[PATCH 2/2] Bcache: Version 7 (Code)

From: Kent Overstreet
Date: Mon Sep 13 2010 - 09:21:29 EST


diff --git a/block/bcache.c b/block/bcache.c
new file mode 100644
index 0000000..b2ad5e1
--- /dev/null
+++ b/block/bcache.c
@@ -0,0 +1,4907 @@
+/*
+ * Copyright (C) 2010 Kent Overstreet <kent.overstreet@xxxxxxxxx>
+ *
+ * Uses a block device as cache for other block devices; optimized for SSDs.
+ * All allocation is done in buckets, which should match the erase block size
+ * of the device.
+ *
+ * Buckets containing cached data are kept on a heap sorted by priority;
+ * bucket priority is increased on cache hit, and periodically all the buckets
+ * on the heap have their priority scaled down. This currently is just used as
+ * an LRU but in the future should allow for more intelligent heuristics.
+ *
+ * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
+ * counter. Garbage collection is used to remove stale pointers.
+ *
+ * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
+ * as keys are inserted we only sort the pages that have not yet been written.
+ * When garbage collection is run, we resort the entire node.
+ *
+ * All configuration is done via sysfs; see Documentation/bcache.txt.
+ */
+
+#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
+
+#include "bcache_util.h"
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>
+#include <linux/ctype.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/hash.h>
+#include <linux/init.h>
+#include <linux/kobject.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/page-flags.h>
+#include <linux/random.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include <linux/string.h>
+#include <linux/swap.h>
+#include <linux/sysfs.h>
+#include <linux/types.h>
+#include <linux/workqueue.h>
+
+/*
+ * Todo:
+ * Garbage collection should free old UUIDs
+ *
+ * btree_write doesn't need to wait if inserting a null key and
+ * btree_insert_key didn't do anything
+ *
+ * Calculate sizes of free lists more intelligently?
+ *
+ * IO tracking: Can we track when one process is doing io on behalf of another?
+ * IO tracking: Don't use just an average, weigh more recent stuff higher
+ *
+ * echo "`blkid /dev/loop0 -s UUID -o value` /dev/loop0"
+ *
+ * Error handling in fill_bucket... and everywhere else
+ *
+ * Fix cache hit counting, split cache hits shouldn't count for each split
+ *
+ * Make registering partitions to cache work
+ *
+ * Test module load/unload
+ *
+ * Check if a device is opened read/write when caching is turned on or off for
+ * it, and invalidate cached data (Idea: pin the first 4k? 8k? in the cache,
+ * verify it against the cached copy when caching's turned on)
+ *
+ * IO error handling
+ */
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kent Overstreet <kent.overstreet@xxxxxxxxx>");
+
+#define UUIDS_PER_SB 256
+#define SB_SECTOR 8
+#define UUID_SECTOR 16
+#define PRIO_SECTOR 24
+
+/*
+ * Page 0: unused
+ * Page 1: superblock
+ * Page 2: device UUIDs
+ * Page 3+: bucket priorities
+ */
+
+struct search;
+struct btree;
+
+typedef void (search_fn) (struct search *);
+
+static const char bcache_magic[] = {
+ 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
+ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 };
+
+struct cache_sb {
+ uint8_t magic[16];
+#define CACHE_CLEAN 1
+#define CACHE_SYNC 2
+ uint32_t version;
+ uint16_t block_size; /* sectors */
+ uint16_t bucket_size; /* sectors */
+ uint32_t journal_start; /* buckets */
+ uint32_t first_bucket; /* start of data */
+ uint64_t nbuckets; /* device size */
+ uint64_t btree_root;
+ uint16_t btree_level;
+};
+
+struct bucket {
+ long heap;
+ atomic_t pin;
+ uint16_t priority;
+ uint8_t gen;
+ uint8_t last_gc;
+ bool dirty;
+ void *f;
+};
+
+struct bucket_gc {
+#define GC_MARK_DIRTY -1
+#define GC_MARK_BTREE -2
+ short mark;
+ uint8_t gen;
+};
+
+struct bucket_disk {
+ uint16_t priority;
+ uint8_t gen;
+} __attribute((packed));
+
+struct btree_node_header {
+ uint32_t csum;
+ uint32_t nkeys;
+ uint64_t random;
+};
+
+struct bkey {
+ uint64_t key;
+ uint64_t ptr;
+};
+
+#define bucket_cmp(i, j) (i->priority >= j->priority)
+
+struct cache {
+ struct list_head list;
+ struct cache_sb sb;
+ struct page *sb_page;
+ struct bio *sb_bio;
+ struct search *sb_wait;
+
+ struct kobject kobj;
+ struct block_device *bdev;
+ struct module *owner;
+ struct dentry *debug;
+ struct work_struct work;
+
+ /*
+ * Buckets used for cached data go on the heap. The heap is ordered by
+ * bucket->priority; a priority of ~0 indicates a btree bucket. Priority
+ * is increased on cache hit, and periodically all the buckets on the
+ * heap have their priority scaled down by a linear function.
+ */
+ int bucket_size_bits;
+ spinlock_t bucket_lock;
+ struct bucket *buckets;
+ struct bucket_disk *disk_buckets;
+ DECLARE_HEAP(struct bucket *, heap);
+ long rescale;
+ uint8_t need_gc;
+ struct search *bucket_wait;
+
+ struct work_struct priority_work;
+ struct bio *priority_bio;
+ atomic_t prio_written;
+ int pops_pinned;
+ bool free_resized;
+
+ DECLARE_FIFO(long, free);
+ DECLARE_FIFO(long, btree);
+ DECLARE_FIFO(long, free_inc);
+ DECLARE_FIFO(long, btree_inc);
+
+ struct semaphore gc_lock;
+ struct bucket_gc *garbage;
+ long sectors_to_gc;
+
+ int btree_buckets_cached;
+ struct list_head lru;
+
+ /*struct gendisk *devices[UUIDS_PER_SB];*/
+ short devices[UUIDS_PER_SB];
+ struct buffer_head *uuids;
+
+ struct btree *root;
+
+ unsigned long cache_hits;
+ unsigned long sectors_written;
+ unsigned long btree_sectors_written;
+ unsigned long writeback_keys_done;
+ unsigned long writeback_keys_failed;
+
+ bool discard;
+ struct list_head discards;
+};
+
+struct open_bucket {
+ struct list_head list;
+ struct cache *cache;
+ struct task_struct *last;
+
+ struct bkey key;
+ sector_t offset;
+ unsigned sectors_free;
+ uint8_t gen;
+};
+
+struct dirty {
+ struct rb_node node;
+ struct work_struct work;
+ struct bkey key;
+ struct cache *c;
+ struct cached_dev *d;
+ struct bio *bio;
+};
+
+struct cached_dev {
+ struct kobject kobj;
+ struct block_device *bdev;
+ struct module *owner;
+ struct work_struct work;
+
+ struct list_head barrier;
+
+ bool writeback;
+ bool writeback_running;
+ struct mutex dirty_lock;
+ struct bkey last_written;
+ sector_t last_found;
+ atomic_t in_flight;
+ atomic_long_t last_refilled;
+
+ struct rb_root dirty;
+};
+
+struct btree_write {
+ struct work_struct w;
+ unsigned long wait_time;
+ struct search *wait;
+ struct btree *b;
+ struct bio bio;
+};
+
+struct btree {
+ struct list_head lru;
+ struct rw_semaphore lock;
+ struct search *wait;
+ struct cache *c;
+ unsigned long jiffies;
+
+ unsigned long expires;
+ struct btree_write *write;
+ struct delayed_work w;
+ atomic_t writes_outstanding;
+
+ struct work_struct fill;
+ atomic_t nread;
+ sector_t offset;
+ uint16_t level;
+ uint16_t written;
+
+ struct page *pages[];
+};
+
+struct closure {
+ struct work_struct w;
+ struct search *next;
+ search_fn *end_fn;
+ struct closure *parent;
+ atomic_t remaining;
+#define SEARCH_BLOCK 1
+#define SEARCH_WAITING 2
+ int flags;
+};
+
+struct insert {
+ struct closure s;
+ struct bkey new_keys[2];
+ uint16_t nkeys;
+ uint16_t level;
+ uint16_t lock;
+ uint16_t nkeylist;
+ struct bkey *keylist;
+ struct cache *cur;
+};
+
+struct bio_hook {
+ struct closure s;
+ int error;
+ void *q;
+ struct bio *bio;
+
+ struct bio *cache_bio;
+ bio_end_io_t *bi_end_io;
+ void *bi_private;
+};
+
+struct search {
+#ifdef DEBUG_SEARCH
+ struct list_head all;
+ const char *waiting_on;
+#define SET_WAITING(s, f) ((s)->waiting_on = f)
+#else
+#define SET_WAITING(s, f) do {} while (0)
+#endif
+ /* What's a stack frame?
+ * This really needs to be broken up; doing this without losing
+ * functionality and/or ending up with something even more ugly
+ * is hard.
+ */
+ struct work_struct w;
+ struct search *next;
+ struct search *parent;
+ search_fn *end_fn;
+ atomic_t remaining;
+#define SEARCH_BLOCK 1
+#define SEARCH_WAITING 2
+ unsigned flags;
+
+ struct search *barrier_wait;
+ struct list_head barrier;
+ uint64_t key;
+ uint16_t size;
+
+ int error;
+ void *q;
+ struct bio *bio;
+
+ struct bio_list misses;
+ struct bio *cache_bio;
+ bio_end_io_t *bi_end_io;
+ void *bi_private;
+
+ /* btree_insert_async */
+ struct bkey new_keys[3];
+ uint16_t nkeys;
+ uint16_t level;
+ uint16_t lock;
+ uint16_t nkeylist;
+ struct bkey *keylist;
+ struct cache *cur;
+ struct cached_dev *d;
+ short delay;
+ enum {
+ INSERT_READ,
+ INSERT_WRITE,
+ INSERT_WRITEBACK,
+ INSERT_UNDIRTY,
+ INSERT_FILL
+ } write;
+ unsigned long wait_time;
+};
+
+static LIST_HEAD(searches);
+static spinlock_t search_lock;
+
+#define blocking_search (struct search) { \
+ .flags = SEARCH_BLOCK, \
+ .wait_time = jiffies, \
+ .remaining = { 1 } \
+}
+
+/* Will be moved to struct cached_dev
+ */
+
+#define RECENT_IO_BITS 7
+#define RECENT_IO (1 << RECENT_IO_BITS)
+
+static struct io {
+ struct hlist_node hash;
+ struct list_head lru;
+
+ uint64_t key;
+ unsigned sequential;
+} recent_io[RECENT_IO];
+
+static struct hlist_head recent_io_hash[RECENT_IO + 1];
+static LIST_HEAD(recent_io_lru);
+static spinlock_t recent_io_lock;
+static spinlock_t barrier_lock;
+
+static struct kobject *bcache_kobj;
+/*
+ * We need a real search key, or something
+ * static struct gendisk *devices[UUIDS_PER_SB];
+ */
+static char uuids[UUIDS_PER_SB*16];
+static struct cached_dev *devices[UUIDS_PER_SB];
+
+static LIST_HEAD(cache_devices);
+static LIST_HEAD(open_buckets);
+/*
+ * want c99
+static DEFINE_SPINLOCK(open_bucket_lock);
+static DECLARE_WAIT_QUEUE_HEAD(pending);
+*/
+static spinlock_t open_bucket_lock;
+static wait_queue_head_t pending;
+
+static struct workqueue_struct *delayed;
+
+/*
+ * Sysfs vars / tunables
+ */
+static unsigned long cache_hits, cache_misses;
+static uint16_t initial_priority = 32768;
+static uint16_t cache_hit_priority = 100, cache_hit_seek = 100;
+static unsigned long sequential_cutoff = 1 << 20, sectors_bypassed;
+static unsigned flush_delay_ms = 10, flush_delay_ms_sync = 4;
+static unsigned latency_warn_ms = 500, writeback_delay = 30;
+static bool synchronous = true;
+
+static DEFINE_PER_CPU(unsigned long, btree_write_count);
+static DEFINE_PER_CPU(unsigned long, keys_write_count);
+
+static struct kmem_cache *search_cache, *dirty_cache;
+
+static void submit_bio_list(int rw, struct bio *bio);
+static void check_bio(struct bio *bio);
+static struct bio *__btree_write(struct btree *b);
+static int btree_bsearch(struct bkey **, uint64_t);
+static void btree_clean(struct btree *, struct bkey **, uint64_t);
+static bool do_fixup(bool, uint64_t, struct bkey *);
+static bool fixup_old_keys(struct btree *b, struct bkey *k, int write);
+static void btree_gc(struct work_struct *);
+static bool in_writeback(struct cached_dev *, struct bkey *);
+static void read_dirty(struct cached_dev *);
+static void bio_complete(struct search *);
+static struct bio *save_priorities(struct cache *);
+static struct bio *write_super(struct cache *, struct search *);
+static void unregister_cache(struct kobject *);
+static int request_read(struct request_queue *, struct bio *,
+ bool, struct search *);
+
+#define label(l, foo) if (0) { l: foo; }
+
+#define PAGE_SECTORS (PAGE_SIZE / 512)
+#define pages(c, s) \
+ (((sizeof(s) * c->sb.nbuckets) - 1) / PAGE_SIZE + 1)
+
+#define pages_per_bucket(b) ((b)->c->sb.bucket_size / PAGE_SECTORS)
+#define pages_per_btree (c->sb.bucket_size / PAGE_SECTORS)
+#define keys_per_page (PAGE_SIZE / sizeof(struct bkey))
+#define btree_prio ((uint16_t) ~0)
+
+#define bucket(c, s) ((c)->buckets + sector_to_bucket(c, s))
+
+#define bucket_to_sector(c, b) \
+ (((sector_t) (b) + c->sb.first_bucket) << c->bucket_size_bits)
+
+#define sector_to_bucket(c, s) \
+ ((long) (s >> c->bucket_size_bits) - c->sb.first_bucket)
+
+#define data(b) ((struct bkey **) (b)->pages + pages_per_bucket(b))
+#define keys(i) (((struct btree_node_header *) *(i))->nkeys)
+#define rand(i) (((struct btree_node_header *) *(i))->random)
+#define index(i, b) ((int) (i - data(b)))
+#define last_key(i) (node(i, keys(i))->key)
+
+#define keys_can_fit(i, b) \
+ ((pages_per_bucket(b) - index(i, b)) * keys_per_page - 1)
+
+/*
+ * key: 8 bit device, 56 bit offset
+ * value: 40 bit offset, 1 bit dirty, 15 bit len, 8 bit gen
+ * All units are in sectors
+ */
+
+#define _KEY_DEV(k) ((int) ((k) >> 56))
+#define KEY_DEV(k) ((int) ((k)->key >> 56))
+#define KEY_OFFSET(k) ((k)->key & ~((int64_t) ~0 << 56))
+#define TREE_KEY(dev, offset) (((uint64_t) dev) << 56 | (offset))
+#define KEY_START(k) ((k)->key - PTR_SIZE(k))
+
+#define PTR_OFFSET(k) ((int64_t) (((k)->ptr) >> 24))
+#define PTR_SIZE(k) ((unsigned) ((k)->ptr >> 8) & ~(~0 << 15))
+#define PTR_GEN(k) ((uint8_t) ((k)->ptr & ~(~0 << 8)))
+
+#define PTR_DIRTY_BIT ((uint64_t) (1 << 23))
+#define PTR_DIRTY(k) ((k)->ptr & PTR_DIRTY_BIT)
+#define PTR_SET_DIRTY(k) ((k)->ptr |= PTR_DIRTY_BIT)
+#define PTR_CLEAR_DIRTY(k) ((k)->ptr &= ~PTR_DIRTY_BIT)
+
+#define TREE_PTR(gen, length, offset) \
+ ((uint64_t) (offset) << 24 | (length) << 8 | (gen))
+
+#define PTR_BUCKET(b, ptr) bucket(b->c, PTR_OFFSET(ptr))
+#define bucket_to_ptr(b) \
+ TREE_PTR(bucket(b->c, b->offset)->gen, 0, b->offset)
+
+#define bucket_key(b) \
+ (struct bkey) { .key = last_key(data(b)), .ptr = bucket_to_ptr(b) }
+
+static void ptr_set_dirty(struct cache *c, struct bkey *k)
+{
+ long b = sector_to_bucket(c, PTR_OFFSET(k));
+
+ spin_lock(&c->bucket_lock);
+ BUG_ON(c->buckets[b].heap != -1);
+ c->buckets[b].dirty = true;
+ c->garbage[b].mark = GC_MARK_DIRTY;
+ spin_unlock(&c->bucket_lock);
+}
+
+static inline struct bkey *node(struct bkey *d[], int i)
+{
+ return d[i / keys_per_page] + (i % keys_per_page);
+}
+
+static inline void rw_lock(bool w, struct btree *b)
+{
+ w ? down_write_nested(&b->lock, b->level + 1)
+ : down_read_nested(&b->lock, b->level + 1);
+ smp_rmb();
+}
+
+static inline void rw_unlock(bool w, struct btree *b)
+{
+ if (b->write) {
+ long delay = b->expires - jiffies;
+ if (delay > 0)
+ queue_delayed_work(delayed, &b->w, delay);
+ else if (!atomic_xchg(&b->writes_outstanding, 1))
+ submit_bio_list(WRITE, __btree_write(b));
+ }
+
+ smp_wmb();
+ w ? up_write(&b->lock) : up_read(&b->lock);
+}
+
+struct keyprint_hack {
+ char s[40];
+};
+
+static struct keyprint_hack _pkey(const struct bkey *k)
+{
+ struct keyprint_hack r;
+ snprintf(r.s, 40, "%llu -> %llu len %i gen %i%s",
+ KEY_OFFSET(k), PTR_OFFSET(k), PTR_SIZE(k), PTR_GEN(k),
+ PTR_DIRTY(k) ? " dirty" : "");
+ return r;
+}
+
+#define pkey(k) (_pkey(k).s)
+
+static bool bio_reinit(struct bio *bio)
+{
+ if (atomic_cmpxchg(&bio->bi_remaining, 0, 1))
+ return false;
+
+ bio_get(bio);
+ bio->bi_next = NULL;
+ bio->bi_flags = 1 << BIO_UPTODATE;
+ bio->bi_rw = 0;
+ bio->bi_idx = 0;
+ bio->bi_phys_segments = 0;
+ bio->bi_size = 0;
+ bio->bi_seg_front_size = 0;
+ bio->bi_seg_back_size = 0;
+ bio->bi_comp_cpu = -1;
+ return true;
+}
+
+static void submit_bio_list(int rw, struct bio *bio)
+{
+ while (bio) {
+ struct request_queue *q = bdev_get_queue(bio->bi_bdev);
+ struct bio *split, *next = bio->bi_next;
+ bio->bi_next = NULL;
+
+ do {
