[RFC][PATCH] Updated RCU documentation improvement

From: Paul E. McKenney
Date: Wed Aug 04 2004 - 09:21:46 EST


Hello!

Updated based on feedback, and to apply to 2.6.8-rc3. I will be
adding more detailed documentation to the Documentation directory
in a separate patch.

Thoughts?

Thanx, Paul

diff -urpN -X ../dontdiff linux-2.5/include/linux/rcupdate.h linux-2.5.rcu_read_lock_comments/include/linux/rcupdate.h
--- linux-2.5/include/linux/rcupdate.h Mon Aug 2 11:32:10 2004
+++ linux-2.5.rcu_read_lock_comments/include/linux/rcupdate.h Wed Aug 4 06:32:07 2004
@@ -133,8 +133,53 @@ static inline int rcu_pending(int cpu)
return 0;
}

+/**
+ * rcu_read_lock - mark the beginning of an RCU read-side critical section.
+ *
+ * When synchronize_kernel() is invoked on one CPU while other CPUs
+ * are within RCU read-side critical sections, then the
+ * synchronize_kernel() is guaranteed to block until after all the other
+ * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
+ * on one CPU while other CPUs are within RCU read-side critical
+ * sections, invocation of the corresponding RCU callback is deferred
+ * until after the all the other CPUs exit their critical sections.
+ *
+ * Note, however, that RCU callbacks are permitted to run concurrently
+ * with RCU read-side critical sections. One way that this can happen
+ * is via the following sequence of events: (1) CPU 0 enters an RCU
+ * read-side critical section, (2) CPU 1 invokes call_rcu() to register
+ * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
+ * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
+ * callback is invoked. This is legal, because the RCU read-side critical
+ * section that was running concurrently with the call_rcu() (and which
+ * therefore might be referencing something that the corresponding RCU
+ * callback would free up) has completed before the corresponding
+ * RCU callback is invoked.
+ *
+ * RCU read-side critical sections may be nested. Any deferred actions
+ * will be deferred until the outermost RCU read-side critical section
+ * completes.
+ *
+ * It is illegal to block while in an RCU read-side critical section.
+ */
#define rcu_read_lock() preempt_disable()
+
+/**
+ * rcu_read_unlock - marks the end of an RCU read-side critical section.
+ *
+ * See rcu_read_lock() for more information.
+ */
#define rcu_read_unlock() preempt_enable()
+
+/*
+ * So where is rcu_write_lock()? It does not exist, as there is no
+ * way for writers to lock out RCU readers. This is a feature, not
+ * a bug -- this property is what provides RCU's performance benefits.
+ * Of course, writers must coordinate with each other. The normal
+ * spinlock primitives work well for this, but any other technique may be
+ * used as well. RCU does not care how the writers keep out of each
+ * others' way, as long as they do so.
+ */

extern void rcu_init(void);
extern void rcu_check_callbacks(int cpu, int user);
diff -urpN -X ../dontdiff linux-2.5/kernel/rcupdate.c linux-2.5.rcu_read_lock_comments/kernel/rcupdate.c
--- linux-2.5/kernel/rcupdate.c Mon Aug 2 11:32:13 2004
+++ linux-2.5.rcu_read_lock_comments/kernel/rcupdate.c Wed Aug 4 06:34:27 2004
@@ -65,14 +65,15 @@ static DEFINE_PER_CPU(struct tasklet_str
#define RCU_tasklet(cpu) (per_cpu(rcu_tasklet, cpu))

/**
- * call_rcu - Queue an RCU update request.
+ * call_rcu - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
*
- * The update function will be invoked as soon as all CPUs have performed
- * a context switch or been seen in the idle loop or in a user process.
- * The read-side of critical section that use call_rcu() for updation must
- * be protected by rcu_read_lock()/rcu_read_unlock().
+ * The update function will be invoked some time after a full grace
+ * period elapses, in other words after all currently executing RCU
+ * read-side critical sections have completed. RCU read-side critical
+ * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
+ * and may be nested.
*/
void fastcall call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu))
@@ -370,8 +371,13 @@ static void wakeme_after_rcu(struct rcu_
}

/**
- * synchronize-kernel - wait until all the CPUs have gone
- * through a "quiescent" state. It may sleep.
+ * synchronize_kernel - wait until a grace period has elapsed.
+ *
+ * Control will return to the caller some time after a full grace
+ * period has elapsed, in other words after all currently executing RCU
+ * read-side critical sections have completed. RCU read-side critical
+ * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
+ * and may be nested.
*/
void synchronize_kernel(void)
{
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/