (dev);
}


static int rtl8139_start_xmit (struct sk_buff *skb, struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
unsigned int entry;
unsigned int len = skb->len;

/* Calculate the next Tx descriptor entry. */
entry = tp->cur_tx % NUM_TX_DESC;

if (likely(len < TX_BUF_SIZE)) {
if (len < ETH_ZLEN)
memset(tp->tx_buf[entry], 0, ETH_ZLEN);
skb_copy_and_csum_dev(skb, tp->tx_buf[entry]);
dev_kfree_skb(skb);
} else {
dev_kfree_skb(skb);
tp->stats.tx_dropped++;
return 0;
}

/* Note: the chip doesn't have auto-pad! */
spin_lock_irq(&tp->lock);
RTL_W32_F (TxStatus0 + (entry * sizeof (u32)),
tp->tx_flag | max(len, (unsigned int)ETH_ZLEN));

dev->trans_start = jiffies;

tp->cur_tx++;
wmb();

if ((tp->cur_tx - NUM_TX_DESC) == tp->dirty_tx)
netif_stop_queue (dev);
spin_unlock_irq(&tp->lock);

DPRINTK ("%s: Queued Tx packet size %u to slot %d.\n",
dev->name, len, entry);

return 0;
}


static void rtl8139_tx_interrupt (struct net_device *dev,
struct rtl8139_private *tp,
void *ioaddr)
{
unsigned long dirty_tx, tx_left;

assert (dev != NULL);
assert (tp != NULL);
assert (ioaddr != NULL);

dirty_tx = tp->dirty_tx;
tx_left = tp->cur_tx - dirty_tx;
while (tx_left > 0) {
int entry = dirty_tx % NUM_TX_DESC;
int txstatus;

txstatus = RTL_R32 (TxStatus0 + (entry * sizeof (u32)));

if (!(txstatus & (TxStatOK | TxUnderrun | TxAborted)))
break; /* It still hasn't been Txed */

/* Note: TxCarrierLost is always asserted at 100mbps. */
if (txstatus & (TxOutOfWindow | TxAborted)) {
/* There was an major error, log it. */
DPRINTK ("%s: Transmit error, Tx status %8.8x.\n",
dev->name, txstatus);
tp->stats.tx_errors++;
if (txstatus & TxAborted) {
tp->stats.tx_aborted_errors++;
RTL_W32 (TxConfig, TxClearAbt);
RTL_W16 (IntrStatus, TxErr);
wmb();
}
if (txstatus & TxCarrierLost)
tp->stats.tx_carrier_errors++;
if (txstatus & TxOutOfWindow)
tp->stats.tx_window_errors++;
} else {
if (txstatus & TxUnderrun) {
/* Add 64 to the Tx FIFO threshold. */
if (tp->tx_flag < 0x00300000)
tp->tx_flag += 0x00020000;
tp->stats.tx_fifo_errors++;
}
tp->stats.collisions += (txstatus >> 24) & 15;
tp->stats.tx_bytes += txstatus & 0x7ff;
tp->stats.tx_packets++;
}

dirty_tx++;
tx_left--;
}

#ifndef RTL8139_NDEBUG
if (tp->cur_tx - dirty_tx > NUM_TX_DESC) {
printk (KERN_ERR "%s: Out-of-sync dirty pointer, %ld vs. %ld.\n",
dev->name, dirty_tx, tp->cur_tx);
dirty_tx += NUM_TX_DESC;
}
#endif /* RTL8139_NDEBUG */

/* only wake the queue if we did work, and the queue is stopped */
if (tp->dirty_tx != dirty_tx) {
tp->dirty_tx = dirty_tx;
mb();
if (netif_queue_stopped (dev))
netif_wake_queue (dev);
}
}


/* TODO: clean this up! Rx reset need not be this intensive */
static void rtl8139_rx_err (u32 rx_status, struct net_device *dev,
struct rtl8139_private *tp, void *ioaddr)
{
u8 tmp8;
#ifdef CONFIG_8139_OLD_RX_RESET
int tmp_work;
#endif