+ int n = bio_get_nr_vecs(bio->bi_bdev) * PAGE_SECTORS;
+ struct bio_vec *bv = bio->bi_io_vec + bio->bi_idx;
+
+ struct bvec_merge_data bvm = {
+ .bi_bdev = bio->bi_bdev,
+ .bi_sector = bio->bi_sector,
+ .bi_size = bio->bi_size,
+ .bi_rw = bio->bi_rw,
+ };
+ WARN_ON(n <= 0);
+
+ if (q->merge_bvec_fn)
+ n = min(n, q->merge_bvec_fn(q, &bvm, bv) << 9);
+ n = max_t(int, n, bv->bv_len >> 9);
+
+ if (!(split = bio_split_front(bio, n, NULL))) {
+ bio_endio(bio, -ENOMEM);
+ return;
+ }
+ check_bio(split);
+ submit_bio(rw, split);
+ } while (split != bio);
+
+ bio = next;
+ }
+}
+
+static int is_zero(void *p, size_t n)
+{
+ int i;
+ for (i = 0; i < n; i++)
+ if (((char *) p)[i])
+ return 0;
+ return 1;
+}
+
+static int parse_uuid(const char *s, char *uuid)
+{
+ int i, j, x;
+ memset(uuid, 0, 16);
+
+ for (i = 0, j = 0;
+ i < strspn(s, "-0123456789:ABCDEFabcdef") && j < 32;
+ i++) {
+ x = s[i] | 32;
+
+ switch (x) {
+ case '0'...'9':
+ x -= '0';
+ break;
+ case 'a'...'f':
+ x -= 'a' - 10;
+ break;
+ default:
+ continue;
+ }
+
+ x <<= ((j & 1) << 2);
+ uuid[j++ >> 1] |= x;
+ }
+ return i;
+}
+
+static int lookup_id(struct cache *c, int id)
+{
+ int dev;
+ for (dev = 0; dev < UUIDS_PER_SB; dev++)
+ if (c->devices[dev] == id)
+ break;
+
+ if (dev == UUIDS_PER_SB)
+ printk(KERN_DEBUG "bcache: unknown device %i\n", id);
+
+ return dev;
+}
+
+static int lookup_dev(struct cache *c, struct bio *bio)
+{ return lookup_id(c, bio->bi_bdev->bd_cache_identifier); }
+
+static void run_search(struct work_struct *w)
+{
+ struct search *s = container_of(w, struct search, w);
+ search_fn *f = NULL;
+ swap(f, s->end_fn);
+ atomic_set(&s->remaining, 1);
+ s->wait_time = jiffies;
+ f(s);
+}
+
+static void put_search(struct search *s, bool noqueue)
+{
+ int ms = jiffies_to_msecs(jiffies - s->wait_time);
+ if (ms > latency_warn_ms && printk_ratelimit())
+ printk(KERN_DEBUG "bcache: %pf was waiting for %pf for %i ms\n",
+ s->end_fn, __builtin_return_address(0), ms);
+again:
+ if (!atomic_dec_and_test(&s->remaining))
+ return;
+
+ BUG_ON(object_is_on_stack(s));
+ BUG_ON(s->flags & SEARCH_WAITING);
+
+ if (!s->end_fn) {
+ struct search *p = s->parent;
+#ifdef DEBUG_SEARCH
+ unsigned long flags;
+ spin_lock_irqsave(&search_lock, flags);
+ list_del(&s->all);
+ spin_unlock_irqrestore(&search_lock, flags);
+#endif
+ kmem_cache_free(search_cache, s);
+ s = p;
+ if (s)
+ goto again;
+ } else if (noqueue || s->end_fn == bio_complete)
+ run_search(&s->w);
+ else
+ BUG_ON(!queue_work(delayed, &s->w));
+}
+
+#define return_f(s, f, ...) do { \
+ if ((s) && !object_is_on_stack(s)) { \
+ (s)->end_fn = f; \
+ put_search(s, !current->bio_list); \
+ } \
+ return __VA_ARGS__; \
+} while (0)
+
+#define run_wait_list(condition, list) do { \
+ smp_mb(); \
+ if (condition) { \
+ struct search *_s, *_next; \
+ for (_s = xchg(&(list), NULL); _s; _s = _next) {\
+ _next = _s->next; \
+ _s->flags &= ~SEARCH_WAITING; \
+ SET_WAITING(_s, NULL); \
+ put_search(_s, false); \
+ if (_s->flags & SEARCH_BLOCK) \
+ wake_up(&pending); \
+ } \
+ } \
+} while (0)
+
+#define wait_search(list, s) do { \
+ BUG_ON(((s)->flags & SEARCH_BLOCK)); \
+ BUG_ON(object_is_on_stack(s)); \
+ if (!((s)->flags & SEARCH_WAITING)) { \
+ atomic_inc(&(s)->remaining); \
+ smp_mb__after_atomic_inc(); \
+ (s)->flags |= SEARCH_WAITING; \
+ SET_WAITING(s, __func__); \
+ lockless_list_push(s, list, next); \
+ } \
+} while (0)
+
+#define wait_on_search(condition, list, s) ({ \
+ if (!(condition) && \
+ !IS_ERR(s = alloc_search(s)) && \
+ !((s)->flags & SEARCH_WAITING)) { \
+ atomic_inc(&(s)->remaining); \
+ smp_mb__after_atomic_inc(); \
+ (s)->flags |= SEARCH_WAITING; \
+ SET_WAITING(s, __func__); \
+ lockless_list_push(s, list, next); \
+ if ((s)->flags & SEARCH_BLOCK) \
+ wait_event(pending, condition); \
+ run_wait_list(condition, list); \
+ } \
+ s; })
+
+static struct search *alloc_search(struct search *s)
+{
+ struct search *r = s;
+ if (!s ||
+ (object_is_on_stack(s) && !(s->flags & SEARCH_BLOCK))) {
+ r = kmem_cache_alloc(search_cache, __GFP_ZERO|GFP_NOIO);
+ if (!r)
+ return ERR_PTR(-ENOMEM);
+
+ if (s)
+ *r = *s;
+
+ atomic_set(&r->remaining, 1);
+ r->wait_time = jiffies;
+ INIT_WORK(&r->w, run_search);
+ INIT_LIST_HEAD(&r->barrier);
+#ifdef DEBUG_SEARCH
+ spin_lock_irq(&search_lock);
+ list_add(&r->all, &searches);
+ spin_unlock_irq(&search_lock);
+#endif
+ } else if (s && !(s->flags & SEARCH_BLOCK))
+ BUG_ON(!atomic_read(&(s)->remaining));
+ return r;
+}
+
+static struct search *alloc_child_search(struct search *s)
+{
+ struct search *r = alloc_search(NULL);
+ if (!IS_ERR(r)) {
+ atomic_inc(&s->remaining);
+ r->parent = s;
+ }
+ return r;
+}
+
+static int realloc_keys(struct search *s)
+{
+ if (s->nkeylist == 3)
+ s->keylist = kmalloc(sizeof(*s->keylist) * 8, GFP_NOIO);
+ else if (s->nkeylist > 4 &&
+ is_power_of_2(s->nkeylist))
+ s->keylist = krealloc(s->keylist,
+ sizeof(*s->keylist) * s->nkeylist * 2,
+ GFP_NOIO);
+
+ if (!s->keylist)
+ return -ENOMEM;
+
+ if (s->nkeylist == 3)
+ memcpy(s->keylist, s->new_keys, sizeof(*s->keylist) * 3);
+
+ return 0;
+}
+
+static void push_key(struct search *s, struct bkey k)
+{
+ s->new_keys[s->nkeys++] = k;
+}
+
+static void queue_gc(struct cache *c)
+{
+ if (down_trylock(&c->gc_lock))
+ return;
+
+ c->sectors_to_gc = c->sb.bucket_size * c->sb.nbuckets / 8;
+
+ pr_debug("starting gc, need_gc %i", c->need_gc);
+ PREPARE_WORK(&c->work, btree_gc);
+ queue_work(delayed, &c->work);
+}
+
+static uint8_t __inc_bucket_gen(struct cache *c, long i)
+{
+ struct bucket *b = c->buckets + i;
+ uint8_t ret = ++b->gen;
+ BUG_ON(b->dirty);
+
+ c->need_gc = max_t(uint8_t, c->need_gc, ret - b->last_gc);
+ if (c->need_gc > 64)
+ queue_gc(c);
+
+ return ret;
+}
+
+static uint8_t inc_bucket_gen(struct cache *c, long b)
+{
+ uint8_t ret;
+ spin_lock(&c->bucket_lock);
+ ret = __inc_bucket_gen(c, b);
+ spin_unlock(&c->bucket_lock);
+ return ret;
+}
+
+#define inc_gen(b, o) inc_bucket_gen((b)->c, sector_to_bucket((b)->c, o))
+
+static void rescale_heap(struct cache *c, int sectors)
+{
+ spin_lock(&c->bucket_lock);
+ c->rescale -= sectors;
+ if (c->rescale <= 0) {
+ struct bucket *b;
+ for (b = c->buckets; b < c->buckets + c->sb.nbuckets; b++)
+ if (b->priority &&
+ b->priority != btree_prio &&
+ !atomic_read(&b->pin))
+ b->priority--;
+
+ c->rescale += c->sb.bucket_size * c->sb.nbuckets / 128;
+ }
+ spin_unlock(&c->bucket_lock);
+}
+
+static void bucket_add_heap(struct cache *c, long i)
+{
+ struct bucket *b = c->buckets + i;
+
+ if (b->priority != btree_prio &&
+ !b->dirty &&
+ !atomic_read(&b->pin)) {
+ BUG_ON(c->garbage[i].mark < GC_MARK_DIRTY);
+ BUG_ON(i == sector_to_bucket(c, c->sb.btree_root));
+ heap_add(&c->heap, b, heap, bucket_cmp);
+ }
+}
+
+static void free_some_buckets(struct cache *c)
+{
+ long pop(uint16_t p)
+ {
+ struct bucket *b;
+ long r;
+
+ if (!c->heap.size) {
+ queue_gc(c);
+ printk(KERN_WARNING "bcache: heap empty!\n");
+ return -1;
+ }
+
+ /* On cache hit, priority is increased but we don't readjust
+ * the heap so as not to take the lock there - hence the heap
+ * isn't necessarily a heap. This mostly works provided priority
+ * only goes up - later we won't keep the full heap around
+ * which will be better.
+ */
+ heap_sift(&c->heap, 0, heap, bucket_cmp);
+ b = heap_peek(&c->heap);
+ r = b - c->buckets;
+
+ __inc_bucket_gen(c, r);
+
+ smp_mb();
+ if (atomic_read(&b->pin)) {
+ c->pops_pinned++;
+ return -1;
+ }
+
+ c->pops_pinned = 0;
+ heap_pop(&c->heap, heap, bucket_cmp);
+ b->priority = p;
+ atomic_inc(&b->pin);
+
+ if (c->discard) {
+ spin_unlock(&c->bucket_lock);
+ /* should do this asynchronously */
+ blkdev_issue_discard(c->bdev, bucket_to_sector(c, r),
+ c->sb.bucket_size, GFP_NOIO, 0);
+ spin_lock(&c->bucket_lock);
+ }
+ return r;
+ }
+
+ long r;
+
+ if (!synchronous ||
+ atomic_read(&c->prio_written)) {
+ c->free_resized = false;
+ fifo_move(&c->btree, &c->btree_inc);
+ fifo_move(&c->free, &c->free_inc);
+
+ if (fifo_empty(&c->free_inc) ||
+ fifo_empty(&c->btree_inc))
+ atomic_set(&c->prio_written, 0);
+ }
+
+ if (synchronous &&
+ (atomic_read(&c->prio_written) ||
+ atomic_read(&c->priority_bio->bi_remaining)))
+ return;
+
+ if (fifo_used(&c->free) < c->free.size / 2 ||
+ fifo_used(&c->btree) < c->btree.size / 2) {
+ while (!fifo_full(&c->btree_inc) &&
+ ((r = pop(btree_prio)) != -1))
+ fifo_push(&c->btree_inc, r);
+
+ while (!fifo_full(&c->free_inc) &&
+ ((r = pop(initial_priority)) != -1))
+ fifo_push(&c->free_inc, r);
+
+ if (c->heap.size * 8 < c->sb.nbuckets)
+ queue_gc(c);
+
+ if (synchronous &&
+ fifo_full(&c->btree_inc) &&
+ fifo_full(&c->free_inc)) {
+ struct bio *bio = save_priorities(c);
+ if (bio && !current->bio_list) {
+ spin_unlock(&c->bucket_lock);
+ submit_bio_list(WRITE, bio);
+ spin_lock(&c->bucket_lock);
+ } else if (bio)
+ schedule_work(&c->priority_work);
+ }
+ }
+}
+
+static void resize_free_buckets(struct cache *c, uint64_t priority)
+{
+ DECLARE_FIFO(long, free) = { 0, 0, 0, NULL };
+ DECLARE_FIFO(long, inc) = { 0, 0, 0, NULL };
+ size_t size = priority == btree_prio
+ ? c->btree.size
+ : c->free.size;
+
+ if (!c->free_resized && size < c->sb.nbuckets >> 7) {
+ spin_unlock(&c->bucket_lock);
+ init_fifo(&free, size * 2, GFP_NOIO);
+ init_fifo(&inc, size * 2, GFP_NOIO);
+ spin_lock(&c->bucket_lock);
+ }
+
+ if (free.data && inc.data) {
+ if (priority == btree_prio &&
+ size == c->btree.size) {
+ fifo_move(&free, &c->btree);
+ fifo_swap(&free, &c->btree);
+
+ fifo_move(&inc, &c->btree_inc);
+ fifo_swap(&inc, &c->btree_inc);
+ } else if (priority != btree_prio &&
+ size == c->free.size) {
+ fifo_move(&free, &c->free);
+ fifo_swap(&free, &c->free);
+
+ fifo_move(&inc, &c->free_inc);
+ fifo_swap(&inc, &c->free_inc);
+ }
+ c->free_resized = true;
+ }
+ free_fifo(&free);
+ free_fifo(&inc);
+}
+
+static long pop_bucket(struct cache *c, uint16_t priority, struct search *s)
+{
+ long r = -1;
+again:
+ free_some_buckets(c);
+
+ if ((priority == btree_prio)
+ ? fifo_pop(&c->btree, r)
+ : fifo_pop(&c->free, r)) {
+ struct bucket *b = c->buckets + r;
+#ifdef EDEBUG
+ long i;
+ fifo_for_each(i, &c->free)
+ BUG_ON(i == r);
+ fifo_for_each(i, &c->btree)
+ BUG_ON(i == r);
+#endif
+ BUG_ON(atomic_read(&b->pin) != 1);
+ BUG_ON(b->heap != -1);
+ BUG_ON(b->priority != priority);
+ BUG_ON(b->dirty);
+
+ c->garbage[r].mark = priority == btree_prio
+ ? GC_MARK_BTREE
+ : c->sb.bucket_size;
+ return r;
+ }
+
+ pr_debug("no free buckets available for %s, "
+ "pops_pinned %i, in flight %i",
+ priority == btree_prio ? "btree" : "data",
+ c->pops_pinned,
+ atomic_read(&c->priority_bio->bi_remaining));
+
+ resize_free_buckets(c, priority);
+
+ if (s && s->flags & SEARCH_BLOCK) {
+ spin_unlock(&c->bucket_lock);
+ wait_on_search(!atomic_read(&c->priority_bio->bi_remaining),
+ c->bucket_wait, s);
+ spin_lock(&c->bucket_lock);
+ goto again;
+ } else if (s)
+ wait_search(c->bucket_wait, s);
+
+ return -1;
+}
+
+#define run_on_root(write, c, f, ...) \
+({ \
+ int _r = -2; \
+ do { \
+ struct btree *_b = c->root; \
+ bool _w = (write); \
+ rw_lock(_w, _b); \
+ if (_b->offset == c->sb.btree_root && \
+ _w == (write)) \
+ _r = f(_b, __VA_ARGS__); \
+ else \
+ rw_unlock(_w, _b); \
+ cpu_relax(); \
+ } while (_r == -2); \
+ _r; \
+})
+
+#define sorted_set_checks(i, b) \
+({ \
+ bool _cont = true; \
+ if (index(i, b) >= pages_per_bucket(b)) \
+ _cont = false; \
+ else if (rand(i) != rand(data(b))) \
+ _cont = false; \
+ else if (keys(i) > keys_can_fit(i, b)) { \
+ printk(KERN_WARNING "bcache: %s() " \
+ "bad btree header: bucket %lu, page %i, %i keys\n",\
+ __func__, sector_to_bucket((b)->c, (b)->offset), \
+ index(i, b), keys(i)); \
+ keys(i) = 0; \
+ if (i != data(b)) { \
+ _cont = false; \
+ rand(i) = 0; \
+ } \
+ } \
+ _cont; \
+})
+
+#define next_set(i) (keys(i) / keys_per_page + 1)
+
+#define __for_each_sorted_set(_init, start, _i, b) \
+ for (_init = data(b) + start; \
+ sorted_set_checks(_i, b); \
+ _i += next_set(_i))
+
+#define for_each_sorted_set(i, b) \
+ __for_each_sorted_set(i, 0, i, b)
+
+#define for_each_key(b, iter) \
+ __for_each_sorted_set(struct bkey **_i, 0, _i, b) \
+ for (int _j = 1; iter = node(_i, _j), _j < keys(_i) + 1; _j++)
+
+#define __for_good_keys(b, i, iter, start, end) \
+ for (int _j = start; \
+ ({ _j = next_good_key(i, _j, b); iter = node(i, _j); \
+ _j <= end; }); \
+ _j++)
+
+#define for_each_good_key(b, iter) \
+ __for_each_sorted_set(struct bkey **_i, 0, _i, b) \
+ __for_good_keys(b, _i, iter, 1, keys(_i))
+
+#define for_good_keys_after(b, i, iter, _search) \
+ __for_good_keys(b, i, iter, btree_bsearch(i, _search), keys(i))
+
+#define for_each_good_key_after(b, iter, _search) \
+ __for_each_sorted_set(struct bkey **_i, 0, _i, b) \
+ for_good_keys_after(b, _i, iter, _search)
+
+static bool ptr_status(struct btree *b, struct bkey *k, char *buf)
+{
+ sector_t bucket = PTR_OFFSET(k) >> b->c->bucket_size_bits;
+ long r = PTR_OFFSET(k) & ~(~0 << b->c->bucket_size_bits);
+ uint8_t stale = 0;
+
+ *buf = 0;
+ if (!k->key || !PTR_OFFSET(k))
+ strcpy(buf, "bad, null key");
+ if (bucket >= b->c->sb.first_bucket + b->c->sb.nbuckets)
+ strcpy(buf, "bad, offset past end of device");
+ if (bucket < b->c->sb.first_bucket)
+ strcpy(buf, "bad, short offset");
+ if (b->level && (PTR_SIZE(k) || r))
+ strcpy(buf, "bad, nonzero size/offset into bucket");
+ if (PTR_SIZE(k) + r > b->c->sb.bucket_size)
+ strcpy(buf, "bad, length too big");
+ if (!b->level && !PTR_SIZE(k))
+ strcpy(buf, "zeroed key");
+
+ if (!*buf)
+ stale = PTR_BUCKET(b, k)->gen - PTR_GEN(k);
+ if (stale)
+ sprintf(buf, "stale %i", stale);
+ return *buf;
+}
+
+static bool __ptr_bad(struct btree *b, struct bkey *k)
+{
+ sector_t bucket = PTR_OFFSET(k) >> b->c->bucket_size_bits;
+ long r = PTR_OFFSET(k) & ~(~0 << b->c->bucket_size_bits);
+
+ if ((b->level && r) ||
+ (!b->level == !PTR_SIZE(k)) ||
+ bucket < b->c->sb.first_bucket ||
+ bucket >= b->c->sb.first_bucket + b->c->sb.nbuckets ||
+ PTR_SIZE(k) + r > b->c->sb.bucket_size) {
+ if (PTR_SIZE(k)) {
+ char buf[30];
+ ptr_status(b, k, buf);
+ printk(KERN_WARNING "bad key %s: %s\n", pkey(k), buf);
+ }
+ return true;
+ }
+ return false;
+}
+
+static bool ptr_bad(struct btree *b, struct bkey *k)
+{
+ if (!k->key || __ptr_bad(b, k))
+ return true;
+
+ if ((int8_t) (PTR_GEN(k) - PTR_BUCKET(b, k)->gen) < 0) {
+ BUG_ON(PTR_DIRTY(k) && PTR_SIZE(k));
+ return true;
+ }
+
+ if (b->level) {
+ BUG_ON(PTR_BUCKET(b, k)->priority != btree_prio);
+ BUG_ON(PTR_BUCKET(b, k)->heap != -1);
+ } else if (PTR_DIRTY(k)) {
+ BUG_ON(!PTR_BUCKET(b, k)->dirty);
+ BUG_ON(PTR_BUCKET(b, k)->heap != -1);
+ }
+ return false;
+}
+
+static int next_good_key(struct bkey *i[], int j, struct btree *b)
+{
+ while (j <= keys(i) && ptr_bad(b, node(i, j)))
+ j++;
+ return j;
+}
+
+static void dump_bucket_and_panic(struct btree *b)
+{
+ struct bkey *k, *prev = NULL;
+
+ for_each_key(b, k) {
+ char buf[30];
+ int priority = -1;
+ long bucket = sector_to_bucket(b->c, PTR_OFFSET(k));
+
+ if (bucket >= 0 && bucket < b->c->sb.nbuckets)
+ priority = b->c->buckets[bucket].priority;
+
+ if (_j > 1 && prev->key > KEY_START(k))
+ printk(KERN_ERR "Key skipped backwards\n");
+
+ ptr_status(b, k, buf);
+ printk(KERN_ERR
+ "page %i key %i/%i: key %s bucket %li prio %i %s\n",
+ index(_i, b), _j, keys(_i), pkey(k),
+ sector_to_bucket(b->c, PTR_OFFSET(k)), priority, buf);
+ prev = k;
+ }
+ panic("at offset %llu bucket %li",
+ (uint64_t) b->offset, sector_to_bucket(b->c, b->offset));
+}
+
+static void dump_key_and_panic(struct btree *b, struct bkey *i[], int j)
+{
+ sector_t bucket = PTR_OFFSET(node(i, j)) >> b->c->bucket_size_bits;
+ long r = PTR_OFFSET(node(i, j)) & ~(~0 << b->c->bucket_size_bits);
+
+ printk(KERN_ERR "level %i page %i key %i/%i: %s "
+ "bucket %llu offset %li into bucket\n",
+ b->level, index(i, b), j, keys(i), pkey(node(i, j)),
+ (uint64_t) bucket, r);
+ dump_bucket_and_panic(b);
+}
+
+#ifdef EDEBUG
+
+static void check_bio(struct bio *bio)
+{
+ int i, size = 0;
+ struct bio_vec *bv;
+ struct request_queue *q = bdev_get_queue(bio->bi_bdev);
+ BUG_ON(!bio->bi_vcnt);
+ BUG_ON(!bio->bi_size);
+
+ bio_for_each_segment(bv, bio, i)
+ size += bv->bv_len;
+
+ BUG_ON(size != bio->bi_size);
+ BUG_ON(size > queue_max_sectors(q) << 9);
+
+ blk_recount_segments(q, bio);
+ BUG_ON(bio->bi_phys_segments > queue_max_segments(q));
+}
+
+static int count_data(struct btree *b)
+{
+ int ret = 0;
+ struct bkey *k;
+
+ for_each_good_key(b, k)
+ ret += PTR_SIZE(k);
+ return ret;
+}
+
+#define DUMP_KEY_BUG_ON(condition, b, i, j, ...) do { \
+ if (condition) { \
+ printk(KERN_ERR __VA_ARGS__); \
+ dump_key_and_panic(b, i, j); \
+ } \
+} while (0)
+
+static void check_key_order(struct btree *b, struct bkey *i[])
+{
+ for (int j = 2; j <= keys(i); j++)
+ if (node(i, j - 1)->key > KEY_START(node(i, j)))
+ dump_bucket_and_panic(b);
+}
+
+static void check_overlapping_keys(struct btree *b, struct bkey *i[])
+{
+ struct bkey **c;
+ check_key_order(b, i);
+
+ for (int m = 1; m < keys(i); m++)
+ for_each_sorted_set(c, b) {
+ if (c >= i)
+ break;
+
+ for (int j = 1; j < keys(c); j++)
+ if (PTR_SIZE(node(c, j)) &&
+ PTR_SIZE(node(i, m)) &&
+ ((node(i, m)->key >= node(c, j)->key &&
+ KEY_START(node(i, m)) < node(c, j)->key)
+ || (node(c, j)->key >= node(i, m)->key &&
+ KEY_START(node(c, j)) < node(i, m)->key)))
+ dump_key_and_panic(b, i, j);
+ }
+}
+
+#define atomic_dec_bug(i) BUG_ON(atomic_dec_return(i) < 0)
+
+#else /* EDEBUG */
+
+static void check_bio(struct bio *bio)
+{ }
+
+#define count_data(b) 0
+#define check_overlapping_keys(b, i) do {} while (0)
+#define check_overlapping_key(b, k) do {} while (0)
+#define DUMP_KEY_BUG_ON(condition, b, i, j, ...) BUG_ON(condition)
+#define check_key_order(b, i) do {} while (0)
+#define atomic_dec_bug(i) atomic_dec(i)
+
+#endif
+
+static bool should_split(struct btree *b, struct bkey *i[])
+{
+ return index(i, b) >= pages_per_bucket(b) ||
+ (rand(i) == rand(data(b)) &&
+ keys(i) + 3 > keys_can_fit(i, b));
+}
+
+static void free_bucket_contents(struct btree *b, bool alive)
+{
+ BUG_ON(b->wait || b->write);
+ b->written = 0;
+
+ if (!b->pages[0])
+ return;
+#if 0
+ if (!alive) {
+ struct address_space *mapping = b->pages[0]->mapping;
+
+ spin_lock_irq(&mapping->tree_lock);
+ for (int i = 0; i < pages_per_bucket(b); i++)
+ __remove_from_page_cache(b->pages[i]);
+ spin_unlock_irq(&mapping->tree_lock);
+ }
+#endif
+ for (int i = 0; i < pages_per_bucket(b); i++) {
+ if (alive)
+ mark_page_accessed(b->pages[i]);
+
+ put_page(b->pages[i]);
+ b->pages[i] = NULL;
+ b->pages[i + pages_per_bucket(b)] = NULL;
+ }
+}
+
+static void fill_bucket_work(struct work_struct *w)
+{
+ struct btree *b = container_of(w, struct btree, fill);
+ struct bkey **i;
+ int sets = 0, ms;
+
+ for_each_sorted_set(i, b)
+ check_key_order(b, i);
+
+ for_each_sorted_set(i, b) {
+ if (keys(i))
+ sets++;
+
+ if (i != data(b))
+ for (int j = 1; j <= keys(i); j++)
+ fixup_old_keys(b, node(i, j), INSERT_FILL);
+
+ b->written = index(i, b);
+ }
+ b->written = index(i, b);
+
+ for_each_sorted_set(i, b)
+ check_key_order(b, i);
+
+ for (i = data(b) + b->written; index(i, b) < pages_per_bucket(b); i++)
+ BUG_ON(rand(i) == rand(data(b)));
+
+ if (sets > 5)
+ btree_clean(b, data(b), 0);
+
+ ms = jiffies_to_msecs(jiffies - b->jiffies);
+ if (ms > 1000)
+ printk(KERN_WARNING "bcache: fill_bucket took %i ms", ms);
+
+ smp_wmb(); /* b->nread is our write lock */
+ atomic_set(&b->nread, pages_per_bucket(b));
+ run_wait_list(1, b->wait);
+}
+
+static void fill_bucket_endio(struct bio *bio, int error)
+{
+ /* XXX: flag error here
+ */
+ struct btree *b = bio->bi_private;
+
+ BUG_ON(error);
+
+ bio_put(bio);
+ BUG_ON(!schedule_work(&b->fill));
+}
+
+static int fill_bucket(struct btree *b, struct search **s)
+{
+ struct cache *c = b->c;
+ int i, nread = 0;
+
+ /*nread = find_get_pages(c->bdev->bd_inode->i_mapping,
+ (b->offset >> (PAGE_SHIFT - 9)),
+ pages_per_bucket(b), b->pages);*/
+
+ for (i = 0; i < pages_per_bucket(b); i++) {
+ b->pages[i] = find_get_page(c->bdev->bd_inode->i_mapping,
+ b->offset / PAGE_SECTORS + i);
+
+ if (!b->pages[i]) {
+ b->pages[i] = __page_cache_alloc(GFP_NOIO);
+ b->pages[i]->mapping = c->bdev->bd_inode->i_mapping;
+ if (add_to_page_cache_lru(b->pages[i],
+ c->bdev->bd_inode->i_mapping,
+ b->offset / PAGE_SECTORS + i,
+ GFP_NOIO)) {
+ /* This code path should never happen anymore
+ * since fill_bucket is now called with write
+ * lock held on bucket
+ */
+ WARN(1, "fill_bucket race");
+ page_cache_release(b->pages[i]);
+ goto err;
+ }
+
+ unlock_page(b->pages[i]);
+ } else
+ nread++;
+
+ data(b)[i] = page_address(b->pages[i]);
+ BUG_ON(b->offset + i * PAGE_SECTORS
+ != page_index(b->pages[i]) * PAGE_SECTORS);
+ }
+
+ if (nread != pages_per_bucket(b)) {
+ struct bio_vec *bv;
+ struct bio *bio = bio_kmalloc(GFP_NOIO, pages_per_bucket(b));
+ if (!bio)
+ goto err;
+
+ b->jiffies = jiffies;
+ bio->bi_sector = b->offset;
+ bio->bi_bdev = c->bdev;
+ bio->bi_vcnt = pages_per_bucket(b);
+ bio->bi_size = pages_per_bucket(b) * PAGE_SIZE;
+ bio->bi_private = b;
+ bio->bi_end_io = fill_bucket_endio;
+
+ bio_for_each_segment(bv, bio, i) {
+ bv->bv_page = b->pages[i];
+ bv->bv_len = PAGE_SIZE;
+ bv->bv_offset = 0;
+ }
+
+ submit_bio_list(READ_SYNC|BIO_RW_META, bio);
+ } else {
+ struct bkey **j;
+ for_each_sorted_set(j, b)
+ check_key_order(b, j);
+ b->written = index(j, b);
+
+ atomic_set(&b->nread, nread);
+ }
+
+ return 0;
+err:
+ /* XXX: flag error on this bucket here */
+ return -1;
+}
+
+static void btree_write_endio(struct bio *bio, int error)
+{
+ int n, ms;
+ struct btree_write *w = bio->bi_private;
+ struct bio_vec *bv;
+
+ ms = jiffies_to_msecs(jiffies - w->wait_time);
+ if (w->wait_time && ms > latency_warn_ms && printk_ratelimit())
+ printk(KERN_DEBUG "bcache: btree write finished in %i ms\n", ms);
+
+ BUG_ON(error);
+ run_wait_list(1, w->wait);
+
+ __bio_for_each_segment(bv, bio, n, 0)
+ put_page(bv->bv_page);
+
+ if (w->b) {
+ long delay = w->b->expires - jiffies;
+ atomic_set(&w->b->writes_outstanding, 0);
+ if (w->b->write)
+ queue_delayed_work(delayed, &w->b->w,
+ delay > 0 ? delay : 0);
+ }
+ kfree(w);
+}
+
+static struct bio *__btree_write(struct btree *b)
+{
+ int n, ms, keys = 0;
+ struct bio *bio;
+ struct bio_vec *bv;
+ struct btree_write *w = xchg(&b->write, NULL);
+
+ if (!w) {
+ /* We raced, first saw b->write before the write was
+ * started, but the write has already completed.
+ */
+ atomic_set(&b->writes_outstanding, 0);
+ return NULL;
+ }
+
+ __cancel_delayed_work(&b->w);
+ ms = jiffies_to_msecs(jiffies - w->wait_time);
+ if (w->wait_time && ms > latency_warn_ms && printk_ratelimit())
+ printk(KERN_DEBUG "bcache: btree write was waiting for "
+ "%pf for %i ms before started\n",
+ __builtin_return_address(0), ms);
+ w->wait_time = jiffies;
+
+ check_key_order(b, data(b) + b->written);
+ bio = &w->bio;
+
+ pr_debug("bucket %li level %i pages %i-%i %i keys",
+ sector_to_bucket(b->c, b->offset), b->level,
+ bio->bi_idx, bio->bi_vcnt, keys(data(b) + b->written));
+
+ bio_for_each_segment(bv, bio, n)
+ memcpy(page_address(bv->bv_page),
+ b->pages[n + b->written], PAGE_SIZE);
+
+ __for_each_sorted_set(struct bkey **i, b->written, i, b)
+ keys += keys(i);
+
+ if (b->written) {
+ percpu_inc(btree_write_count);
+ percpu_add(keys_write_count, keys);
+ }
+
+ n = bio->bi_vcnt - bio->bi_idx;
+ b->c->btree_sectors_written += n * PAGE_SECTORS;
+ b->written += n;
+
+ return bio;
+}
+
+static void btree_write_work(struct work_struct *w)
+{
+ struct btree *b = container_of(to_delayed_work(w), struct btree, w);
+ int ms;
+
+ if (!down_read_trylock(&b->lock))
+ return;
+
+ if (!b->write)
+ goto out;
+
+ if (time_before(jiffies, b->expires)) {
+ queue_delayed_work(delayed, &b->w, b->expires - jiffies);
+ goto out;
+ }
+
+ ms = jiffies_to_msecs(jiffies - b->expires);
+ if (ms > latency_warn_ms && printk_ratelimit())
+ printk(KERN_DEBUG
+ "bcache: btree_write_work was waiting for %i ms\n", ms);
+
+ if (!atomic_xchg(&b->writes_outstanding, 1))
+ submit_bio_list(WRITE, __btree_write(b));
+out:
+ up_read(&b->lock);
+}
+
+static void btree_write(struct btree *b, int skip, struct search *s)
+{
+ /* XXX: make when an explicit parameter, get rid of skip? */
+ int j, n = 0, when = s && s->delay ? s->delay : 0;
+ struct bio_vec *bv;
+ struct bio *bio;
+
+ BUG_ON(!b->pages[0]);
+ BUG_ON(b->written == pages_per_bucket(b) && b->write);
+
+ if (skip == -1 ||
+ (keys(&data(b)[skip]) + 1) % keys_per_page == 0)
+ when = 0;
+
+ __for_each_sorted_set(struct bkey **i, b->written, i, b)
+ n = index(i, b) + next_set(i);
+
+ if (!n)
+ return;
+
+ if (!b->write) {
+ b->write = kzalloc(sizeof(struct btree_write) +
+ sizeof(struct bio_vec) *
+ pages_per_bucket(b) * 2, GFP_NOIO);
+ if (!b->write)
+ goto err;
+
+ b->expires = jiffies + msecs_to_jiffies(30000);
+ b->write->b = b;
+
+ bio = &b->write->bio;
+ bio_init(bio);
+
+ bio->bi_sector = b->offset + b->written * PAGE_SECTORS;
+ bio->bi_bdev = b->c->bdev;
+ bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
+ bio->bi_rw = WRITE_SYNC|BIO_RW_META;
+
+ bio->bi_idx = pages_per_bucket(b);
+ bio->bi_max_vecs = pages_per_bucket(b) * 2;
+ bio->bi_io_vec = bio->bi_inline_vecs;
+
+ bio->bi_end_io = btree_write_endio;
+ bio->bi_private = b->write;
+
+ if (b->level)
+ bio->bi_rw |= (1 << BIO_RW_BARRIER);
+
+ for (j = 0; j < pages_per_bucket(b); j++) {
+ get_page(b->pages[j]);
+ bio->bi_io_vec[j].bv_page = b->pages[j];
+ bio->bi_io_vec[j].bv_len = PAGE_SIZE;
+ bio->bi_io_vec[j].bv_offset = 0;
+ }
+
+ for (; j < pages_per_bucket(b) * 2; j++) {
+ bio->bi_io_vec[j].bv_page = NULL;
+ bio->bi_io_vec[j].bv_len = PAGE_SIZE;
+ bio->bi_io_vec[j].bv_offset = 0;
+ }
+ }
+
+ b->write->bio.bi_vcnt = pages_per_bucket(b) + n - b->written;
+ b->write->bio.bi_size = PAGE_SIZE * (n - b->written);
+
+ bio_for_each_segment(bv, &b->write->bio, n)
+ if (!bv->bv_page)
+ bv->bv_page = alloc_page(GFP_NOIO);
+
+ bio_for_each_segment(bv, &b->write->bio, n)
+ if (!bv->bv_page)
+ goto err;
+
+ if ((when > 0 && !synchronous) || when == -1)
+ return;
+
+ if (!b->write->wait_time)
+ b->write->wait_time = jiffies;
+
+ when = msecs_to_jiffies(when);
+ if (time_before(jiffies + when, b->expires))
+ b->expires = jiffies + when;
+
+ if (when > 0)
+ wait_search(b->write->wait, s->parent);
+
+ if (!when &&
+ !atomic_xchg(&b->writes_outstanding, 1))
+ submit_bio_list(WRITE, __btree_write(b));
+ else if (timer_pending(&b->w.timer))
+ mod_timer_pending(&b->w.timer, b->expires);
+ else
+ queue_delayed_work(delayed, &b->w, when);
+ return;
+err:
+ BUG();
+}
+
+static struct btree *alloc_bucket(struct cache *c, struct btree **n, int level,
+ sector_t offset, int count)
+{
+ struct btree *b;
+ struct bio *bio = NULL;
+
+ list_for_each_entry_reverse(b, &c->lru, lru)
+ if (count-- < c->btree_buckets_cached)
+ break;
+ else if (atomic_read(&b->nread) == pages_per_btree &&
+ down_write_trylock(&b->lock)) {
+ smp_rmb();
+ if (atomic_read(&b->writes_outstanding)) {
+ up_write(&b->lock);
+ continue;
+ }
+ BUG_ON(b->wait);
+ list_del(&b->lru);
+ goto found;
+ }
+
+ if (n && *n)
+ b = *n, *n = NULL;
+ else {
+ spin_unlock(&c->bucket_lock);
+ b = kzalloc(sizeof(*b) + sizeof(void *) *
+ pages_per_btree * 2, GFP_NOIO);
+ if (!b)
+ return ERR_PTR(-ENOMEM);
+
+ init_rwsem(&b->lock);
+ INIT_WORK(&b->fill, fill_bucket_work);
+ INIT_DELAYED_WORK(&b->w, btree_write_work);
+ b->c = c;
+
+ if (n) {
+ *n = b;
+ return NULL;
+ }
+ spin_lock(&c->bucket_lock);
+ }
+ BUG_ON(!down_write_trylock(&b->lock));
+found:
+ if (b->write) {
+ b->write->b = NULL;
+ bio = __btree_write(b);
+ }
+
+ if (b->pages[0])
+ __for_each_sorted_set(struct bkey **i, b->written, i, b)
+ BUG();
+
+ b->offset = offset;
+ b->level = level;
+
+ list_add(&b->lru, &c->lru);
+
+ atomic_set(&b->nread, 0);
+ free_bucket_contents(b, true);
+ spin_unlock(&c->bucket_lock);
+
+ submit_bio_list(WRITE, bio);
+
+ return b;
+}
+
+static struct btree *__get_bucket(struct cache *c, sector_t offset, int level,
+ bool write, struct search **s)
+{
+ int i;
+ struct btree *b, *n = NULL;
+retry:
+ if (bucket(c, offset)->priority != btree_prio)
+ goto freed;
+
+ i = 0;
+ spin_lock(&c->bucket_lock);
+ list_for_each_entry(b, &c->lru, lru) {
+ if (offset == b->offset) {
+ list_move(&b->lru, &c->lru);
+ spin_unlock(&c->bucket_lock);
+
+ rw_lock(write, b);
+
+ if (offset == b->offset)
+ goto out;
+
+ rw_unlock(write, b);
+ goto retry;
+ }
+ i++;
+ }
+
+ b = alloc_bucket(c, &n, level, offset, i);
+ if (!b)
+ goto retry;
+ if (IS_ERR(b))
+ goto err;
+
+ if (fill_bucket(b, s)) {
+ /* pages don't point to the right place */
+ free_bucket_contents(b, false);
+ rw_unlock(true, b);
+ run_wait_list(1, b->wait);
+ goto err;
+ }
+
+ if (!write)
+ downgrade_write(&b->lock);
+out:
+ if (IS_ERR(wait_on_search(atomic_read(&b->nread) == pages_per_bucket(b),
+ b->wait, *s))) {
+ rw_unlock(write, b);
+ goto err;
+ }
+
+ if (bucket(c, offset)->priority == btree_prio) {
+ BUG_ON(bucket(c, offset)->heap != -1);
+ if (atomic_read(&b->nread) != pages_per_bucket(b)) {
+ rw_unlock(write, b);
+ b = ERR_PTR(-EAGAIN);
+ }
+ goto real_out;
+ }
+
+ rw_unlock(write, b);
+freed:
+ pr_debug("bucket %llu has been freed, gen %i, called from %pf",
+ (uint64_t) offset, bucket(c, offset)->gen,
+ __builtin_return_address(1));
+ b = NULL;
+ goto real_out;
+err:
+ printk(KERN_WARNING "bcache: error allocating memory\n");
+ b = ERR_PTR(-ENOMEM);
+real_out:
+ kfree(n);
+ return b;
+}
+
+static struct btree *get_bucket(struct btree *b, struct bkey *k,
+ bool write, struct search **s)
+{
+ struct btree *r;
+ BUG_ON(!b->level);
+ r = __get_bucket(b->c, PTR_OFFSET(k), b->level - 1, write, s);
+ if (!IS_ERR_OR_NULL(r)) {
+ if (ptr_bad(b, k)) {
+ pr_debug("pointer now bad");
+ rw_unlock(write, r);
+ return NULL;
+ }
+
+ BUG_ON(r->level + 1 != b->level);
+ }
+ return r;
+}
+
+static void btree_free(struct btree *b)
+{
+ struct cache *c = b->c;
+ long n = sector_to_bucket(c, b->offset);
+ BUG_ON(n < 0 || n > c->sb.nbuckets);
+ BUG_ON(c->buckets[n].priority != btree_prio);
+ BUG_ON(b == c->root);
+
+ pr_debug("bucket %li gen %i sector %llu", n,
+ c->buckets[n].gen, (uint64_t) b->offset);
+
+ spin_lock(&c->bucket_lock);
+ __inc_bucket_gen(c, n);
+
+ /* This isn't correct, the caller needs to add the wait list
+ * to the wait list for the new bucket's write.