DPRINTK ("%s: Ethernet frame had errors, status %8.8x.\n",
dev->name, rx_status);
tp->stats.rx_errors++;
if (!(rx_status & RxStatusOK)) {
if (rx_status & RxTooLong) {
DPRINTK ("%s: Oversized Ethernet frame, status %4.4x!\n",
dev->name, rx_status);
/* A.C.: The chip hangs here. */
}
if (rx_status & (RxBadSymbol | RxBadAlign))
tp->stats.rx_frame_errors++;
if (rx_status & (RxRunt | RxTooLong))
tp->stats.rx_length_errors++;
if (rx_status & RxCRCErr)
tp->stats.rx_crc_errors++;
} else {
tp->xstats.rx_lost_in_ring++;
}

#ifndef CONFIG_8139_OLD_RX_RESET
tmp8 = RTL_R8 (ChipCmd);
RTL_W8 (ChipCmd, tmp8 & ~CmdRxEnb);
RTL_W8 (ChipCmd, tmp8);
RTL_W32 (RxConfig, tp->rx_config);
tp->cur_rx = 0;
#else
/* Reset the receiver, based on RealTek recommendation. (Bug?) */

/* disable receive */
RTL_W8_F (ChipCmd, CmdTxEnb);
tmp_work = 200;
while (--tmp_work > 0) {
udelay(1);
tmp8 = RTL_R8 (ChipCmd);
if (!(tmp8 & CmdRxEnb))
break;
}
if (tmp_work <= 0)
printk (KERN_WARNING PFX "rx stop wait too long\n");
/* restart receive */
tmp_work = 200;
while (--tmp_work > 0) {
RTL_W8_F (ChipCmd, CmdRxEnb | CmdTxEnb);
udelay(1);
tmp8 = RTL_R8 (ChipCmd);
if ((tmp8 & CmdRxEnb) && (tmp8 & CmdTxEnb))
break;
}
if (tmp_work <= 0)
printk (KERN_WARNING PFX "tx/rx enable wait too long\n");

/* and reinitialize all rx related registers */
RTL_W8_F (Cfg9346, Cfg9346_Unlock);
/* Must enable Tx/Rx before setting transfer thresholds! */
RTL_W8 (ChipCmd, CmdRxEnb | CmdTxEnb);

tp->rx_config = rtl8139_rx_config | AcceptBroadcast | AcceptMyPhys;
RTL_W32 (RxConfig, tp->rx_config);
tp->cur_rx = 0;

DPRINTK("init buffer addresses\n");

/* Lock Config[01234] and BMCR register writes */
RTL_W8 (Cfg9346, Cfg9346_Lock);

/* init Rx ring buffer DMA address */
RTL_W32_F (RxBuf, tp->rx_ring_dma);

/* A.C.: Reset the multicast list. */
__set_rx_mode (dev);
#endif
}

static void rtl8139_rx_interrupt (struct net_device *dev,
struct rtl8139_private *tp, void *ioaddr)
{
unsigned char *rx_ring;
u16 cur_rx;

assert (dev != NULL);
assert (tp != NULL);
assert (ioaddr != NULL);

rx_ring = tp->rx_ring;
cur_rx = tp->cur_rx;

DPRINTK ("%s: In rtl8139_rx(), current %4.4x BufAddr %4.4x,"
" free to %4.4x, Cmd %2.2x.\n", dev->name, cur_rx,
RTL_R16 (RxBufAddr),
RTL_R16 (RxBufPtr), RTL_R8 (ChipCmd));

while ((RTL_R8 (ChipCmd) & RxBufEmpty) == 0) {
int ring_offset = cur_rx % RX_BUF_LEN;
u32 rx_status;
unsigned int rx_size;
unsigned int pkt_size;
struct sk_buff *skb;

rmb();

/* read size+status of next frame from DMA ring buffer */
rx_status = le32_to_cpu (*(u32 *) (rx_ring + ring_offset));
rx_size = rx_status >> 16;
pkt_size = rx_size - 4;

DPRINTK ("%s: rtl8139_rx() status %4.4x, size %4.4x,"
" cur %4.4x.\n", dev->name, rx_status,
rx_size, cur_rx);
#if RTL8139_DEBUG > 2
{
int i;
DPRINTK ("%s: Frame contents ", dev->name);
for (i = 0; i < 70; i++)
printk (" %2.2x",
rx_ring[ring_offset + i]);
printk (".\n");
}
#endif

/* Packet copy from FIFO still in progress.
* Theoretically, this should never happen
* since EarlyRx is disabled.
*/
if (rx_size == 0xfff0) {
tp->xstats.early_rx++;
break;
}