+ */
+ if (b->write) {
+ run_wait_list(1, b->write->wait);
+ kfree(b->write);
+ b->write = NULL;
+ }
+
+ //if (!fifo_push(&c->btree, n))
+ {
+ c->buckets[n].priority = 0;
+ c->garbage[n].mark = 0;
+ bucket_add_heap(c, n);
+ }
+
+ free_bucket_contents(b, false);
+
+ if (list_empty(&b->lru))
+ list_add_tail(&b->lru, &c->lru);
+
+ spin_unlock(&c->bucket_lock);
+ run_wait_list(1, b->wait);
+
+ if (b->written && b->c->discard)
+ blkdev_issue_discard(c->bdev, b->offset,
+ c->sb.bucket_size, GFP_NOIO, 0);
+}
+
+static struct btree *btree_alloc(struct cache *c, int level, struct search *s)
+{
+ long i = 0, bucket;
+ struct btree *b = NULL;
+ const char *err = "unable to alloc bucket";
+
+ spin_lock(&c->bucket_lock);
+ bucket = pop_bucket(c, btree_prio, s);
+ if (bucket == -1) {
+ spin_unlock(&c->bucket_lock);
+ return ERR_PTR(-EAGAIN);
+ }
+ BUG_ON(c->buckets[bucket].priority != btree_prio);
+
+ list_for_each_entry(b, &c->lru, lru)
+ i++;
+
+ b = alloc_bucket(c, NULL, level, bucket_to_sector(c, bucket), i);
+ if (IS_ERR_OR_NULL(b))
+ goto err;
+ BUG_ON(b->written);
+
+ err = "error adding new pages";
+ for (i = 0; i < pages_per_btree; i++) {
+ b->pages[i] = find_or_create_page(c->bdev->bd_inode->i_mapping,
+ b->offset / PAGE_SECTORS + i,
+ GFP_NOIO);
+ if (!b->pages[i])
+ goto err;
+
+ unlock_page(b->pages[i]);
+ b->pages[i + pages_per_btree] = page_address(b->pages[i]);
+
+ BUG_ON(b->offset / PAGE_SECTORS + i != page_index(b->pages[i]));
+ }
+
+ atomic_set(&b->nread, pages_per_btree);
+
+ get_random_bytes(&rand(data(b)), sizeof(uint64_t));
+ keys(data(b)) = 0;
+
+ pr_debug("bucket %li gen %i sector %llu for %pf",
+ bucket, c->buckets[bucket].gen, (uint64_t) b->offset,
+ __builtin_return_address(0));
+
+ return b;
+err:
+ printk(KERN_WARNING "bcache: btree_alloc: %s\n", err);
+ if (!IS_ERR_OR_NULL(b)) {
+ btree_free(b);
+ up_write(&b->lock);
+ } else {
+ spin_lock(&c->bucket_lock);
+ //if (!fifo_push(&c->btree, bucket))
+ {
+ c->buckets[bucket].priority = 0;
+ c->garbage[bucket].mark = 0;
+ bucket_add_heap(c, bucket);
+ }
+ spin_unlock(&c->bucket_lock);
+ }
+ atomic_dec_bug(&c->buckets[bucket].pin);
+ return NULL;
+}
+
+static void set_new_root(struct btree *b, struct search *s, bool nowrite)
+{
+ struct bio *bio = NULL;
+ struct cache *c = b->c;
+ BUG_ON(bucket(c, b->offset)->priority != btree_prio);
+ BUG_ON(!rand(data(b)));
+
+ spin_lock(&c->bucket_lock);
+ list_del_init(&b->lru);
+ c->sb.btree_level = b->level;
+ c->sb.btree_root = b->offset;
+ c->root = b;
+ atomic_dec_bug(&bucket(c, c->root->offset)->pin);
+
+ if (!nowrite)
+ bio = write_super(c, s);
+ spin_unlock(&c->bucket_lock);
+ submit_bio_list(WRITE, bio);
+
+ pr_debug("new root %lli called from %pf", c->sb.btree_root,
+ __builtin_return_address(0));
+}
+
+static void cache_hit(struct cache *c, struct bio *list)
+{
+ long b;
+ struct bio *bio;
+
+ if (!list)
+ return;
+
+ spin_lock(&c->bucket_lock);
+ for (bio = list; bio; bio = bio->bi_next) {
+ bio->bi_bdev = c->bdev;
+ if (bio->bi_next)
+ bio->bi_rw &= ~(1 << BIO_RW_UNPLUG);
+
+ b = sector_to_bucket(c, bio->bi_sector);
+ BUG_ON(c->buckets[b].priority == btree_prio);
+ c->buckets[b].priority = (long) initial_priority;
+ /* * (cache_hit_seek + cache_hit_priority
+ * bio_sectors(bio) / c->sb.bucket_size)
+ / (cache_hit_seek + cache_hit_priority);*/
+#if 0
+ if (c->buckets[b].heap != -1)
+ bucket_add_heap(c, b);
+#endif
+ c->rescale -= bio_sectors(bio);
+ c->cache_hits++;
+ cache_hits++;
+ }
+ spin_unlock(&c->bucket_lock);
+
+ while (list) {
+ sector_t s = list->bi_sector;
+ bio = list;
+ list = bio->bi_next;
+ bio->bi_next = NULL;
+
+ __generic_make_request(bio);
+ smp_mb__before_atomic_dec();
+ atomic_dec_bug(&bucket(c, s)->pin);
+ }
+
+ if (c->rescale < 0)
+ rescale_heap(c, 0);
+}
+
+static int btree_bsearch(struct bkey *i[], uint64_t search)
+{
+ /* Returns the smallest key greater than the search key.
+ * This is because we index by the end, not the beginning
+ */
+ int l = 1, r = keys(i) + 1;
+
+ while (l < r) {
+ int m = (l + r) >> 1;
+ if (node(i, m)->key > search)
+ r = m;
+ else
+ l = m + 1;
+ }
+
+ return l;
+}
+
+static int btree_search(struct btree *b, int dev, struct bio_list *hits,
+ uint64_t after, struct search *s)
+{
+ int ret = -1;
+ struct bkey *k, **i, **reverse;
+ struct bio *bio, *split;
+ struct bio_list done = { NULL, NULL };
+
+ for_each_sorted_set(reverse, b)
+ ;
+ do {
+ for (i = data(b);
+ i + next_set(i) < reverse;
+ i += next_set(i))
+ ;
+ reverse = i;
+
+ bio_list_init(&done);
+ while ((bio = bio_list_pop(&s->misses))) {
+ uint64_t search = TREE_KEY(dev, bio->bi_sector);
+ uint64_t a = max(after, search);
+
+ if (search + bio_sectors(bio) <= after) {
+ bio_list_add(&done, bio);
+ continue;
+ }
+
+ for_good_keys_after(b, i, k, a) {
+ int len = max(KEY_START(k), a) - search;
+ if (k->key <= a)
+ continue;
+
+ if (search + bio_sectors(bio) <= KEY_START(k))
+ break;
+
+ if (len > 0) {
+ split = bio_split_front(bio, len, NULL);
+ if (!split)
+ goto err;
+ bio_list_add(&done, split);
+ search = TREE_KEY(dev, bio->bi_sector);
+ }
+
+ pr_debug("page %i: key %s",
+ index(i, b), pkey(k));
+
+ atomic_inc(&PTR_BUCKET(b, k)->pin);
+ smp_mb__after_atomic_inc();
+
+ if (PTR_BUCKET(b, k)->gen != PTR_GEN(k)) {
+ atomic_dec_bug(&PTR_BUCKET(b, k)->pin);
+ continue;
+ }
+
+ DUMP_KEY_BUG_ON(PTR_BUCKET(b, k)->priority ==
+ btree_prio, b, i, _j);
+
+ split = bio_split_front(bio, k->key - search,
+ NULL);
+ if (!split) {
+ atomic_dec_bug(&PTR_BUCKET(b, k)->pin);
+ goto err;
+ }
+
+ split->bi_sector += PTR_SIZE(k)
+ - KEY_OFFSET(k) + PTR_OFFSET(k);
+
+ bio_list_add(hits, split);
+
+ pr_debug("cache hit of %i sectors from %llu, "
+ "need %i sectors", bio_sectors(split),
+ (uint64_t) split->bi_sector,
+ split == bio ? 0 : bio_sectors(bio));
+
+ if (split == bio)
+ goto next;
+ a = search = TREE_KEY(dev, bio->bi_sector);
+ }
+ bio_list_add(&done, bio);
+next: bio = bio;
+ }
+ swap(s->misses, done);
+ } while (i != data(b));
+
+ label(err, ret = -1);
+ rw_unlock(false, b);
+
+ while ((bio = bio_list_pop(&done)))
+ bio_list_add(&s->misses, bio);
+
+ return ret;
+}
+
+static int btree_search_recurse(struct btree *b, int dev, struct bio_list *hits,
+ uint64_t after, struct search *s)
+{
+ int ret = -1;
+
+ if (!b->level)
+ return btree_search(b, dev, hits, after, s);
+
+ do {
+ struct btree *r;
+ struct bkey *k, recurse = { .key = ~0, .ptr = 0 };
+ struct bio *bio = bio_list_peek(&s->misses);
+ uint64_t search = max(after, TREE_KEY(dev, bio->bi_sector));
+
+ pr_debug("level %i bucket %li searching for %llu",
+ b->level, sector_to_bucket(b->c, b->offset), search);
+
+ for_each_good_key_after(b, k, search) {
+ if (recurse.key > k->key)
+ recurse = *k;
+ break;
+ }
+
+ if (recurse.key == ~0)
+ break;
+
+ r = get_bucket(b, &recurse, false, &s);
+ if (r == ERR_PTR(-EAGAIN))
+ goto again;
+ if (!r)
+ goto retry;
+ if (IS_ERR_OR_NULL(r))
+ goto err;
+
+ if (recurse.key >= search + bio_sectors(bio)) {
+ rw_unlock(false, b);
+ b = NULL;
+ }
+
+ ret = max(ret, btree_search_recurse(r, dev, hits, after, s));
+ after = recurse.key;
+ } while (b);
+
+ label(retry, ret = -2);
+ label(err, ret = -1);
+ label(again, ret = 0);
+ if (b)
+ rw_unlock(false, b);
+ return ret;
+}
+
+static void btree_sort(struct bkey **d, size_t num)
+{
+ size_t i;
+
+ inline int64_t cmp(struct bkey *l, struct bkey *r)
+ {
+ return l->key == r->key
+ ? !PTR_SIZE(l) - !PTR_SIZE(r)
+ : l->key - r->key;
+ }
+
+ inline void sift(size_t r, size_t n)
+ {
+ int c = r * 2;
+ for (; c <= n; r = c, c *= 2) {
+ if (c < n &&
+ cmp(node(d, c), node(d, c + 1)) < 0)
+ c++;
+ if (cmp(node(d, c), node(d, r)) < 0)
+ break;
+ swap(*node(d, r), *node(d, c));
+ }
+ }
+
+ for (i = num / 2 + 1; i > 0; --i)
+ sift(i, num);
+
+ for (i = num; i > 1; sift(1, --i))
+ swap(*node(d, 1), *node(d, i));
+}
+
+static void btree_clean(struct btree *b, struct bkey **start, uint64_t smallest)
+{
+ size_t j, n, orig = 0;
+ struct bkey **i;
+ int oldsize, newsize;
+ uint64_t biggest = 0;
+
+ bool bad(struct bkey *k)
+ {
+ if (b->written)
+ return __ptr_bad(b, k);
+
+ if (smallest >= k->key)
+ return true;
+
+ if (smallest > KEY_START(k))
+ do_fixup(true, smallest, k);
+
+ return ptr_bad(b, k);
+ }
+
+ BUG_ON(b->written && smallest);
+ if (b->level)
+ smallest = 0;
+
+ oldsize = count_data(b);
+
+ for (j = 0; j < b->written; j++)
+ if (PageChecked(b->pages[j]))
+ return;
+
+ for (i = start;
+ sorted_set_checks(i, b);
+ i += (n / keys_per_page) + 1) {
+ if (b->written && index(i, b) >= b->written)
+ break;
+
+ biggest = max(biggest, last_key(i));
+
+ orig += n = keys(i);
+
+ if (i == start)
+ for (j = 1; j <= keys(i); j++)
+ while ((bad(node(i, j))) && j <= --keys(i))
+ *node(i, j) = *node(i, keys(i) + 1);
+ else
+ for (j = 1; j < n + 1; j++)
+ if (!bad(node(i, j)))
+ *node(start, ++keys(start)) =
+ *node(i, j);
+ }
+
+ btree_sort(start, keys(start));
+
+ if (b->written)
+ for (i = start + next_set(start);
+ index(i, b) < b->written;
+ i++) {
+ rand(i) = rand(start);
+ keys(i) = 0;
+ }
+ else
+ get_random_bytes(&rand(data(b)), sizeof(uint64_t));
+
+ newsize = count_data(b);
+ if (newsize < oldsize)
+ pr_debug("was %i now %i, smallest %llu, biggest %llu",
+ oldsize, newsize, smallest, biggest);
+
+ check_key_order(b, data(b));
+ pr_debug("merged %i keys from %zu keys",
+ keys(data(b)), orig);
+}
+
+static int btree_gc_recurse(struct btree *b, struct bkey *root,
+ uint64_t smallest, struct search *s)
+{
+ int ret = 0, nkeys = 0;
+ long bucket;
+ struct bkey *k;
+ struct btree *n = NULL, *r;
+ struct bucket_gc *g;
+
+ for_each_key(b, k)
+ if (!__ptr_bad(b, k)) {
+ int8_t g = PTR_BUCKET(b, k)->gen - PTR_GEN(k);
+ if (g > 0)
+ ret = max_t(int, ret, g);
+ nkeys++;
+ }
+
+ if (b->written &&
+ (b->level || ret > 10) &&
+ (n = btree_alloc(b->c, b->level, s))) {
+ for (int j = 0; j < pages_per_bucket(b); j++)
+ memcpy(data(n)[j], data(b)[j], PAGE_SIZE);
+ swap(b, n);
+ }
+
+ if (!b->written) {
+ btree_clean(b, data(b), smallest);
+ ret = 0;
+ } else if (b->level)
+ goto err;
+
+ if (b->level) {
+ int j, need_gc;
+ struct bkey **i = data(b);
+ for (j = keys(i); j; j--) {
+ bucket = sector_to_bucket(b->c, PTR_OFFSET(node(i, j)));
+ g = &b->c->garbage[bucket];
+
+ if (ptr_bad(b, node(i, j)))
+ continue;
+
+ r = get_bucket(b, node(i, j), true, &s);
+ if (IS_ERR_OR_NULL(r))
+ goto err;
+
+ need_gc = btree_gc_recurse(r, node(i, j), j > 1
+ ? node(i, j - 1)->key
+ : 0, s);
+
+ if (need_gc < 0)
+ goto err;
+
+ ret = max(ret, need_gc);
+ spin_lock(&b->c->bucket_lock);
+ g->mark = GC_MARK_BTREE;
+ spin_unlock(&b->c->bucket_lock);
+ }
+
+ btree_clean(b, data(b), 0);
+ } else {
+ spin_lock(&b->c->bucket_lock);
+ for_each_good_key(b, k) {
+ bucket = sector_to_bucket(b->c, PTR_OFFSET(k));
+ g = &b->c->garbage[bucket];
+
+ if (PTR_DIRTY(k))
+ g->mark = GC_MARK_DIRTY;
+ else if (g->mark != GC_MARK_DIRTY &&
+ (short) (g->mark + PTR_SIZE(k)) > 0)
+ g->mark += PTR_SIZE(k);
+ }
+ spin_unlock(&b->c->bucket_lock);
+ }
+
+ label(err, ret = -1);
+
+ if (keys(data(b)) || b->written || b->c->sb.btree_level == b->level) {
+ btree_write(b, -1, NULL);
+ root->ptr = bucket_to_ptr(b);
+ } else {
+ btree_free(b);
+ root->ptr = 0;
+ }
+
+ if (n) {
+ if (b->c->sb.btree_level == b->level) {
+ BUG_ON(n != b->c->root);
+ set_new_root(b, NULL, false);
+ } else
+ atomic_dec_bug(&bucket(b->c, b->offset)->pin);
+
+ btree_free(n);
+ rw_unlock(true, n);
+ }
+ rw_unlock(true, b);
+ return ret;
+}
+
+static void btree_gc(struct work_struct *w)
+{
+ unsigned long start = jiffies;
+ long i, freed = 0, pinned = 0;
+ struct bkey root;
+ struct cache *c = container_of(w, struct cache, work);
+ struct search s = blocking_search;
+
+ for (i = 0; i < c->sb.nbuckets; i++)
+ c->garbage[i].gen = c->buckets[i].gen;
+
+ i = run_on_root(true, c, btree_gc_recurse, &root, 0, &s);
+ if (i < 0)
+ goto out;
+
+ spin_lock(&c->bucket_lock);
+ c->need_gc = i;
+ c->garbage[sector_to_bucket(c, c->root->offset)].mark = GC_MARK_BTREE;
+
+ for (i = 0; i < c->sb.nbuckets; i++) {
+ struct bucket *b = c->buckets + i;
+
+ if (!atomic_read(&b->pin)) {
+ int m = c->garbage[i].mark;
+ c->garbage[i].mark = 0;
+
+ if (m != GC_MARK_DIRTY)
+ b->dirty = false;
+
+ if (m >= 0 && m < c->sb.bucket_size / 4)
+ m = 0;
+
+ if (!m && b->priority) {
+ freed++;
+ b->gen++;
+ b->priority = 0;
+ b->f = btree_gc;
+ }
+
+ if (m >= 0)
+ bucket_add_heap(c, i);
+ } else
+ pinned++;
+
+ b->last_gc = c->garbage[i].gen;
+ c->need_gc = max_t(uint8_t, c->need_gc, b->gen - b->last_gc);
+ }
+
+ spin_unlock(&c->bucket_lock);
+ pr_debug("garbage collect done in %u ms, freed %li, %li pinned, new need_gc %i",
+ jiffies_to_msecs(jiffies - start), freed, pinned, c->need_gc);
+out:
+ up(&c->gc_lock);
+}
+
+static void shift_keys(struct bkey *i[], size_t j)
+{
+ for (int k = keys(i)++; k >= j; --k)
+ *node(i, k + 1) = *node(i, k);
+}
+
+static bool do_fixup(bool front, uint64_t where, struct bkey *k)
+{
+ struct bkey old = *k;
+ unsigned len;
+
+ if (front) {
+ if (where <= KEY_START(k))
+ return false;
+
+ BUG_ON(where > k->key);
+
+ len = where - KEY_START(k);
+ k->ptr += TREE_PTR(0, 0, len);
+ } else {
+ if (where >= k->key)
+ return false;
+
+ len = k->key - where;
+ k->key = where;
+ }
+ k->ptr -= TREE_PTR(0, min(len, PTR_SIZE(k)), 0);
+
+ pr_debug("fixing up %s of %s by %i sectors: now %s",
+ front ? "front" : "back", pkey(&old), len, pkey(k));
+ return true;
+}
+
+static bool check_old_keys(struct btree *b, struct bkey *k, int write)
+{
+ bool bad(struct bkey *key)
+ {
+ return ptr_bad(b, key) ||
+ (write == INSERT_UNDIRTY &&
+ key->ptr == (k->ptr | PTR_DIRTY_BIT));
+ }
+
+ int j;
+ struct bkey **i;
+
+ if (b->level ||
+ (write != INSERT_READ &&
+ write != INSERT_UNDIRTY))
+ return false;
+
+ for_each_sorted_set(i, b) {
+ j = btree_bsearch(i, k->key);
+
+ if (j > 1 && j <= keys(i) &&
+ node(i, j - 1)->key > KEY_START(node(i, j)))
+ dump_key_and_panic(b, i, j);
+
+ if (j <= keys(i) && !bad(node(i, j)))
+ do_fixup(false, KEY_START(node(i, j)), k);
+
+ while (--j && node(i, j)->key > KEY_START(k))
+ if (!bad(node(i, j)))
+ do_fixup(true, node(i, j)->key, k);
+ }
+
+ return !PTR_SIZE(k);
+}
+
+static bool fixup_old_keys(struct btree *b, struct bkey *k, int write)
+{
+ bool fixup_and_dirty(bool front, struct bkey *f)
+ {
+ struct bkey old = *f;
+ uint64_t where = k->key;
+
+ if (!front)
+ where -= PTR_SIZE(k);
+
+ if (do_fixup(front, where, f)) {
+ if (write == INSERT_WRITE &&
+ !PTR_DIRTY(k) &&
+ PTR_OFFSET(k) &&
+ PTR_DIRTY(&old) &&
+ !ptr_bad(b, &old))
+ PTR_SET_DIRTY(k);
+
+ return true;
+ }
+ return false;
+ }
+
+ struct bkey **i;
+ bool ret = false;
+
+ if (b->level)
+ return false;
+
+ for_each_sorted_set(i, b) {
+ int j = btree_bsearch(i, k->key);
+
+ if (j <= keys(i)) {
+ if (write != INSERT_FILL &&
+ KEY_START(k) > KEY_START(node(i, j))) {
+ struct bkey **e = data(b) + b->written;
+ if (i != e) {
+ int m = btree_bsearch(e, KEY_START(k));
+ shift_keys(e, m);
+
+ *node(e, m) = *node(i, j);
+ do_fixup(false, KEY_START(k),
+ node(e, m));
+ } else
+ shift_keys(i, j++);
+ }
+
+ if (fixup_and_dirty(true, node(i, j)))
+ ret = true;
+ }
+
+ while (--j && fixup_and_dirty(false, node(i, j)))
+ ret = true;
+
+ check_key_order(b, i);
+ if (index(i, b) == b->written)
+ break;
+ }
+
+ return ret;
+}
+
+static bool btree_merge_key(struct btree *b, struct bkey *i[],
+ size_t *j, struct bkey *k)
+{
+ bool try_merge(struct bkey *l, struct bkey *r)
+ {
+ if (l->key == KEY_START(k) &&
+ PTR_OFFSET(l) + PTR_SIZE(l) == PTR_OFFSET(r) &&
+ PTR_GEN(l) == PTR_GEN(r) &&
+ PTR_DIRTY(l) == PTR_DIRTY(r) &&
+ sector_to_bucket(b->c, PTR_OFFSET(l)) ==
+ sector_to_bucket(b->c, PTR_OFFSET(r))) {
+ l->key += PTR_SIZE(r);
+ l->ptr += TREE_PTR(0, PTR_SIZE(r), 0);
+ *r = *l;
+ return true;
+ }
+ return false;
+ }
+
+ if (*j <= keys(i) &&
+ !b->level &&
+ (ptr_bad(b, node(i, *j)) ||
+ try_merge(k, node(i, *j))))
+ return true;
+
+ if (--(*j)) {
+ if (!b->level &&
+ (ptr_bad(b, node(i, *j)) ||
+ try_merge(node(i, *j), k)))
+ return true;
+
+ if (b->level && k->key &&
+ !ptr_bad(b, node(i, *j)) &&
+ node(i, *j)->ptr == k->ptr) {
+ node(i, *j)->key = max(node(i, *j)->key, k->key);
+ return true;
+ }
+ }
+ (*j)++;
+
+ if (*j <= keys(i) && !b->level && !PTR_SIZE(node(i, *j)))
+ return true;
+ return false;
+}
+
+static bool btree_insert_keys(struct btree *b, struct search *s)
+{
+ /* There's a couple races that are best handled here.