/* If Rx err or invalid rx_size/rx_status received
* (which happens if we get lost in the ring),
* Rx process gets reset, so we abort any further
* Rx processing.
*/
if ((rx_size > (MAX_ETH_FRAME_SIZE+4)) ||
(rx_size < 8) ||
(!(rx_status & RxStatusOK))) {
rtl8139_rx_err (rx_status, dev, tp, ioaddr);
return;
}

/* Malloc up new buffer, compatible with net-2e. */
/* Omit the four octet CRC from the length. */

/* TODO: consider allocating skb's outside of
* interrupt context, both to speed interrupt processing,
* and also to reduce the chances of having to
* drop packets here under memory pressure.
*/

skb = dev_alloc_skb (pkt_size + 2);
if (skb) {
skb->dev = dev;
skb_reserve (skb, 2); /* 16 byte align the IP fields. */

eth_copy_and_sum (skb, &rx_ring[ring_offset + 4], pkt_size, 0);
skb_put (skb, pkt_size);

skb->protocol = eth_type_trans (skb, dev);
netif_rx (skb);
dev->last_rx = jiffies;
tp->stats.rx_bytes += pkt_size;
tp->stats.rx_packets++;
} else {
printk (KERN_WARNING
"%s: Memory squeeze, dropping packet.\n",
dev->name);
tp->stats.rx_dropped++;
}

cur_rx = (cur_rx + rx_size + 4 + 3) & ~3;
RTL_W16 (RxBufPtr, cur_rx - 16);

if (RTL_R16 (IntrStatus) & RxAckBits)
RTL_W16_F (IntrStatus, RxAckBits);
}

DPRINTK ("%s: Done rtl8139_rx(), current %4.4x BufAddr %4.4x,"
" free to %4.4x, Cmd %2.2x.\n", dev->name, cur_rx,
RTL_R16 (RxBufAddr),
RTL_R16 (RxBufPtr), RTL_R8 (ChipCmd));

tp->cur_rx = cur_rx;
}


static void rtl8139_weird_interrupt (struct net_device *dev,
struct rtl8139_private *tp,
void *ioaddr,
int status, int link_changed)
{
DPRINTK ("%s: Abnormal interrupt, status %8.8x.\n",
dev->name, status);

assert (dev != NULL);
assert (tp != NULL);
assert (ioaddr != NULL);

/* Update the error count. */
tp->stats.rx_missed_errors += RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);

if ((status & RxUnderrun) && link_changed &&
(tp->drv_flags & HAS_LNK_CHNG)) {
rtl_check_media(dev, 0);
status &= ~RxUnderrun;
}

/* XXX along with rtl8139_rx_err, are we double-counting errors? */
if (status &
(RxUnderrun | RxOverflow | RxErr | RxFIFOOver))
tp->stats.rx_errors++;

if (status & PCSTimeout)
tp->stats.rx_length_errors++;
if (status & (RxUnderrun | RxFIFOOver))
tp->stats.rx_fifo_errors++;
if (status & PCIErr) {
u16 pci_cmd_status;
pci_read_config_word (tp->pci_dev, PCI_STATUS, &pci_cmd_status);
pci_write_config_word (tp->pci_dev, PCI_STATUS, pci_cmd_status);

printk (KERN_ERR "%s: PCI Bus error %4.4x.\n",
dev->name, pci_cmd_status);
}
}


/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static irqreturn_t rtl8139_interrupt (int irq, void *dev_instance,
struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_instance;
struct rtl8139_private *tp = dev->priv;
int boguscnt = max_interrupt_work;
void *ioaddr = tp->mmio_addr;
int ackstat, status;
int link_changed = 0; /* avoid bogus "uninit" warning */
int handled = 0;

spin_lock (&tp->lock);

do {
status = RTL_R16 (IntrStatus);

/* h/w no longer present (hotplug?) or major error, bail */
if (status == 0xFFFF)
break;

if ((status &
(PCIErr | PCSTimeout | RxUnderrun | RxOverflow |
RxFIFOOver | TxErr | TxOK | RxErr | RxOK)) == 0)
break;

handled = 1;

/* Acknowledge all of the current interrupt sources ASAP, but
an first get an additional status bit from CSCR. */
if (status & RxUnderrun)
link_changed = RTL_R16 (CSCR) & CSCR_LinkChangeBit;

/* The chip takes special action when we clear RxAckBits,
* so we clear them later in rtl8139_rx_interrupt
*/
ackstat = status & ~(RxAckBits | TxErr);
RTL_W16 (IntrStatus, ackstat);

DPRINTK ("%s: interrupt status=%#4.4x ackstat=%#4.4x new intstat=%#4.4x.\n",
dev->name, status, ackstat, RTL_R16 (IntrStatus));

if (netif_running (dev) && (status & RxAckBits))
rtl8139_rx_interrupt (dev, tp, ioaddr);

/* Check uncommon events with one test. */
if (status & (PCIErr | PCSTimeout | RxUnderrun | RxOverflow |
RxFIFOOver | RxErr))
rtl8139_weird_interrupt (dev, tp, ioaddr,
status, link_changed);

if (netif_running (dev) && (status & (TxOK | TxErr))) {
rtl8139_tx_interrupt (dev, tp, ioaddr);
if (status & TxErr)
RTL_W16 (IntrStatus, TxErr);
}

boguscnt--;
} while (boguscnt > 0);

if (boguscnt <= 0) {
printk (KERN_WARNING "%s: Too much work at interrupt, "
"IntrStatus=0x%4.4x.\n", dev->name, status);

/* Clear all interrupt sources. */
RTL_W16 (IntrStatus, 0xffff);
}

spin_unlock (&tp->lock);

DPRINTK ("%s: exiting interrupt, intr_status=%#4.4x.\n",
dev->name, RTL_R16 (IntrStatus));
return IRQ_RETVAL(handled);
}


static int rtl8139_close (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
int ret = 0;
unsigned long flags;

netif_stop_queue (dev);

if (tp->thr_pid >= 0) {
tp->time_to_die = 1;
wmb();
ret = kill_proc (tp->thr_pid, SIGTERM, 1);
if (ret) {
printk (KERN_ERR "%s: unable to signal thread\n", dev->name);
return ret;
}
wait_for_completion (&tp->thr_exited);
}

DPRINTK ("%s: Shutting down ethercard, status was 0x%4.4x.\n",
dev->name, RTL_R16 (IntrStatus));

spin_lock_irqsave (&tp->lock, flags);

/* Stop the chip's Tx and Rx DMA processes. */
RTL_W8 (ChipCmd, 0);

/* Disable interrupts by clearing the interrupt mask. */
RTL_W16 (IntrMask, 0);

/* Update the error counts. */
tp->stats.rx_missed_errors += RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);

spin_unlock_irqrestore (&tp->lock, flags);

synchronize_irq (dev->irq); /* racy, but that's ok here */
free_irq (dev->irq, dev);

rtl8139_tx_clear (tp);

pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
tp->rx_ring, tp->rx_ring_dma);
pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
tp->tx_bufs, tp->tx_bufs_dma);
tp->rx_ring = NULL;
tp->tx_bufs = NULL;

/* Green! Put the chip in low-power mode. */
RTL_W8 (Cfg9346, Cfg9346_Unlock);

if (rtl_chip_info[tp->chipset].flags & HasHltClk)
RTL_W8 (HltClk, 'H'); /* 'R' would leave the clock running. */

return 0;
}


/* Get the ethtool Wake-on-LAN settings. Assumes that wol points to
kernel memory, *wol has been initialized as {ETHTOOL_GWOL}, and
other threads or interrupts aren't messing with the 8139. */
static void rtl8139_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8139_private *np = dev->priv;
void *ioaddr = np->mmio_addr;

spin_lock_irq(&np->lock);
if (rtl_chip_info[np->chipset].flags & HasLWake) {
u8 cfg3 = RTL_R8 (Config3);
u8 cfg5 = RTL_R8 (Config5);

wol->supported = WAKE_PHY | WAKE_MAGIC
| WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;

wol->wolopts = 0;
if (cfg3 & Cfg3_LinkUp)
wol->wolopts |= WAKE_PHY;
if (cfg3 & Cfg3_Magic)
wol->wolopts |= WAKE_MAGIC;
/* (KON)FIXME: See how netdev_set_wol() handles the
following constants. */
if (cfg5 & Cfg5_UWF)
wol->wolopts |= WAKE_UCAST;
if (cfg5 & Cfg5_MWF)
wol->wolopts |= WAKE_MCAST;
if (cfg5 & Cfg5_BWF)
wol->wolopts |= WAKE_BCAST;
}
spin_unlock_irq(&np->lock);
}