+ *
+ * If a read generates a cache miss, and a write to the same location
+ * finishes before the new data is added to the cache, the write will
+ * be overwritten with stale data. We can catch this by never
+ * overwriting good data if it came from a read.
+ *
+ * Dirty data in the cache may be queued to write out; if we do a
+ * writethrough write to a location that has dirty data, the queued
+ * write could finish after the writethrough write, thus overwriting
+ * good data with stale on the cached device. This we can handle easiest
+ * by marking keys as dirty if they came from a write, and they
+ * overwrite dirty data.
+ *
+ * When we write out dirty data, we have to mark it as no longer dirty.
+ * The easy way to do this would be just clearing the dirty flag on the
+ * original key and reinserting it, and the old version will no longer
+ * be used, the same way a key that points to stale data would be.
+ *
+ * However, the data may have been redirtied, so when called from
+ * write_dirty_finish we must only insert if we can still find the
+ * original dirty key.
+ */
+ bool ret = false;
+ struct bkey **i = data(b) + b->written;
+ for_each_sorted_set(i, b)
+ BUG_ON(index(i, b) > b->written);
+ i = data(b) + b->written;
+
+ while (s->nkeys) {
+ size_t m;
+ const char *status = "replacing";
+ struct bkey *k = &s->new_keys[--s->nkeys];
+ char buf[30];
+
+ BUG_ON(!b->level && !k->key);
+ BUG_ON(index(i, b) < b->written);
+
+ if (check_old_keys(b, k, s->write)) {
+ if (s->write == INSERT_UNDIRTY)
+ b->c->writeback_keys_failed++;
+ continue;
+ } else if (s->write == INSERT_UNDIRTY)
+ b->c->writeback_keys_done++;
+
+ if (!fixup_old_keys(b, k, s->write) && !PTR_OFFSET(k))
+ continue;
+
+ m = btree_bsearch(i, k->key);
+
+ if (!btree_merge_key(b, i, &m, k)) {
+ status = "inserting";
+ if (b->level)
+ k->ptr = TREE_PTR(inc_gen(b, PTR_OFFSET(k)),
+ 0, PTR_OFFSET(k));
+
+ shift_keys(i, m);
+ }
+
+ *node(i, m) = *k;
+ ret = true;
+
+ if (PTR_DIRTY(k))
+ ptr_set_dirty(b->c, k);
+
+ BUG_ON(!ptr_bad(b, k) &&
+ !b->level == (PTR_BUCKET(b, k)->priority == btree_prio));
+
+ if ((b->level && k->key) ||
+ (!b->level && PTR_OFFSET(k) &&
+ s->write != INSERT_UNDIRTY))
+ atomic_dec_bug(&PTR_BUCKET(b, k)->pin);
+
+ if ((!b->level || k->key) &&
+ PTR_OFFSET(k) &&
+ ptr_status(b, k, buf))
+ printk(KERN_DEBUG
+ "%s bad key: write %i level %i key %s %s\n",
+ status, s->write, b->level, pkey(k), buf);
+
+ if (s->write != INSERT_READ)
+ pr_debug("%s at %llu level %i page %i key %zu/%i: %s",
+ status, (uint64_t) b->offset, b->level,
+ index(i, b), m, keys(i), pkey(k));
+ }
+ check_overlapping_keys(b, i);
+ return ret;
+}
+
+static int btree_split(struct btree *b, struct search *s)
+{
+ struct btree *n1, *n2 = NULL, *n3 = NULL;
+
+ n1 = btree_alloc(b->c, b->level, s);
+ if (IS_ERR_OR_NULL(n1))
+ goto err;
+
+ for (int i = 0; i < pages_per_bucket(b); i++)
+ memcpy(data(n1)[i], data(b)[i], PAGE_SIZE);
+
+ btree_clean(n1, data(n1), 0);
+
+ if (keys(data(n1)) < keys_per_page * pages_per_bucket(b) / 2) {
+ pr_debug("not splitting: %i keys", keys(data(n1)));
+
+ btree_insert_keys(n1, s);
+
+ if (b == b->c->root)
+ set_new_root(n1, s->parent, false);
+ } else {
+ pr_debug("splitting at level %i of %i sector %llu nkeys %i",
+ b->level, b->c->sb.btree_level,
+ (uint64_t) b->offset, keys(data(n1)));
+
+ n2 = btree_alloc(b->c, b->level, s);
+ if (IS_ERR_OR_NULL(n2))
+ goto err;
+
+ if (b == b->c->root) {
+ n3 = btree_alloc(b->c, b->level + 1, s);
+ if (IS_ERR_OR_NULL(n3))
+ goto err;
+ }
+
+ btree_insert_keys(n1, s);
+
+ keys(data(n2)) = keys(data(n1)) >> 1;
+ keys(data(n1)) -= keys(data(n2));
+
+ for (int i = 1; i <= keys(data(n2)); i++)
+ *node(data(n2), i) =
+ *node(data(n1), keys(data(n1)) + i);
+
+ push_key(s, bucket_key(n2));
+ btree_write(n2, -1, NULL);
+ BUG_ON(!n2->written);
+ rw_unlock(true, n2);
+ }
+
+ push_key(s, bucket_key(n1));
+ btree_write(n1, -1, NULL);
+ BUG_ON(!n1->written);
+ rw_unlock(true, n1);
+
+ if (n3) {
+ btree_insert_keys(n3, s);
+ btree_write(n3, -1, NULL);
+
+ BUG_ON(!n3->written);
+ set_new_root(n3, s->parent, false);
+ rw_unlock(true, n3);
+ }
+
+ push_key(s, (struct bkey) { .key = 0, .ptr = bucket_to_ptr(b)});
+ btree_free(b);
+ return 0;
+err:
+ if (!IS_ERR_OR_NULL(n2)) {
+ atomic_dec_bug(&bucket(b->c, n2->offset)->pin);
+ btree_free(n2);
+ rw_unlock(true, n2);
+ }
+ if (!IS_ERR_OR_NULL(n1)) {
+ atomic_dec_bug(&bucket(b->c, n1->offset)->pin);
+ btree_free(n1);
+ rw_unlock(true, n1);
+ }
+
+ if (n3 == ERR_PTR(-EAGAIN) ||
+ n2 == ERR_PTR(-EAGAIN) ||
+ n1 == ERR_PTR(-EAGAIN))
+ return -1;
+ printk(KERN_WARNING "bcache: couldn't split");
+ return -3;
+}
+
+static int btree_insert(struct btree *b, struct search *s)
+{
+ bool must_sort = false;
+ int sets = 0, keys = 0;
+ struct bkey **i = data(b) + b->written;
+
+ if (should_split(b, i)) {
+ if (s->lock < b->c->sb.btree_level) {
+ s->lock = b->c->sb.btree_level;
+ return -2;
+ }
+ return btree_split(b, s);
+ }
+
+ if (rand(i) != rand(data(b))) {
+ rand(i) = rand(data(b));
+ keys(i) = 0;
+ }
+
+ if (btree_insert_keys(b, s))
+ btree_write(b, index(i, b), s);
+ else
+ btree_write(b, index(i, b), NULL);
+
+ for_each_sorted_set(i, b) {
+ keys += keys(i);
+ if (keys(i))
+ sets++;
+ }
+
+ if (sets > 5)
+ must_sort = true;
+
+ if (sets > 3)
+ for_each_sorted_set(i, b) {
+ if (--sets < 2)
+ break;
+
+ if (keys(i) * 2 < keys || keys < 100) {
+ btree_clean(b, i, 0);
+ return 0;
+ }
+ keys -= keys(i);
+ }
+
+ if (must_sort)
+ btree_clean(b, data(b), 0);
+
+ return 0;
+}
+
+#define insert_lock(s, l) ((l) <= max((s)->level, (s)->lock))
+
+static int btree_insert_recurse(struct btree *b, struct search *s)
+{
+ int j, ret = 0;
+ struct btree *r;
+ bool write = insert_lock(s, b->level), embiggening = false;
+
+ if (!rand(data(b))) {
+ printk(KERN_WARNING "bcache: btree was trashed, "
+ "bucket %li gen %i level %i/%i, h->nkeys %i\n",
+ sector_to_bucket(b->c, b->offset),
+ bucket(b->c, b->offset)->gen,
+ b->level, b->c->sb.btree_level, keys(data(b)));
+trashed:
+ if (write && b->c->sb.btree_level == b->level) {
+ r = btree_alloc(b->c, 0, s);
+ if (r == ERR_PTR(-EAGAIN))
+ goto again;
+ if (!r)
+ goto err;
+ set_new_root(r, NULL, false);
+ rw_unlock(true, r);
+ }
+
+ if (write)
+ btree_free(b);
+ else
+ s->lock = b->level;
+ goto retry;
+ }
+
+ if (b->level > s->level) {
+ uint64_t search = KEY_START(s->new_keys);
+ struct bkey **i, *k, recurse = { .key = 0, .ptr = 0 };
+
+ for_each_sorted_set(i, b) {
+ j = btree_bsearch(i, search);
+ j = next_good_key(i, j, b);
+
+ while (j &&
+ (j > keys(i) || ptr_bad(b, node(i, j))))
+ --j;
+
+ /* Pick the smallest key to recurse on that's bigger
+ * than the key we're inserting, or failing that,
+ * the biggest key.
+ */
+ if (j &&
+ ((node(i, j)->key > recurse.key &&
+ recurse.key <= search) ||
+ (node(i, j)->key < recurse.key &&
+ node(i, j)->key > search)))
+ recurse = *node(i, j);
+ }
+
+ if (!recurse.ptr) {
+ printk(KERN_DEBUG "no key to recurse on trying to "
+ "insert %llu at level %i of %i for %i\n",
+ s->new_keys->key, b->level,
+ b->c->sb.btree_level, s->write);
+ goto trashed;
+ }
+
+ if (s->new_keys->key > recurse.key) {
+ if (s->write == INSERT_UNDIRTY)
+ goto done;
+
+ if (s->write == INSERT_READ)
+ for_each_good_key_after(b, k, recurse.key) {
+ do_fixup(false,
+ recurse.key, s->new_keys);
+ goto get;
+ }
+
+ if (should_split(b, data(b) + b->written) &&
+ s->lock < b->c->sb.btree_level) {
+ s->lock = b->c->sb.btree_level;
+ goto retry;
+ }
+
+ s->lock = max(s->lock, b->level);
+ if (!write)
+ goto retry;
+
+ for_each_good_key_after(b, k, recurse.key)
+ if (k->key <= s->new_keys->key)
+ inc_gen(b, PTR_OFFSET(k));
+ else {
+ if (s->write == INSERT_WRITE &&
+ in_writeback(s->d, s->new_keys))
+ PTR_SET_DIRTY(s->new_keys);
+ break;
+ }
+
+ recurse.key = s->new_keys->key;
+ embiggening = true;
+ }
+get:
+ r = get_bucket(b, &recurse, insert_lock(s, b->level - 1), &s);
+ if (r == ERR_PTR(-EAGAIN))
+ goto again;
+ if (IS_ERR(r))
+ goto err;
+ if (!r) {
+ pr_debug("retrying because got no bucket");
+ goto retry;
+ }
+
+ ret = btree_insert_recurse(r, s);
+
+ if (ret >= 0) {
+ s->level = b->level;
+ /* Set the new key from btree_split correctly */
+ s->new_keys[0].key = recurse.key;
+ if (!s->nkeys && embiggening) {
+ atomic_inc(&PTR_BUCKET(b, &recurse)->pin);
+ push_key(s, recurse);
+ }
+ }
+ }
+
+ if (b->level == s->level && s->nkeys) {
+ BUG_ON(!write);
+ ret = btree_insert(b, s);
+ }
+
+done:
+ label(err, ret = -3);
+ label(retry, ret = -2);
+ label(again, ret = -1);
+ if (!IS_ERR_OR_NULL(b))
+ rw_unlock(write, b);
+ return ret;
+}
+
+static void btree_insert_async(struct search *s)
+{
+ int ret;
+ struct bkey stack_keylist[3];
+
+ s->flags |= SEARCH_BLOCK;
+ if (s->keylist == s->new_keys) {
+ s->keylist = stack_keylist;
+ memcpy(s->keylist, s->new_keys, sizeof(struct bkey) * 3);
+ }
+
+ while (1) {
+ if (!s->nkeys) {
+ struct list_head *n = &s->cur->list;
+ if (!s->cur ||
+ list_is_last(&s->cur->list, &cache_devices)) {
+ if (!s->nkeylist--)
+ break;
+
+ n = &cache_devices;
+ }
+ s->cur = list_first_entry(n, struct cache, list);
+
+ s->new_keys[0] = s->keylist[s->nkeylist];
+ s->nkeys = 1;
+ s->level = 0;
+ s->lock = 0;
+
+ if (s->cur != s->q)
+ s->new_keys->ptr =
+ TREE_PTR(0, PTR_SIZE(s->new_keys), 0);
+ }
+
+ ret = run_on_root(insert_lock(s, _b->level),
+ s->cur, btree_insert_recurse, s);
+
+ if (ret == -3)
+ printk(KERN_WARNING
+ "bcache: out of memory trying to insert key\n");
+
+ BUG_ON(ret == -1);
+ if (ret == -1)
+ return_f(s, btree_insert_async);
+ s->nkeys = 0;
+ }
+
+ if (s->keylist != stack_keylist)
+ kfree(s->keylist);
+
+ return_f(s, NULL);
+}
+
+static int btree_invalidate(struct bio *bio, struct search *t)
+{
+ int size = bio_sectors(bio);
+ uint64_t key = TREE_KEY(bio->bi_bdev->bd_cache_identifier,
+ bio->bi_sector);
+ struct search *s = alloc_child_search(t);
+
+ if (IS_ERR(s))
+ goto err;
+
+ pr_debug("invalidating %i sectors from %llu, bi_idx %i, bio %p",
+ bio_sectors(bio), (uint64_t) bio->bi_sector, bio->bi_idx, bio);
+
+ s->delay = t->delay;
+ s->write = INSERT_WRITE;
+ s->keylist = s->new_keys;
+
+ while (size) {
+ int len = min(size, 1 << 14);
+ if (realloc_keys(s))
+ goto err;
+
+ key += len;
+ size -= len;
+ s->keylist[s->nkeylist++] = (struct bkey)
+ { .key = key, .ptr = TREE_PTR(0, len, 0) };
+ }
+
+ return_f(s, btree_insert_async, 1);
+err:
+ return_f(s, NULL, 0);
+}
+
+static void dirty_bio_alloc(struct dirty *w)
+{
+ struct bio_vec *bv;
+ int i = (PTR_SIZE(&w->key) - 1) / PAGE_SECTORS + 1;
+
+ w->bio = bio_kmalloc(GFP_KERNEL, i);
+ bio_set_prio(w->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
+ w->bio->bi_vcnt = i;
+ w->bio->bi_size = PTR_SIZE(&w->key) << 9;
+ w->bio->bi_private = w;
+
+ bio_for_each_segment(bv, w->bio, i) {
+ bv->bv_len = PAGE_SIZE;
+ bv->bv_offset = 0;
+ }
+
+ w->bio->bi_io_vec[w->bio->bi_vcnt - 1].bv_len =
+ ((PTR_SIZE(&w->key) - 1) % PAGE_SECTORS + 1) << 9;
+}
+
+static int dirty_cmp(struct dirty *r, struct dirty *l)
+{
+ /* Overlapping keys must compare equal */
+ if (KEY_START(&r->key) >= l->key.key)
+ return 1;
+ if (KEY_START(&l->key) >= r->key.key)
+ return -1;
+ return 0;
+}
+
+static bool insert_dirty(struct cached_dev *d, struct dirty *i)
+{
+ if (RB_INSERT(&d->dirty, i, node, dirty_cmp)) {
+ kmem_cache_free(dirty_cache, i);
+ return false;
+ }
+ return true;
+}
+
+static int refill_dirty(struct btree *b, struct cached_dev *d, uint64_t search,
+ sector_t *upto, int *count, struct search *s)
+{
+ int ret = 1;
+ struct bkey *k;
+ struct btree *r;
+ struct dirty *i;
+
+ if (b->level)
+ while (ret == 1) {
+ struct bkey recurse = { ~0, 0 };
+ for_each_good_key_after(b, k, search)
+ if (k->key < recurse.key)
+ recurse = *k;
+
+ if (!recurse.ptr ||
+ KEY_DEV(&recurse) != _KEY_DEV(search))
+ break;
+
+ r = get_bucket(b, &recurse, false, &s);
+ if (IS_ERR_OR_NULL(r))
+ goto err;
+
+ ret = refill_dirty(r, d, search, upto, count, s);
+
+ search = recurse.key;
+ if (*count > 500)
+ ret = 0;
+ }
+ else
+ for_each_good_key_after(b, k, search) {
+ if (KEY_DEV(k) != _KEY_DEV(search))
+ break;
+
+ if (!PTR_DIRTY(k))
+ continue;
+
+ i = kmem_cache_alloc(dirty_cache, GFP_NOIO);
+ if (!i)
+ goto err;
+
+ pr_debug("%s", pkey(k));
+ i->key = *k;
+ i->c = b->c;
+ i->d = d;
+ i->bio = NULL;
+
+ if (insert_dirty(d, i)) {
+ *upto = max_t(sector_t, *upto, KEY_OFFSET(k));
+ (*count)++;
+ }
+ }
+
+ label(err, ret = -1);
+ rw_unlock(false, b);
+ return ret;
+}
+
+static bool do_refill_dirty(struct cached_dev *d)
+{
+ int total = 0, id = d->bdev->bd_cache_identifier;
+ sector_t last_found = ~0;
+ struct cache *c;
+ bool wrap = true;
+again:
+ list_for_each_entry(c, &cache_devices, list) {
+ struct search s = blocking_search;
+ uint64_t search = TREE_KEY(lookup_id(c, id), d->last_found);
+ int used, count = 0;
+ sector_t upto = 0;
+
+ if (run_on_root(false, c, refill_dirty, d, search,
+ &upto, &count, &s) != 1 && upto) {
+ last_found = min(last_found, upto);
+ wrap = false;
+ }
+
+ total += count;
+ used = div64_u64((c->sb.nbuckets - c->heap.size) * 100,
+ c->sb.nbuckets);
+
+ pr_debug("found %i keys searching from %llu to %llu,"
+ " wrap = %i, %i%% used",
+ count, (uint64_t) d->last_found,
+ (uint64_t) upto, wrap, used);
+ }
+
+ if (wrap) {
+ sector_t l = 0;
+ swap(d->last_found, l);
+
+ if (!l) {
+ atomic_long_set(&d->last_refilled, 0);
+ goto out;
+ } else if (total <= 500)
+ goto again;
+ } else
+ d->last_found = last_found;
+
+ atomic_long_set(&d->last_refilled, jiffies);
+out:
+ return total > 500;
+}
+
+static bool in_writeback(struct cached_dev *d, struct bkey *k)
+{
+ return d->writeback ||
+ atomic_read(&d->in_flight) ||
+ atomic_long_read(&d->last_refilled);
+}
+
+static bool should_refill_dirty(struct cached_dev *d, bool restart)
+{
+ long t = atomic_long_read(&d->last_refilled);
+ if (t && jiffies_to_msecs(jiffies - t) > 20000)
+ return true;
+ else if (!t && restart)
+ atomic_long_set(&d->last_refilled, jiffies);
+ return false;
+}
+
+static void write_dirty_finish(struct work_struct *work)
+{
+ struct dirty *w = container_of(work, struct dirty, work);
+ struct cached_dev *d = w->d;
+ struct search s = blocking_search;
+
+ if (!PTR_DIRTY(&w->key)) {
+ s.q = w->c;
+ s.write = INSERT_UNDIRTY;
+ s.keylist = s.new_keys;
+ s.new_keys[s.nkeylist++] = w->key;
+
+ pr_debug("clearing %s", pkey(&w->key));
+ btree_insert_async(&s);
+ }
+
+ mutex_lock(&d->dirty_lock);
+ rb_erase(&w->node, &d->dirty);
+ atomic_dec(&w->d->in_flight);
+
+ kmem_cache_free(dirty_cache, w);
+ read_dirty(d);
+}
+
+static void write_dirty_endio(struct bio *bio, int error)
+{
+ struct dirty *w = bio->bi_private;
+ struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
+
+ while (bv-- != w->bio->bi_io_vec)
+ __free_page(bv->bv_page);
+ bio_put(bio);
+
+ if (!error)
+ PTR_CLEAR_DIRTY(&w->key);
+ else if (error != -EINTR)
+ printk(KERN_WARNING "bcache: writeback io error %i for %s\n",
+ error, pkey(&w->key));
+
+ PREPARE_WORK(&w->work, write_dirty_finish);
+ queue_work(delayed, &w->work);
+}
+
+static void write_dirty(struct work_struct *work)
+{
+ struct dirty *w = container_of(work, struct dirty, work);
+ struct bio *bio = w->bio;
+ struct bio_vec *bv;
+ int i;
+
+ if (!w->d->bdev->bd_disk)
+ return write_dirty_endio(bio, -EINTR);
+
+ dirty_bio_alloc(w);
+ w->bio->bi_flags |= 1 << BIO_CACHE_RECURSE;
+ w->bio->bi_sector = KEY_OFFSET(&w->key) - PTR_SIZE(&w->key);
+ w->bio->bi_bdev = w->d->bdev;
+ w->bio->bi_end_io = write_dirty_endio;
+
+ bio_for_each_segment(bv, w->bio, i)
+ bv->bv_page = bio->bi_io_vec[i].bv_page;
+ bio_put(bio);
+
+ pr_debug("sector %llu, len %i: %s", (uint64_t) w->bio->bi_sector,
+ PTR_SIZE(&w->key), pkey(&w->key));
+ submit_bio_list(WRITE, w->bio);
+}
+
+static void read_dirty_endio(struct bio *bio, int error)
+{
+ struct dirty *w = bio->bi_private;
+
+ if (error)
+ return write_dirty_endio(w->bio, error);
+
+ INIT_WORK(&w->work, write_dirty);
+ queue_work(delayed, &w->work);
+}
+
+static void read_dirty_work(struct work_struct *work)
+{
+ struct cached_dev *d = container_of(work, struct cached_dev, work);
+ mutex_lock(&d->dirty_lock);
+ read_dirty(d);
+}
+
+static void read_dirty(struct cached_dev *d)
+{
+ struct dirty *e;
+ struct bio_vec *bv;
+ int i;
+
+ while (d->bdev->bd_disk && /* hack */
+ d->writeback_running) {
+ e = RB_SEARCH_GREATER(&d->dirty,
+ (struct dirty) { .key = d->last_written },
+ node, dirty_cmp);
+
+ if (!e)
+ e = RB_FIRST(&d->dirty, struct dirty, node);
+
+ if (!e || e->bio) {
+ if (atomic_long_read(&d->last_refilled) &&
+ do_refill_dirty(d))
+ continue;
+ break;
+ }
+
+ if (PTR_GEN(&e->key) != PTR_BUCKET(e, &e->key)->gen) {
+ rb_erase(&e->node, &d->dirty);
+ kmem_cache_free(dirty_cache, e);
+ continue;
+ }
+
+ dirty_bio_alloc(e);
+ e->bio->bi_sector = PTR_OFFSET(&e->key);
+ e->bio->bi_bdev = e->c->bdev;
+ e->bio->bi_end_io = read_dirty_endio;
+
+ bio_for_each_segment(bv, e->bio, i)
+ if (!(bv->bv_page = alloc_page(GFP_NOIO)))
+ goto err;
+
+ d->last_written = e->key;
+ pr_debug("%s", pkey(&e->key));
+ submit_bio_list(READ, e->bio);
+ if (atomic_inc_return(&d->in_flight) >= 8)
+ break;
+ }
+
+ if (0) {
+err: while (bv-- != e->bio->bi_io_vec)
+ __free_page(bv->bv_page);
+ kfree(e->bio);
+ e->bio = NULL;
+ }
+ mutex_unlock(&d->dirty_lock);
+}
+
+static void close_open_bucket(struct open_bucket *b, struct bkey *k, int split)
+{
+ b->key.key += TREE_KEY(0, split);
+
+ k->key = TREE_KEY(lookup_id(b->cache, KEY_DEV(&b->key)),
+ KEY_OFFSET(&b->key));
+ k->ptr = TREE_PTR(b->gen, split,
+ b->offset + b->cache->sb.bucket_size -
+ b->sectors_free);
+
+ b->sectors_free -= split;
+ b->cache->sectors_written += split;
+
+ if (b->sectors_free < PAGE_SECTORS) {
+ atomic_dec_bug(&bucket(b->cache, b->offset)->pin);
+ b->cache->rescale -= b->cache->sb.bucket_size;
+ b->cache = NULL;
+ }
+}
+
+static struct open_bucket *get_open_bucket(uint64_t key, struct task_struct *t,
+ struct cache *c, struct search *s)
+{
+ int count = 0;
+ struct open_bucket *l, *b = NULL;
+
+ spin_lock(&open_bucket_lock);
+ list_for_each_entry_reverse(l, &open_buckets, list) {
+ count++;
+
+ if (c && l->cache != c)
+ continue;
+
+ if (l->key.key == key) {
+ b = l;
+ break;
+ } else if (l->last == t)
+ b = l;
+ }
+
+ if (b)
+ goto found;
+
+ if (count < 8) {
+ spin_unlock(&open_bucket_lock);
+ if (!(b = kzalloc(sizeof(struct open_bucket), GFP_NOIO)))
+ return NULL;
+ spin_lock(&open_bucket_lock);
+
+ INIT_LIST_HEAD(&b->list);
+ } else {
+ struct bkey unused;
+ list_for_each_entry(b, &open_buckets, list)
+ if (!c || !b->cache || c == b->cache)
+ goto found;
+
+ b = list_first_entry(&open_buckets, struct open_bucket, list);
+ b->sectors_free = 0;
+ close_open_bucket(b, &unused, 0);
+ }
+
+found:
+ if (!b->cache ||
+ b->gen != bucket(b->cache, b->offset)->gen) {
+ long bucket;
+
+ list_del_init(&b->list);
+
+ if (!c) {
+ list_for_each_entry(c, &cache_devices, list)
+ if (!b->cache ||
+ !heap_peek(&b->cache->heap) ||
+ (heap_peek(&c->heap) &&
+ heap_peek(&b->cache->heap)->priority >
+ heap_peek(&c->heap)->priority))
+ b->cache = c;
+ } else
+ b->cache = c;
+
+ if (!b->cache)
+ goto err;
+
+ /* slightly grotesque - pop bucket does io */
+ spin_unlock(&open_bucket_lock);
+ spin_lock(&b->cache->bucket_lock);
+
+ bucket = pop_bucket(b->cache, initial_priority, s);
+
+ spin_unlock(&b->cache->bucket_lock);
+ spin_lock(&open_bucket_lock);
+
+ if (bucket == -1)
+ goto err;
+
+ b->offset = bucket_to_sector(b->cache, bucket);
+ b->gen = bucket(b->cache, b->offset)->gen;
+ b->sectors_free = b->cache->sb.bucket_size;
+ }
+
+ b->last = t;
+ b->key.key = key;
+
+ BUG_ON(!b->sectors_free);
+ list_move_tail(&b->list, &open_buckets);
+ return b;
+err:
+ b->cache = NULL;
+ list_move(&b->list, &open_buckets);
+ spin_unlock(&open_bucket_lock);
+ return NULL;
+}
+
+static void bio_insert_endio(struct bio *bio, int error)
+{
+ struct search *s = bio->bi_private;
+ BUG_ON(atomic_read(&s->remaining) != 1);
+
+ BUG_ON(error);
+ if (s->write == INSERT_READ) {
+ put_search(s->parent, false);
+ s->parent = NULL;
+ }
+
+ put_search(s, false);
+}
+
+static int bio_insert(struct task_struct *task, struct bio *bio,
+ struct search *t)
+{
+ int split, id = bio->bi_bdev->bd_cache_identifier;
+ struct cached_dev *d = devices[id];
+ struct cache *c = NULL;
+ struct bio *n = NULL;
+ struct search *s = alloc_child_search(t);
+ int sectors = bio_sectors(bio);
+
+ BUG_ON(IS_ERR(s));
+ if (IS_ERR(s))
+ return -1;
+
+ s->end_fn = btree_insert_async;
+ s->delay = t->delay;
+ s->write = t->write;
+ s->keylist = s->new_keys;
+ s->flags |= SEARCH_BLOCK;
+ s->d = d;
+
+ bio->bi_end_io = bio_insert_endio;
+ bio->bi_private = s;
+
+ do {
+ struct open_bucket *b;
+ struct bkey k;
+
+ if (realloc_keys(s))
+ goto err;
+
+ b = get_open_bucket(TREE_KEY(id, bio->bi_sector), task, c,
+ d->writeback && s->write != INSERT_READ
+ ? s : NULL);
+ if (!b)
+ goto err;
+
+ s->q = c = b->cache;
+ split = min(min(bio_sectors(bio), b->sectors_free),
+ queue_max_sectors(bdev_get_queue(c->bdev)));
+
+ atomic_inc(&bucket(c, b->offset)->pin);
+ c->sectors_to_gc -= split;
+
+ close_open_bucket(b, &k, split);
+ spin_unlock(&open_bucket_lock);
+
+ if (s->write == INSERT_WRITEBACK)
+ PTR_SET_DIRTY(&k);
+
+ if (c->sectors_to_gc < 0)
+ queue_gc(c);
+
+ if (!(n = bio_split_front(bio, split, NULL)))
+ goto err;
+
+ pr_debug("adding to cache key %s", pkey(&k));
+ s->keylist[s->nkeylist++] = k;
+
+ n->bi_rw |= WRITE;
+ n->bi_sector = PTR_OFFSET(&k);
+ n->bi_bdev = c->bdev;
+ generic_make_request(n);
+
+ if (c->rescale < 0)
+ rescale_heap(c, 0);
+ } while (n != bio);
+
+ if (s->write != INSERT_READ &&
+ d->writeback_running &&
+ !atomic_read(&d->in_flight) &&
+ should_refill_dirty(d, s->write == INSERT_WRITEBACK)) {
+ PREPARE_WORK(&d->work, read_dirty_work);
+ queue_work(delayed, &d->work);
+ }
+
+ return 0;
+err:
+ BUG_ON(!n && s->nkeylist);
+ if (s->write != INSERT_READ)
+ pr_debug("error, %i/%i sectors done, bi_sector %llu",
+ (sectors - bio_sectors(bio)), sectors,
+ (uint64_t) bio->bi_sector);
+ return -1;
+}
+
+static void bio_complete(struct search *s)
+{
+ if (s->cache_bio)
+ bio_put(s->cache_bio);
+#if 0
+ if (!list_empty(&s->barrier)) {
+ spin_lock(&barrier_lock);
+ list_del(&s->barrier);
+ spin_unlock(&barrier_lock);
+ run_wait_list(1, s->barrier_wait);
+ }
+#endif
+ if (s->error)
+ pr_debug("error %i", s->error);
+
+ s->bio->bi_private = s->bi_private;
+ s->bio->bi_end_io = s->bi_end_io;
+ if (s->bi_end_io)
+ s->bi_end_io(s->bio, s->error);
+ put_search(s, false);
+}
+
+static void cache_miss(struct search *s)
+{
+ if (!s->error && s->cache_bio)
+ if (bio_insert(s->q, s->cache_bio, s))
+ bio_endio(s->cache_bio, 0);
+
+ return_f(s, bio_complete);
+}
+
+#if 0
+static void bio_complete_bounce(struct search *s)
+{
+ int i;
+ struct bio_vec *bv;
+ bio_for_each_segment(bv, s->bio, i)
+ __free_page(bv->bv_page);
+ bio_put(s->bio);
+ return_f(s, NULL);
+}
+
+static void cache_miss_bounce(struct search *s)
+{
+ int i;
+ struct bio_vec *bv;
+
+ bio_for_each_segment(bv, s->cache_bio, i)
+ if (s->error)
+ __free_page(bv->bv_page);
+ else {
+ void *dst = kmap(bv->bv_page);
+ void *src = kmap(s->bio->bi_io_vec[i].bv_page);
+ memcpy(dst, src, PAGE_SIZE);
+ kunmap(dst);
+ kunmap(src);
+ }
+
+ s->bio->bi_private = s->bi_private;
+ s->bi_end_io(s->bio, s->error);
+ s->bi_end_io = NULL;
+
+ if (s->error ||
+ !(s->bio = bio_kmalloc(GFP_NOIO, s->cache_bio->bi_max_vecs))) {
+ bio_put(s->cache_bio);
+ return_f(s, NULL);
+ }
+
+ __bio_clone(s->bio, s->cache_bio);
+
+ if (bio_insert(s->q, s->cache_bio, false, s))
+ bio_endio(s->cache_bio, -EIO);
+}
+#endif
+
+static void request_endio(struct bio *bio, int error)
+{
+ struct search *s = bio->bi_private;
+ s->error = error;
+ put_search(s, false);
+}
+
+static void do_bio_hook(struct bio *bio, struct search *s)
+{
+ s->q = get_current();
+ s->bio = bio;
+ s->bi_end_io = bio->bi_end_io;
+ s->bi_private = bio->bi_private;
+
+ bio->bi_end_io = request_endio;
+ bio->bi_private = s;
+}
+
+static void __request_read(struct search *s)
+{
+ request_read(s->q, s->bio, false, s);
+}
+
+static int request_read(struct request_queue *q, struct bio *bio,
+ bool skip, struct search *s)
+{
+ int ret = -1;
+ struct cache *c;
+
+ if (!s) {
+ s = alloc_search(NULL);
+ s->bio = bio;
+ s->q = q;
+ bio_list_add(&s->misses, bio);
+ }
+
+ pr_debug("searching for %i sectors at %llu",
+ bio_sectors(bio), (uint64_t) bio->bi_sector);
+
+ list_for_each_entry(c, &cache_devices, list) {
+ struct bio_list hits = { NULL, NULL };
+ int dev = lookup_dev(c, s->bio);
+
+ if (dev == UUIDS_PER_SB)
+ return_f(s, NULL, 1);
+
+ if (!run_on_root(false, c, btree_search_recurse,
+ dev, &hits, 0, s))
+ ret = 0;
+
+ cache_hit(c, hits.head);
+ if (bio_list_empty(&s->misses))
+ return_f(s, NULL, 0);
+ }
+
+ if (!ret)
+ return_f(s, __request_read, 0);
+
+ if (skip) {
+ while ((bio = bio_list_pop(&s->misses)))
+ if (q->make_request_fn(q, bio))
+ generic_make_request(bio);
+
+ return_f(s, NULL, 0);
+ }
+
+ pr_debug("cache miss for %llu, starting write",
+ (uint64_t) s->bio->bi_sector);
+ cache_misses++;
+
+ s->end_fn = cache_miss;
+ s->write = INSERT_READ;
+ s->delay = -1;
+ do_bio_hook(s->bio, s);
+
+ s->cache_bio = bio_kmalloc(GFP_NOIO, s->misses.head->bi_max_vecs);
+ if (s->cache_bio)
+ __bio_clone(s->cache_bio, s->misses.head);
+#if 0
+ for (i = bio->bi_idx; i < bio->bi_vcnt; i++)
+ if (!(s->cache_bio->bi_io_vec[i].bv_page =
+ alloc_page(GFP_NOIO)))
+ break;
+
+ if (i != bio->bi_vcnt) {
+ while (i > bio->bi_idx)
+ __free_page(s->cache_bio->bi_io_vec[i].bv_page);
+
+ memcpy(s->cache_bio->bi_io_vec, bio->bi_io_vec,
+ bio->bi_max_vecs * sizeof(struct bio_vec));
+
+ } else
+ s->end_fn = cache_miss_bounce;
+#endif
+ do {
+ bio = bio_list_pop(&s->misses);
+ ret = bio_list_empty(&s->misses);
+
+ if (q->make_request_fn(q, bio))
+ generic_make_request(bio);
+ } while (!ret);
+
+ return 0;
+}
+
+static int request_write(struct request_queue *q, struct bio *bio, bool skip)
+{
+ int ret;
+ const char *err = "couldn't allocate memory";
+ struct cached_dev *d = devices[bio->bi_bdev->bd_cache_identifier];
+ struct search *s = alloc_search(NULL);
+
+ if (IS_ERR(s))
+ goto err;
+
+ do_bio_hook(bio, s);
+ s->end_fn = bio_complete;
+ s->write = INSERT_WRITE;
+ s->delay = bio_rw_flagged(bio, BIO_RW_SYNCIO)
+ ? flush_delay_ms_sync
+ : flush_delay_ms;
+
+ if (skip && !d->writeback) {
+ ret = btree_invalidate(bio, s);
+ if (!ret)
+ goto err;
+ return ret;
+ }
+
+ if (d->writeback) {
+ unsigned long free = 0, total = 0;
+ struct cache *c;
+ list_for_each_entry(c, &cache_devices, list)
+ free += c->heap.size, total += c->sb.nbuckets;
+
+ if (free * 2 > total ||
+ (bio_rw_flagged(bio, BIO_RW_SYNCIO) &&
+ free * 4 > total))
+ s->write = INSERT_WRITEBACK;
+ }
+
+ if (s->write == INSERT_WRITEBACK) {
+ s->cache_bio = bio;
+ bio_get(bio);
+ } else {
+ if (!(s->cache_bio = bio_kmalloc(GFP_NOIO, bio->bi_max_vecs)))
+ goto err;
+
+ __bio_clone(s->cache_bio, bio);
+ }
+#if 0
+ if (!list_empty(&d->barrier) ||
+ bio_rw_flagged(bio, BIO_RW_BARRIER)) {
+ spin_lock(&barrier_lock);
+ if (!list_empty(&d->barrier)) {
+ b = list_first_entry(&d->barrier, struct search,
+ barrier);
+ wait_search(b->barrier_wait, i);
+ }
+
+ if (bio_rw_flagged(bio, BIO_RW_BARRIER))
+ list_add(&i->barrier, &d->barrier);
+ spin_unlock(&barrier_lock);
+ }
+#endif
+ ret = s->write == INSERT_WRITE;
+ if (bio_insert(s->q, s->cache_bio, s)) {
+ BUG_ON(d->writeback);
+ ret = btree_invalidate(s->cache_bio, s);
+
+ if (s->write == INSERT_WRITE)
+ bio_endio(s->cache_bio, 0);
+
+ if (!ret)
+ goto err;
+ }
+
+ if (s->write == INSERT_WRITEBACK)
+ put_search(s, false);
+
+ return ret;
+err:
+ printk(KERN_WARNING "bcache: write error: %s\n", err);
+
+ bio_endio(bio, -ENOMEM);
+ return 0;
+}
+
+static void unplug_hook(struct request_queue *q)
+{
+ struct cache *c;
+ list_for_each_entry(c, &cache_devices, list)
+ blk_unplug(bdev_get_queue(c->bdev));
+ q->cache_unplug_fn(q);
+}
+
+static int request(struct request_queue *q, struct bio *bio)
+{
+ bool skip = false;
+ struct io *i;
+ struct hlist_node *cursor;
+ struct task_struct *task = get_current();
+ uint64_t key = TREE_KEY(bio->bi_bdev->bd_cache_identifier,
+ bio->bi_sector);
+
+ struct hlist_head *iohash(uint64_t k)
+ { return &recent_io_hash[hash_64(k, RECENT_IO_BITS)]; }
+
+ if (!bio_has_data(bio) ||
+ list_empty(&cache_devices))
+ return 1;
+
+ /* paper over some stuff */
+ if (bio_flagged(bio, BIO_CACHE_RECURSE))
+ return 1;
+
+ devices[bio->bi_bdev->bd_cache_identifier]->bdev = bio->bi_bdev;
+
+ spin_lock(&recent_io_lock);
+ if (q->unplug_fn != unplug_hook) {
+ q->cache_unplug_fn = q->unplug_fn;
+ q->unplug_fn = unplug_hook;
+ }
+
+ hlist_for_each_entry(i, cursor, iohash(key), hash)
+ if (i->key == key)
+ goto found;
+
+ i = list_first_entry(&recent_io_lru, struct io, lru);
+ i->sequential = 0;
+ task->nr_ios++;
+found:
+ i->key = key + bio_sectors(bio);
+ i->sequential += bio_sectors(bio);
+ task->sequential_io += bio_sectors(bio);
+
+ if (max(i->sequential, task->sequential_io / (task->nr_ios + 1))
+ >= sequential_cutoff >> 9) {
+ sectors_bypassed += bio_sectors(bio);
+ skip = true;
+ }
+
+ list_move_tail(&i->lru, &recent_io_lru);
+
+ hlist_del(&i->hash);
+ hlist_add_head(&i->hash, iohash(i->key));
+ spin_unlock(&recent_io_lock);
+
+ return bio_rw_flagged(bio, BIO_RW)
+ ? request_write(q, bio, skip)
+ : request_read(q, bio, skip, NULL);
+}
+
+#define write_attribute(n) \
+ static struct attribute sysfs_##n = { .name = #n, .mode = S_IWUSR }
+#define read_attribute(n) \
+ static struct attribute sysfs_##n = { .name = #n, .mode = S_IRUSR }
+#define rw_attribute(n) \
+ static struct attribute sysfs_##n = \
+ { .name = #n, .mode = S_IWUSR|S_IRUSR }
+
+#define sysfs_print(file, ...) \
+ if (attr == &sysfs_ ## file) \
+ return snprintf(buf, PAGE_SIZE, __VA_ARGS__)
+
+#define sysfs_hprint(file, val) \
+ if (attr == &sysfs_ ## file) { \
+ int ret = hprint(buf, val); \
+ strcat(buf, "\n"); \
+ return ret + 1; \
+ }
+
+#define sysfs_atoi(file, var) \
+ if (attr == &sysfs_ ## file) { \
+ unsigned long _v, _r = strict_strtoul(buffer, 10, &_v); \