/* Set the ethtool Wake-on-LAN settings. Return 0 or -errno. Assumes
that wol points to kernel memory and other threads or interrupts
aren't messing with the 8139. */
static int rtl8139_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8139_private *np = dev->priv;
void *ioaddr = np->mmio_addr;
u32 support;
u8 cfg3, cfg5;

support = ((rtl_chip_info[np->chipset].flags & HasLWake)
? (WAKE_PHY | WAKE_MAGIC
| WAKE_UCAST | WAKE_MCAST | WAKE_BCAST)
: 0);
if (wol->wolopts & ~support)
return -EINVAL;

spin_lock_irq(&np->lock);
cfg3 = RTL_R8 (Config3) & ~(Cfg3_LinkUp | Cfg3_Magic);
if (wol->wolopts & WAKE_PHY)
cfg3 |= Cfg3_LinkUp;
if (wol->wolopts & WAKE_MAGIC)
cfg3 |= Cfg3_Magic;
RTL_W8 (Cfg9346, Cfg9346_Unlock);
RTL_W8 (Config3, cfg3);
RTL_W8 (Cfg9346, Cfg9346_Lock);

cfg5 = RTL_R8 (Config5) & ~(Cfg5_UWF | Cfg5_MWF | Cfg5_BWF);
/* (KON)FIXME: These are untested. We may have to set the
CRC0, Wakeup0 and LSBCRC0 registers too, but I have no
documentation. */
if (wol->wolopts & WAKE_UCAST)
cfg5 |= Cfg5_UWF;
if (wol->wolopts & WAKE_MCAST)
cfg5 |= Cfg5_MWF;
if (wol->wolopts & WAKE_BCAST)
cfg5 |= Cfg5_BWF;
RTL_W8 (Config5, cfg5); /* need not unlock via Cfg9346 */
spin_unlock_irq(&np->lock);

return 0;
}

static void rtl8139_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct rtl8139_private *np = dev->priv;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(np->pci_dev));
info->regdump_len = np->regs_len;
}

static int rtl8139_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8139_private *np = dev->priv;
spin_lock_irq(&np->lock);
mii_ethtool_gset(&np->mii, cmd);
spin_unlock_irq(&np->lock);
return 0;
}

static int rtl8139_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8139_private *np = dev->priv;
int rc;
spin_lock_irq(&np->lock);
rc = mii_ethtool_sset(&np->mii, cmd);
spin_unlock_irq(&np->lock);
return rc;
}

static int rtl8139_nway_reset(struct net_device *dev)
{
struct rtl8139_private *np = dev->priv;
return mii_nway_restart(&np->mii);
}

static u32 rtl8139_get_link(struct net_device *dev)
{
struct rtl8139_private *np = dev->priv;
return mii_link_ok(&np->mii);
}

static u32 rtl8139_get_msglevel(struct net_device *dev)
{
return debug;
}

static void rtl8139_set_msglevel(struct net_device *dev, u32 datum)
{
debug = datum;
}

/* TODO: we are too slack to do reg dumping for pio, for now */
#ifdef CONFIG_8139TOO_PIO
#define rtl8139_get_regs_len NULL
#define rtl8139_get_regs NULL
#else
static int rtl8139_get_regs_len(struct net_device *dev)
{
struct rtl8139_private *np = dev->priv;
return np->regs_len;
}

static void rtl8139_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *regbuf)
{
struct rtl8139_private *np = dev->priv;

regs->version = RTL_REGS_VER;

spin_lock_irq(&np->lock);
memcpy_fromio(regbuf, np->mmio_addr, regs->len);
spin_unlock_irq(&np->lock);
}
#endif /* CONFIG_8139TOO_MMIO */

static int rtl8139_get_stats_count(struct net_device *dev)
{
return RTL_NUM_STATS;
}

static void rtl8139_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
{
struct rtl8139_private *np = dev->priv;

data[0] = np->xstats.early_rx;
data[1] = np->xstats.tx_buf_mapped;
data[2] = np->xstats.tx_timeouts;
data[3] = np->xstats.rx_lost_in_ring;
}

static void rtl8139_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
}

static struct ethtool_ops rtl8139_ethtool_ops = {
.get_drvinfo = rtl8139_get_drvinfo,
.get_settings = rtl8139_get_settings,
.set_settings = rtl8139_set_settings,
.get_regs_len = rtl8139_get_regs_len,
.get_regs = rtl8139_get_regs,
.nway_reset = rtl8139_nway_reset,
.get_link = rtl8139_get_link,
.get_msglevel = rtl8139_get_msglevel,
.set_msglevel = rtl8139_set_msglevel,
.get_wol = rtl8139_get_wol,
.set_wol = rtl8139_set_wol,
.get_strings = rtl8139_get_strings,
.get_stats_count = rtl8139_get_stats_count,
.get_ethtool_stats = rtl8139_get_ethtool_stats,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct rtl8139_private *np = dev->priv;
struct mii_ioctl_data *data = (struct mii_ioctl_data *) & rq->ifr_data;
int rc;