+ if (_r) \
+ return _r; \
+ var = _v; \
+ }
+
+#define sysfs_hatoi(file, var) \
+ if (attr == &sysfs_ ## file) \
+ return strtoi_h(buffer, &var) ? : size; \
+
+write_attribute(register_cache);
+write_attribute(register_dev);
+write_attribute(unregister);
+write_attribute(clear_stats);
+
+read_attribute(bucket_size);
+read_attribute(nbuckets);
+read_attribute(cache_hits);
+read_attribute(cache_hit_ratio);
+read_attribute(cache_misses);
+read_attribute(tree_depth);
+read_attribute(min_priority);
+read_attribute(pinned_buckets);
+read_attribute(lru_end);
+read_attribute(heap_size);
+read_attribute(written);
+read_attribute(btree_written);
+read_attribute(bypassed);
+read_attribute(btree_avg_keys_written);
+read_attribute(writeback_keys_failed);
+read_attribute(writeback_keys_done);
+
+rw_attribute(cache_priority_initial);
+rw_attribute(cache_priority_hit);
+rw_attribute(cache_priority_seek);
+rw_attribute(sequential_cutoff);
+rw_attribute(writeback);
+rw_attribute(writeback_running);
+rw_attribute(flush_delay_ms);
+rw_attribute(flush_delay_ms_sync);
+rw_attribute(synchronous);
+rw_attribute(discard);
+rw_attribute(latency_warn_ms);
+rw_attribute(writeback_delay);
+
+static int sync_btree_check(struct btree *b, struct search *s)
+{
+ struct bkey *k;
+
+ for_each_key(b, k)
+ if (!__ptr_bad(b, k)) {
+ int8_t g = PTR_BUCKET(b, k)->gen - PTR_GEN(k);
+
+ if (g <= 0) {
+ PTR_BUCKET(b, k)->gen = PTR_GEN(k);
+ if (b->level || PTR_DIRTY(k))
+ heap_remove(&b->c->heap,
+ PTR_BUCKET(b, k),
+ heap, bucket_cmp);
+
+ if (b->level)
+ PTR_BUCKET(b, k)->priority = btree_prio;
+ else if (PTR_DIRTY(k))
+ ptr_set_dirty(b->c, k);
+ } else if (g > b->c->need_gc)
+ b->c->need_gc = g;
+ }
+
+ if (b->level)
+ for_each_good_key(b, k) {
+ struct btree *r = get_bucket(b, k, false, &s);
+ BUG_ON(IS_ERR(r));
+
+ if (r)
+ sync_btree_check(r, s);
+ else
+ inc_gen(b, PTR_OFFSET(k));
+ }
+
+ rw_unlock(false, b);
+ return 0;
+}
+
+static struct dentry *debug;
+
+static int dump_tree(struct btree *b, struct seq_file *f, const char *tabs,
+ uint64_t *prev, uint64_t *sectors, struct search *s)
+{
+ struct bkey *k;
+ char buf[30];
+ uint64_t last, biggest = 0;
+
+ seq_printf(f, "%s page key: dev key ->"
+ " offset len gen bucket\n", tabs - 1);
+
+ for_each_key(b, k) {
+ if (_j == 1)
+ last = *prev;
+
+ if (last > k->key)
+ seq_printf(f, "Key skipped backwards\n");
+
+ if (!b->level &&
+ _j > 1 &&
+ last != KEY_START(k))
+ seq_printf(f, "<hole>\n");
+ else if (b->level && !ptr_bad(b, k)) {
+ struct btree *r = get_bucket(b, k, false, &s);
+ if (!IS_ERR_OR_NULL(r))
+ dump_tree(r, f, tabs - 1, &last, sectors, s);
+ }
+
+ if (!ptr_status(b, k, buf) && PTR_DIRTY(k))
+ strcpy(buf, "dirty");
+
+ seq_printf(f,
+ "%s%i %4i: %3i %10llu -> %9lli %4i %3i %6li %s\n",
+ tabs, index(_i, b), _j, KEY_DEV(k), KEY_OFFSET(k),
+ PTR_OFFSET(k), PTR_SIZE(k), PTR_GEN(k),
+ sector_to_bucket(b->c, PTR_OFFSET(k)), buf);
+
+ if (!b->level && !buf[0])
+ *sectors += PTR_SIZE(k);
+
+ last = k->key;
+ biggest = max(biggest, last);
+ }
+ *prev = biggest;
+
+ rw_unlock(false, b);
+ return 0;
+}
+
+static int debug_seq_show(struct seq_file *f, void *data)
+{
+ static const char *tabs = "\t\t\t\t\t";
+ uint64_t last = 0, sectors = 0;
+ struct cache *c = f->private;
+ struct search s = blocking_search;
+
+ run_on_root(false, c, dump_tree, f, &tabs[4], &last, &sectors, &s);
+
+ seq_printf(f,
+ "root: (null) -> bucket %6li\n"
+ "%llu Mb found\n",
+ sector_to_bucket(c, c->root->offset), sectors / 2048);
+
+ return 0;
+}
+
+static int debug_seq_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, debug_seq_show, inode->i_private);
+}
+
+static void load_priorities_endio(struct bio *bio, int error)
+{
+ for (int i = 0; i < bio->bi_vcnt; i++)
+ put_page(bio->bi_io_vec[i].bv_page);
+
+ if (error)
+ printk(KERN_ERR "bcache: Error reading priorities");
+ wake_up(&pending);
+ bio_put(bio);
+}
+
+static void load_priorities(struct cache *c)
+{
+ long i;
+ struct bio *bio = c->priority_bio;
+ struct bio_vec *bv;
+
+ bio_get(bio);
+ bio->bi_sector = PRIO_SECTOR;
+ bio->bi_bdev = c->bdev;
+ bio->bi_vcnt = pages(c, struct bucket_disk);
+ bio->bi_size = pages(c, struct bucket_disk) * PAGE_SIZE;
+
+ bio->bi_end_io = load_priorities_endio;
+ bio->bi_private = c;
+
+ bio_for_each_segment(bv, bio, i) {
+ bv->bv_page = vmalloc_to_page((void *) c->disk_buckets
+ + PAGE_SIZE * i);
+ bv->bv_len = PAGE_SIZE;
+ bv->bv_offset = 0;
+ get_page(bv->bv_page);
+ }
+
+ submit_bio_list(READ, bio);
+
+ wait_event(pending, atomic_read(&bio->bi_remaining) == 0);
+
+ for (i = 0; i < c->sb.nbuckets; i++) {
+ struct bucket *b = c->buckets + i;
+
+ atomic_set(&b->pin, 0);
+ b->heap = -1;
+
+ b->priority = le16_to_cpu(c->disk_buckets[i].priority);
+ b->last_gc = b->gen = c->disk_buckets[i].gen;
+
+ if (i != sector_to_bucket(c, c->sb.btree_root))
+ bucket_add_heap(c, i);
+ }
+}
+
+static void save_priorities_endio(struct bio *bio, int error)
+{
+ int i;
+ struct cache *c = bio->bi_private;
+ BUG_ON(error);
+
+ atomic_set(&c->prio_written, 1);
+
+ wake_up(&pending);
+ run_wait_list(1, c->bucket_wait);
+
+ for (i = 0; i < bio->bi_vcnt; i++)
+ put_page(bio->bi_io_vec[i].bv_page);
+
+ bio_put(bio);
+}
+
+static void save_priorities_work(struct work_struct *w)
+{
+ struct cache *c = container_of(w, struct cache, priority_work);
+ submit_bio_list(WRITE, c->priority_bio);
+}
+
+static struct bio *save_priorities(struct cache *c)
+{
+ long i;
+ struct bio *bio = c->priority_bio;
+ struct bio_vec *bv;
+
+ if (!bio_reinit(bio))
+ return NULL;
+
+ bio->bi_sector = PRIO_SECTOR;
+ bio->bi_bdev = c->bdev;
+ bio->bi_vcnt = pages(c, struct bucket_disk);
+ bio->bi_size = pages(c, struct bucket_disk) * PAGE_SIZE;
+
+ bio->bi_end_io = save_priorities_endio;
+ bio->bi_private = c;
+
+ for (i = 0; i < c->sb.nbuckets; i++) {
+ struct bucket *b = c->buckets + i;
+
+ c->disk_buckets[i].priority = cpu_to_le16(b->priority);
+ c->disk_buckets[i].gen = b->gen;
+ }
+
+ bio_for_each_segment(bv, bio, i) {
+ bv->bv_page = vmalloc_to_page((void *) c->disk_buckets
+ + PAGE_SIZE * i);
+ bv->bv_len = PAGE_SIZE;
+ bv->bv_offset = 0;
+ get_page(bv->bv_page);
+ }
+
+ pr_debug("done");
+ return bio;
+}
+
+static void register_dev_on_cache(struct cache *c, int d)
+{
+ int i;
+
+ for (i = 0; i < UUIDS_PER_SB; i++) {
+ if (is_zero(&c->uuids->b_data[i*16], 16)) {
+ pr_debug("inserted new uuid at %i", i);
+ memcpy(c->uuids->b_data + i*16, &uuids[d*16], 16);
+ set_buffer_dirty(c->uuids);
+ sync_dirty_buffer(c->uuids);
+ break;
+ }
+
+ if (!memcmp(&c->uuids->b_data[i*16], &uuids[d*16], 16)) {
+ /* Need to check if device was already opened
+ * read/write and invalidate previous data if it was.
+ */
+ pr_debug("looked up uuid at %i", i);
+ break;
+ }
+ }
+
+ if (i == UUIDS_PER_SB) {
+ printk(KERN_DEBUG "Aiee! No room for the uuid");
+ return;
+ }
+
+ c->devices[i] = d;
+}
+
+static ssize_t show_dev(struct kobject *kobj, struct attribute *attr, char *buf)
+{
+ struct cached_dev *d = container_of(kobj, struct cached_dev, kobj);
+ sysfs_print(writeback, "%i\n", d->writeback);
+ sysfs_print(writeback_running, "%i\n", d->writeback_running);
+ return 0;
+}
+
+static ssize_t store_dev(struct kobject *kobj, struct attribute *attr,
+ const char *buffer, size_t size)
+{
+ struct cached_dev *d = container_of(kobj, struct cached_dev, kobj);
+ sysfs_atoi(writeback, d->writeback);
+ sysfs_atoi(writeback_running, d->writeback_running);
+ if (attr == &sysfs_writeback_running &&
+ d->writeback_running && mutex_trylock(&d->dirty_lock))
+ read_dirty(d);
+ if (attr == &sysfs_unregister)
+ kobject_put(kobj);
+ return size;
+}
+
+static void unregister_dev(struct kobject *k)
+{
+}
+
+static void register_dev(const char *buffer, size_t size)
+{
+ int i;
+ const char *err = NULL;
+ char *path = NULL;
+ unsigned char uuid[16];
+ struct block_device *bdev = NULL;
+ struct cached_dev *d = NULL;
+ struct cache *c;
+
+ static struct attribute *files[] = {
+ &sysfs_unregister,
+ &sysfs_writeback,
+ &sysfs_writeback_running,
+ NULL
+ };
+ static const struct sysfs_ops ops = {
+ .show = show_dev,
+ .store = store_dev
+ };
+ static struct kobj_type dev_obj = {
+ .release = unregister_dev,
+ .sysfs_ops = &ops,
+ .default_attrs = files
+ };
+
+ if (!try_module_get(THIS_MODULE))
+ return;
+
+ err = "Bad uuid";
+ i = parse_uuid(buffer, &uuid[0]);
+ if (i < 4)
+ goto err;
+
+ err = "Insufficient memory";
+ if (!(path = kmalloc(size + 1 - i, GFP_KERNEL)))
+ goto err;
+
+ strcpy(path, skip_spaces(buffer + i));
+ bdev = lookup_bdev(strim(path));
+
+ err = "Failed to open device";
+ if (IS_ERR(bdev))
+ goto err;
+
+ err = "Aready registered";
+ for (i = 0;
+ i < UUIDS_PER_SB && !is_zero(&uuids[i*16], 16);
+ i++)
+ if (!memcmp(&uuids[i*16], uuid, 16))
+ goto err;
+
+ err = "Max devices already open";
+ if (i == UUIDS_PER_SB)
+ goto err;
+
+ if (!(d = kzalloc(sizeof(*d) + sizeof(struct dirty) * 1024,
+ GFP_KERNEL)))
+ goto err;
+
+ INIT_WORK(&d->work, NULL);
+ INIT_LIST_HEAD(&d->barrier);
+ mutex_init(&d->dirty_lock);
+ d->dirty = RB_ROOT;
+ d->bdev = bdev;
+ d->writeback_running = true;
+#if 0
+ blkdev_get(bdev, FMODE_READ|FMODE_WRITE))
+ bdevname(bdev, b);
+#endif
+ err = "Error creating kobject";
+ if (!kobject_get(bcache_kobj) ||
+ kobject_init_and_add(&d->kobj, &dev_obj,
+ bcache_kobj,
+ "%s", strim(path)))
+ goto err;
+
+ memcpy(&uuids[i*16], uuid, 16);
+ bdev->bd_cache_identifier = i;
+ devices[i] = d;
+
+ list_for_each_entry(c, &cache_devices, list)
+ register_dev_on_cache(c, i);
+
+ bdev->bd_cache_fn = request;
+ printk(KERN_DEBUG "bcache: Caching %s index %i", path, i);
+
+ if (0) {
+err: printk(KERN_DEBUG "bcache: error opening %s: %s", path, err);
+ if (!IS_ERR_OR_NULL(bdev))
+ bdput(bdev);
+ kfree(d);
+ }
+ kfree(path);
+}
+
+static void unregister_cache_kobj(struct work_struct *w)
+{
+ struct cache *c = container_of(w, struct cache, work);
+ list_del(&c->list);
+ INIT_LIST_HEAD(&c->list);
+ kobject_put(&c->kobj);
+}
+
+static ssize_t store_cache(struct kobject *kobj, struct attribute *attr,
+ const char *buffer, size_t size)
+{
+ struct cache *c = container_of(kobj, struct cache, kobj);
+ if (attr == &sysfs_unregister) {
+ PREPARE_WORK(&c->work, unregister_cache_kobj);
+ schedule_work(&c->work);
+ }
+ if (blk_queue_discard(bdev_get_queue(c->bdev)))
+ sysfs_atoi(discard, c->discard);
+ return size;
+}
+
+static ssize_t show_cache(struct kobject *kobj, struct attribute *attr,
+ char *buf)
+{
+ struct cache *c = container_of(kobj, struct cache, kobj);
+ struct btree *b;
+
+ sysfs_hprint(bucket_size, c->sb.bucket_size << 9);
+ sysfs_print(nbuckets, "%lli\n", c->sb.nbuckets);
+ sysfs_print(cache_hits, "%lu\n", c->cache_hits);
+ sysfs_print(tree_depth, "%u\n", c->sb.btree_level);
+ sysfs_print(min_priority, "%u\n",
+ c->heap.data[0] ? c->heap.data[0]->priority : 0);
+ sysfs_print(heap_size, "%zu\n", c->heap.size);
+ sysfs_hprint(written, c->sectors_written << 9);
+ sysfs_hprint(btree_written, c->btree_sectors_written << 9);
+ sysfs_print(discard, "%i\n", c->discard);
+ sysfs_print(writeback_keys_failed, "%lu\n", c->writeback_keys_failed);
+ sysfs_print(writeback_keys_done, "%lu\n", c->writeback_keys_done);
+
+ if (attr == &sysfs_pinned_buckets) {
+ struct list_head *l;
+ int i = 0;
+ spin_lock(&c->bucket_lock);
+ list_for_each(l, &c->lru)
+ i++;
+ spin_unlock(&c->bucket_lock);
+ return snprintf(buf, PAGE_SIZE, "%i\n", i);
+ }
+
+ if (attr == &sysfs_lru_end) {
+ b = list_entry(c->lru.prev, struct btree, lru);
+ return snprintf(buf, PAGE_SIZE, "%li\n",
+ sector_to_bucket(c, b->offset));
+ }
+ return 0;
+}
+
+static const char *read_super(struct cache *c)
+{
+ const char *err;
+ struct cache_sb *s;
+ struct buffer_head *bh;
+
+ if (!(bh = __bread(c->bdev, 1, 4096)))
+ return "IO error";
+
+ err = "Not a bcache superblock";
+ s = (struct cache_sb *) bh->b_data;
+ if (memcmp(s->magic, bcache_magic, 16))
+ goto err;
+
+ c->sb.version = le32_to_cpu(s->version);
+ c->sb.block_size = le16_to_cpu(s->block_size);
+ c->sb.bucket_size = le16_to_cpu(s->bucket_size);
+ c->sb.journal_start = le32_to_cpu(s->journal_start);
+ c->sb.first_bucket = le32_to_cpu(s->first_bucket);
+ c->sb.nbuckets = le64_to_cpu(s->nbuckets);
+ c->sb.btree_root = le64_to_cpu(s->btree_root);
+ c->sb.btree_level = le16_to_cpu(s->btree_level);
+
+ err = "Unsupported superblock version";
+ if (c->sb.version > (CACHE_CLEAN|CACHE_SYNC))
+ goto err;
+
+ err = "Bad block/bucket size";
+ if (!c->sb.block_size ||
+ c->sb.bucket_size & (PAGE_SIZE / 512 - 1) ||
+ c->sb.bucket_size < c->sb.block_size)
+ goto err;
+
+ err = "Too many buckets";
+ if (c->sb.nbuckets > LONG_MAX)
+ goto err;
+
+ err = "Invalid superblock: journal overwrites bucket priorites";
+ if (c->sb.journal_start * c->sb.bucket_size <
+ 24 + ((c->sb.nbuckets * sizeof(struct bucket_disk)) >> 9))
+ goto err;
+
+ err = "Invalid superblock: first bucket comes before journal start";
+ if (c->sb.first_bucket < c->sb.journal_start)
+ goto err;
+
+ err = "Invalid superblock: device too small";
+ if (get_capacity(c->bdev->bd_disk) <
+ bucket_to_sector(c, c->sb.nbuckets))
+ goto err;
+
+ err = "Bucket size must be a power of two";
+ if (c->sb.bucket_size < PAGE_SECTORS ||
+ !is_power_of_2(c->sb.bucket_size))
+ goto err;
+
+ c->bucket_size_bits = ilog2(c->sb.bucket_size);
+
+ if (c->sb.btree_root < bucket_to_sector(c, 0) ||
+ c->sb.btree_root >= bucket_to_sector(c, c->sb.nbuckets))
+ c->sb.version &= ~CACHE_CLEAN;
+
+ err = NULL;
+
+ get_page(bh->b_page);
+ c->sb_page = bh->b_page;
+err:
+ put_bh(bh);
+ return err;
+}
+
+static void write_super_endio(struct bio *bio, int error)
+{
+ int i;
+ struct cache *c = bio->bi_private;
+ BUG_ON(error);
+
+ run_wait_list(1, c->sb_wait);
+
+ for (i = 0; i < bio->bi_vcnt; i++)
+ put_page(bio->bi_io_vec[i].bv_page);
+
+ bio_put(bio);
+}
+
+static struct bio *write_super(struct cache *c, struct search *s)
+{
+ struct bio *bio = c->sb_bio;
+ struct cache_sb *sb = page_address(bio->bi_io_vec[0].bv_page);
+
+ if (!bio_reinit(bio))
+ return NULL;
+
+ get_page(bio->bi_io_vec[0].bv_page);
+
+ BUG_ON(list_empty(&c->list) != (c->sb.version & CACHE_CLEAN));
+
+ bio->bi_sector = SB_SECTOR;
+ bio->bi_bdev = c->bdev;
+ bio->bi_vcnt = 1;
+ bio->bi_size = 4096;
+
+ bio->bi_end_io = write_super_endio;
+ bio->bi_private = c;
+
+ if (synchronous)
+ c->sb.version |= CACHE_SYNC;
+ else
+ c->sb.version &= ~CACHE_SYNC;
+
+ pr_debug("ver %i, root %llu, level %i",
+ c->sb.version, c->sb.btree_root, c->sb.btree_level);
+
+ sb->version = cpu_to_le32(c->sb.version);
+ sb->block_size = cpu_to_le16(c->sb.block_size);
+ sb->bucket_size = cpu_to_le16(c->sb.bucket_size);
+ sb->journal_start = cpu_to_le32(c->sb.journal_start);
+ sb->first_bucket = cpu_to_le32(c->sb.first_bucket);
+ sb->nbuckets = cpu_to_le64(c->sb.nbuckets);
+ sb->btree_root = cpu_to_le64(c->sb.btree_root);
+ sb->btree_level = cpu_to_le16(c->sb.btree_level);
+
+ if (s)
+ wait_search(c->sb_wait, s);
+ return bio;
+}
+
+static void free_cache(struct cache *c)
+{
+ struct btree *b;
+
+ while (!list_empty(&c->lru)) {