if (!netif_running(dev))
return -EINVAL;

spin_lock_irq(&np->lock);
rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
spin_unlock_irq(&np->lock);

return rc;
}


static struct net_device_stats *rtl8139_get_stats (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
unsigned long flags;

if (netif_running(dev)) {
spin_lock_irqsave (&tp->lock, flags);
tp->stats.rx_missed_errors += RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore (&tp->lock, flags);
}

return &tp->stats;
}

/* Set or clear the multicast filter for this adaptor.
This routine is not state sensitive and need not be SMP locked. */

static void __set_rx_mode (struct net_device *dev)
{
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
u32 mc_filter[2]; /* Multicast hash filter */
int i, rx_mode;
u32 tmp;

DPRINTK ("%s: rtl8139_set_rx_mode(%4.4x) done -- Rx config %8.8lx.\n",
dev->name, dev->flags, RTL_R32 (RxConfig));

/* Note: do not reorder, GCC is clever about common statements. */
if (dev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
printk (KERN_NOTICE "%s: Promiscuous mode enabled.\n",
dev->name);
rx_mode =
AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
AcceptAllPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else if ((dev->mc_count > multicast_filter_limit)
|| (dev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else {
struct dev_mc_list *mclist;
rx_mode = AcceptBroadcast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0;
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;

mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
rx_mode |= AcceptMulticast;
}
}

/* We can safely update without stopping the chip. */
tmp = rtl8139_rx_config | rx_mode;
if (tp->rx_config != tmp) {
RTL_W32_F (RxConfig, tmp);
tp->rx_config = tmp;
}
RTL_W32_F (MAR0 + 0, mc_filter[0]);
RTL_W32_F (MAR0 + 4, mc_filter[1]);
}

static void rtl8139_set_rx_mode (struct net_device *dev)
{
unsigned long flags;
struct rtl8139_private *tp = dev->priv;

spin_lock_irqsave (&tp->lock, flags);
__set_rx_mode(dev);
spin_unlock_irqrestore (&tp->lock, flags);
}

#ifdef CONFIG_PM

static int rtl8139_suspend (struct pci_dev *pdev, u32 state)
{
struct net_device *dev = pci_get_drvdata (pdev);
struct rtl8139_private *tp = dev->priv;
void *ioaddr = tp->mmio_addr;
unsigned long flags;

if (!netif_running (dev))
return 0;

netif_device_detach (dev);

spin_lock_irqsave (&tp->lock, flags);

/* Disable interrupts, stop Tx and Rx. */
RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Update the error counts. */
tp->stats.rx_missed_errors += RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);

pci_set_power_state (pdev, 3);
pci_save_state (pdev, tp->pci_state);

spin_unlock_irqrestore (&tp->lock, flags);
return 0;
}


static int rtl8139_resume (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata (pdev);
struct rtl8139_private *tp = dev->priv;

if (!netif_running (dev))
return 0;
pci_restore_state (pdev, tp->pci_state);
pci_set_power_state (pdev, 0);
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);
netif_device_attach (dev);
return 0;
}

#endif /* CONFIG_PM */


static struct pci_driver rtl8139_pci_driver = {
.name = DRV_NAME,
.id_table = rtl8139_pci_tbl,
.probe = rtl8139_init_one,
.remove = __devexit_p(rtl8139_remove_one),
#ifdef CONFIG_PM
.suspend = rtl8139_suspend,
.resume = rtl8139_resume,
#endif /* CONFIG_PM */
};


static int __init rtl8139_init_module (void)
{
/* when we're a module, we always print a version message,
* even if no 8139 board is found.
*/
#ifdef MODULE
printk (KERN_INFO RTL8139_DRIVER_NAME "\n");
#endif

return pci_module_init (&rtl8139_pci_driver);
}


static void __exit rtl8139_cleanup_module (void)
{
pci_unregister_driver (&rtl8139_pci_driver);
}


module_init(rtl8139_init_module);
module_exit(rtl8139_cleanup_module);