+ b = list_first_entry(&c->lru, struct btree, lru);
+ list_del(&b->lru);
+ free_bucket_contents(b, false);
+ kfree(b);
+ }
+
+ if (!IS_ERR_OR_NULL(c->debug))
+ debugfs_remove(c->debug);
+
+ if (c->kobj.state_initialized) {
+ kobject_put(bcache_kobj);
+ kobject_put(&c->kobj);
+ }
+
+ if (c->sb_bio)
+ bio_put(c->sb_bio);
+ if (c->priority_bio)
+ bio_put(c->priority_bio);
+
+ vfree(c->garbage);
+ vfree(c->disk_buckets);
+ vfree(c->buckets);
+
+ free_heap(&c->heap);
+ free_fifo(&c->free);
+ free_fifo(&c->free_inc);
+ free_fifo(&c->btree);
+ free_fifo(&c->btree_inc);
+
+ if (c->uuids)
+ put_bh(c->uuids);
+ if (c->sb_page)
+ put_page(c->sb_page);
+ if (!IS_ERR_OR_NULL(c->bdev))
+ close_bdev_exclusive(c->bdev, FMODE_READ|FMODE_WRITE);
+
+ module_put(c->owner);
+ kfree(c);
+}
+
+static int alloc_cache(struct cache *c)
+{
+#define SIZE(s) (c->sb.nbuckets * sizeof(s))
+ if (!init_fifo(&c->btree, c->sb.nbuckets >> 9, GFP_KERNEL) ||
+ !init_fifo(&c->free, c->sb.nbuckets >> 7, GFP_KERNEL) ||
+ !init_fifo(&c->btree_inc, c->sb.nbuckets >> 9, GFP_KERNEL) ||
+ !init_fifo(&c->free_inc, c->sb.nbuckets >> 7, GFP_KERNEL) ||
+ !init_heap(&c->heap, c->sb.nbuckets, GFP_KERNEL) ||
+ !(c->buckets = vmalloc(SIZE(struct bucket))) ||
+ !(c->disk_buckets = vmalloc(SIZE(struct bucket_disk))) ||
+ !(c->garbage = vmalloc(SIZE(struct bucket_gc))) ||
+ !(c->sb_bio = bio_kmalloc(GFP_KERNEL, 1)) ||
+ !(c->priority_bio = bio_kmalloc(GFP_KERNEL,
+ pages(c, struct bucket_disk))))
+ return 1;
+
+ atomic_set(&c->sb_bio->bi_remaining, 0);
+ c->sb_bio->bi_io_vec[0].bv_page = c->sb_page;
+ c->sb_bio->bi_io_vec[0].bv_len = 4096;
+ c->sb_bio->bi_io_vec[0].bv_offset = 0;
+
+ memset(c->buckets, 0, c->sb.nbuckets * sizeof(struct bucket));
+ memset(c->garbage, 0, c->sb.nbuckets * sizeof(struct bucket_gc));
+ memset(&c->devices, ~0, sizeof(c->devices[0] * UUIDS_PER_SB));
+
+ c->sectors_to_gc = c->sb.bucket_size * c->sb.nbuckets / 4;
+ c->rescale = c->sb.bucket_size * c->sb.nbuckets / 128;
+ c->btree_buckets_cached = 8;
+ return 0;
+}
+
+static void register_cache(const char *buffer, size_t size)
+{
+ const char *err = NULL;
+ char *path = NULL, b[BDEVNAME_SIZE];
+ struct cache *c = NULL;
+ struct search s = blocking_search, *sp = &s;
+
+ static struct attribute *files[] = {
+ &sysfs_unregister,
+ &sysfs_bucket_size,
+ &sysfs_nbuckets,
+ &sysfs_cache_hits,
+ &sysfs_tree_depth,
+ &sysfs_min_priority,
+ &sysfs_pinned_buckets,
+ &sysfs_lru_end,
+ &sysfs_heap_size,
+ &sysfs_written,
+ &sysfs_btree_written,
+ &sysfs_discard,
+ &sysfs_writeback_keys_failed,
+ &sysfs_writeback_keys_done,
+ NULL
+ };
+ static const struct sysfs_ops ops = {
+ .show = show_cache,
+ .store = store_cache
+ };
+ static struct kobj_type cache_obj = {
+ .release = unregister_cache,
+ .sysfs_ops = &ops,
+ .default_attrs = files
+ };
+
+ if (!try_module_get(THIS_MODULE))
+ return;
+
+ err = "Insufficient memory";
+ if (!(path = kmalloc(size + 1, GFP_KERNEL)) ||
+ !(c = kzalloc(sizeof(*c), GFP_KERNEL)))
+ goto err;
+
+ c->owner = THIS_MODULE;
+ INIT_LIST_HEAD(&c->lru);
+ INIT_WORK(&c->work, NULL);
+ spin_lock_init(&c->bucket_lock);
+ init_MUTEX(&c->gc_lock);
+ INIT_WORK(&c->priority_work, save_priorities_work);
+
+ strcpy(path, skip_spaces(buffer));
+
+ err = "Failed to open cache device";
+ c->bdev = open_bdev_exclusive(strim(path), FMODE_READ|FMODE_WRITE, c);
+ if (IS_ERR(c->bdev))
+ goto err;
+
+ set_blocksize(c->bdev, 4096);
+
+ if ((err = read_super(c)))
+ goto err;
+
+ err = "IO error reading UUIDs";
+ if (!(c->uuids = __bread(c->bdev, 2, PAGE_SIZE)))
+ goto err;
+
+ err = "Not enough buckets";
+ if (c->sb.nbuckets < 1 << 11)
+ goto err;
+
+ err = "Insufficient memory";
+ if (alloc_cache(c))
+ goto err;
+
+ load_priorities(c);
+
+ if (c->sb.version & (CACHE_SYNC|CACHE_CLEAN)) {
+ c->root = __get_bucket(c, c->sb.btree_root,
+ c->sb.btree_level, true, &sp);
+ if (!c->root)
+ goto invalidate;
+ list_del_init(&c->root->lru);
+ } else {
+invalidate: printk(KERN_NOTICE "bcache: %s was dirty, "
+ "invalidating existing data\n", path);
+
+ if (!(c->root = btree_alloc(c, 0, &s)))
+ goto err;
+
+ set_new_root(c->root, NULL, true);
+ }
+
+ rw_unlock(true, c->root);
+
+ if (c->sb.version & CACHE_SYNC && !(c->sb.version & CACHE_CLEAN)) {
+ printk(KERN_NOTICE "bcache: Recovery needed on %s\n", path);
+ run_on_root(false, c, sync_btree_check, &s);
+ }
+
+ c->sb.version &= ~CACHE_CLEAN;
+
+ if (synchronous)
+ submit_bio_list(WRITE, write_super(c, NULL));
+
+ for (int i = 0; i < UUIDS_PER_SB && !is_zero(&uuids[i*16], 16); i++)
+ register_dev_on_cache(c, i);
+
+ err = "Error creating kobject";
+ bdevname(c->bdev, b);
+ if (!kobject_get(bcache_kobj) ||
+ kobject_init_and_add(&c->kobj, &cache_obj,
+ bcache_kobj,
+ "%s", b))
+ goto err;
+
+ if (!IS_ERR_OR_NULL(debug)) {
+ static const struct file_operations treeops = {
+ .owner = THIS_MODULE,
+ .open = debug_seq_open,
+ .read = seq_read,
+ .release = single_release };
+
+ c->debug = debugfs_create_file(b, 0400, debug, c, &treeops);
+ }
+
+ list_add(&c->list, &cache_devices);
+
+ printk(KERN_DEBUG "bcache: Loaded cache device %s", path);
+ pr_debug("btree root at %llu", (uint64_t) c->root->offset);
+
+ if (0) {
+err: printk(KERN_DEBUG "bcache: error opening %s: %s", path, err);
+ if (c) {
+ if (c->bdev == ERR_PTR(-EBUSY))
+ err = "Device busy";
+ if (c->root)
+ list_add(&c->root->lru, &c->lru);
+ free_cache(c);
+ }
+ }
+ kfree(path);
+}
+
+static void unregister_cache(struct kobject *k)
+{
+ struct cache *c = container_of(k, struct cache, kobj);
+ struct btree *b;
+ struct open_bucket *o;
+
+ spin_lock(&open_bucket_lock);
+ list_for_each_entry(o, &open_buckets, list)
+ if (o->cache == c)
+ o->cache = NULL;
+ spin_unlock(&open_bucket_lock);
+
+ list_add(&c->root->lru, &c->lru);
+ list_for_each_entry(b, &c->lru, lru)
+ btree_write(b, -1, NULL);
+
+ c->sb.version |= CACHE_CLEAN;
+
+ submit_bio_list(WRITE, save_priorities(c));
+ submit_bio_list(WRITE, write_super(c, NULL));
+ free_cache(c);
+}
+
+static unsigned avg_keys_written(void)
+{
+ int cpu;
+ unsigned long keys = 0, writes = 0;
+
+ for_each_online_cpu(cpu) {
+ writes += per_cpu(btree_write_count, cpu);
+ keys += per_cpu(keys_write_count, cpu);
+ }
+ return writes ? keys / writes : 0;
+}
+
+static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
+{
+ sysfs_print(cache_hits, "%lu\n", cache_hits);
+ sysfs_print(cache_hit_ratio, "%lu%%\n",
+ cache_hits + cache_misses ?
+ cache_hits * 100 / (cache_hits + cache_misses) : 0);
+ sysfs_print(cache_misses, "%lu\n", cache_misses);
+ sysfs_print(cache_priority_initial, "%i\n", initial_priority);
+ sysfs_print(cache_priority_hit, "%i\n", cache_hit_priority);
+ sysfs_print(cache_priority_seek, "%i\n", cache_hit_seek);
+ sysfs_hprint(sequential_cutoff, sequential_cutoff);
+ sysfs_hprint(bypassed, sectors_bypassed << 9);
+ sysfs_print(btree_avg_keys_written, "%u\n", avg_keys_written());
+ sysfs_print(flush_delay_ms, "%i\n", flush_delay_ms);
+ sysfs_print(flush_delay_ms_sync, "%i\n", flush_delay_ms_sync);
+ sysfs_print(synchronous, "%i\n", synchronous);
+ sysfs_print(latency_warn_ms, "%i\n", latency_warn_ms);
+ sysfs_print(writeback_delay, "%i\n", writeback_delay);
+ return 0;
+}
+
+static ssize_t store(struct kobject *kobj, struct attribute *attr,
+ const char *buffer, size_t size)
+{
+ if (attr == &sysfs_register_cache)
+ register_cache(buffer, size);
+ if (attr == &sysfs_register_dev)
+ register_dev(buffer, size);
+ sysfs_atoi(cache_priority_initial, initial_priority);
+ sysfs_atoi(cache_priority_hit, cache_hit_priority);
+ sysfs_atoi(cache_priority_seek, cache_hit_seek);
+ sysfs_hatoi(sequential_cutoff, sequential_cutoff);
+ sysfs_atoi(flush_delay_ms, flush_delay_ms);
+ sysfs_atoi(flush_delay_ms_sync, flush_delay_ms_sync);
+ sysfs_atoi(synchronous, synchronous);
+ sysfs_atoi(latency_warn_ms, latency_warn_ms);
+ sysfs_atoi(writeback_delay, writeback_delay);
+ if (attr == &sysfs_clear_stats) {
+ struct cache *c;
+ list_for_each_entry(c, &cache_devices, list)
+ c->cache_hits = 0;
+
+ cache_hits = cache_misses = 0;
+ }
+
+ return size;
+}
+
+static int __init bcache_init(void)
+{
+ static const struct sysfs_ops ops = { .show = show, .store = store };
+ static const struct attribute *files[] = {
+ &sysfs_register_cache,
+ &sysfs_register_dev,
+ &sysfs_cache_hits,
+ &sysfs_cache_hit_ratio,
+ &sysfs_cache_misses,
+ &sysfs_cache_priority_initial,
+ &sysfs_cache_priority_hit,
+ &sysfs_cache_priority_seek,
+ &sysfs_clear_stats,
+ &sysfs_sequential_cutoff,
+ &sysfs_bypassed,
+ &sysfs_btree_avg_keys_written,
+ &sysfs_flush_delay_ms,
+ &sysfs_flush_delay_ms_sync,
+ &sysfs_synchronous,
+ &sysfs_latency_warn_ms,
+ &sysfs_writeback_delay,
+ NULL};
+
+ printk(KERN_DEBUG "bcache loading");
+
+ search_cache = kmem_cache_create("bcache_search",
+ sizeof(struct search),
+ 0, 0, NULL);
+ dirty_cache = kmem_cache_create("bcache_dirty",
+ sizeof(struct dirty),
+ 0, 0, NULL);
+
+ for (struct io *i = recent_io; i < recent_io + RECENT_IO; i++) {
+ list_add(&i->lru, &recent_io_lru);
+ hlist_add_head(&i->hash, recent_io_hash + RECENT_IO);
+ }
+
+ spin_lock_init(&search_lock);
+ spin_lock_init(&barrier_lock);
+ spin_lock_init(&recent_io_lock);
+ spin_lock_init(&open_bucket_lock);
+ init_waitqueue_head(&pending);
+
+ delayed = create_workqueue("bcache");
+ if (!delayed)
+ goto err;
+
+ bcache_kobj = kobject_create_and_add("bcache", kernel_kobj);
+ if (!bcache_kobj)
+ goto err;
+
+ debug = debugfs_create_dir("bcache", NULL);
+
+ bcache_kobj->ktype->sysfs_ops = &ops;
+ return sysfs_create_files(bcache_kobj, files);
+err:
+ if (delayed)
+ destroy_workqueue(delayed);
+ return -ENOMEM;
+}
+
+static void bcache_exit(void)
+{
+ struct cache *c;
+
+ if (!IS_ERR_OR_NULL(debug))
+ debugfs_remove_recursive(debug);
+
+ sysfs_remove_file(bcache_kobj, &sysfs_register_cache);
+ sysfs_remove_file(bcache_kobj, &sysfs_register_dev);
+
+ /*for (i = 0; i < UUIDS_PER_SB; i++)
+ if (devices[i] && devices[i])
+ devices[i]->bd_cache_fn = NULL;*/
+
+ list_for_each_entry(c, &cache_devices, list)
+ kobject_put(&c->kobj);
+
+ kmem_cache_destroy(dirty_cache);
+ kmem_cache_destroy(search_cache);
+}
+
+module_init(bcache_init);
+module_exit(bcache_exit);
diff --git a/block/Makefile b/block/Makefile
index 0bb499a..9f8394d 100644
--- a/block/Makefile
+++ b/block/Makefile
@@ -15,3 +15,7 @@ obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o

obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
obj-$(CONFIG_BLK_DEV_INTEGRITY) += blk-integrity.o
+
+obj-$(CONFIG_BLK_CACHE) += bcache.o bcache_util.o
+CFLAGS_bcache.o += -std=gnu99
+CFLAGS_bcache_util.o += -std=gnu99
diff --git a/block/bcache_util.c b/block/bcache_util.c
new file mode 100644
index 0000000..85a3291
--- /dev/null
+++ b/block/bcache_util.c
@@ -0,0 +1,140 @@
+#include <linux/bio.h>
+#include <linux/module.h>
+#include "bcache_util.h"
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kent Overstreet <kent.overstreet@xxxxxxxxx>");
+
+struct bio *bio_split_front(struct bio *bio, int sectors,
+ struct bio *(alloc_fn)(int))
+{
+ int idx, vcnt = 0, nbytes = sectors << 9;
+ struct bio_vec *bv;
+ struct bio *ret = NULL;
+
+ struct bio *alloc(int n)
+ { return bio_kmalloc(GFP_NOIO, n); }
+
+ alloc_fn = alloc_fn ? : alloc;
+
+ BUG_ON(sectors <= 0);
+
+ if (nbytes >= bio->bi_size)
+ return bio;
+
+ bio_for_each_segment(bv, bio, idx) {
+ vcnt = idx - bio->bi_idx;
+
+ if (!nbytes &&
+ (ret = alloc_fn(0))) {
+ ret->bi_io_vec = bio->bi_io_vec + bio->bi_idx;
+ ret->bi_flags |= 1 << BIO_CLONED;
+ break;
+ } else if (nbytes && nbytes < bv->bv_len &&
+ (ret = alloc_fn(++vcnt))) {
+ memcpy(ret->bi_io_vec,
+ bio->bi_io_vec + bio->bi_idx,
+ sizeof(struct bio_vec) * vcnt);
+
+ ret->bi_io_vec[vcnt - 1].bv_len = nbytes;
+ bv->bv_offset += nbytes;
+ bv->bv_len -= nbytes;
+ break;
+ }
+
+ nbytes -= bv->bv_len;
+ }
+
+ if (ret) {
+ ret->bi_bdev = bio->bi_bdev;
+ ret->bi_sector = bio->bi_sector;
+ ret->bi_size = sectors << 9;
+ ret->bi_flags |= bio->bi_flags & (1 << BIO_CACHE_RECURSE);
+ ret->bi_rw = bio->bi_rw;
+ ret->bi_vcnt = vcnt;
+ ret->bi_max_vecs = vcnt;
+
+ bio->bi_sector += sectors;
+ bio->bi_size -= sectors << 9;
+ bio->bi_idx = idx;
+
+ ret->bi_private = bio;
+ ret->bi_end_io = bio_split_endio;
+ atomic_inc(&bio->bi_remaining);
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(bio_split_front);
+
+#define STRTO_H(name, type) \
+int name ## _h(const char *cp, type *res) \
+{ \
+ int u = 0; \
+ char *e; \
+ type i = simple_ ## name(cp, &e, 10); \
+ \
+ switch (tolower(*e)) { \
+ default: \
+ return -EINVAL; \
+ case 'y': \
+ case 'z': \
+ u++; \
+ case 'e': \
+ u++; \
+ case 'p': \
+ u++; \
+ case 't': \
+ u++; \
+ case 'g': \
+ u++; \
+ case 'm': \
+ u++; \
+ case 'k': \
+ u++; \
+ if (e++ == cp) \
+ return -EINVAL; \
+ case '\n': \
+ case '\0': \
+ if (*e == '\n') \
+ e++; \
+ } \
+ \
+ if (*e) \
+ return -EINVAL; \
+ \
+ while (u--) { \
+ if ((type) ~0 > 0 && \
+ (type) ~0 / 1024 <= i) \
+ return -EINVAL; \
+ if ((i > 0 && ANYSINT_MAX(type) / 1024 < i) || \
+ (i < 0 && -ANYSINT_MAX(type) / 1024 > i)) \
+ return -EINVAL; \
+ i *= 1024; \
+ } \
+ \
+ *res = i; \
+ return 0; \
+} \
+EXPORT_SYMBOL_GPL(name ## _h);
+
+STRTO_H(strtol, long)
+STRTO_H(strtoll, long long)
+STRTO_H(strtoul, unsigned long)
+STRTO_H(strtoull, unsigned long long)
+
+ssize_t hprint(char *buf, int64_t v)
+{
+ static const char units[] = "\0kMGTPEZY";
+ char dec[3] = "";
+ int u, t = 0;
+
+ for (u = 0; v >= 1024 || v <= -1024; u++)
+ t = do_div(v, 1024);
+
+ if (u && v < 100 && v > -100)
+ sprintf(dec, ".%i", t / 100);
+
+ return sprintf(buf, "%lli%s%c", v, dec, units[u]);
+}
+EXPORT_SYMBOL_GPL(hprint);
diff --git a/block/bcache_util.h b/block/bcache_util.h
new file mode 100644
index 0000000..d8585b0
--- /dev/null
+++ b/block/bcache_util.h
@@ -0,0 +1,297 @@
+
+#include <linux/errno.h>
+#include <linux/ctype.h>
+#include <linux/kernel.h>
+
+#define DECLARE_HEAP(type, name) \
+ struct { \
+ size_t size, heap_size; \
+ type *data; \
+ } name
+
+#define DEFINE_HEAP(type, name, s) \
+ struct { \
+ size_t size; \
+ const size_t heap_size; \
+ type data[s]; \
+ } name = { .size = 0, .heap_size = s }
+
+#define heap_for_each(c, heap) \
+ for (size_t _i = 0; c = (heap)->data[_i], _i < (heap)->size; _i++)
+
+#define init_heap(h, s, gfp) \
+({ \
+ (h)->size = 0; \
+ (h)->heap_size = s; \
+ if ((h)->heap_size * sizeof(*(h)->data) >= KMALLOC_MAX_SIZE) \
+ (h)->data = vmalloc(s * sizeof(*(h)->data)); \
+ else if (s > 0) \
+ (h)->data = kmalloc(s * sizeof(*(h)->data), gfp); \
+ (h)->data; \
+})
+
+#define free_heap(h) \
+do { \
+ if ((h)->heap_size * sizeof(*(h)->data) >= KMALLOC_MAX_SIZE) \
+ vfree((h)->data); \
+ else \
+ kfree((h)->data); \
+} while (0)
+
+#define heap_swap(h, i, j, member) \
+do { \
+ swap((h)->data[i], (h)->data[j]); \
+ (h)->data[i]->member = i; \
+ (h)->data[j]->member = j; \
+} while (0)
+
+#define heap_sift(h, i, member, cmp) \
+do { \
+ long _r, _i = i; \
+ \
+ for (; _i * 2 + 1 < (h)->size; _i = _r) { \
+ _r = _i * 2 + 1; \
+ if (_r + 1 < (h)->size && \
+ cmp((h)->data[_r], (h)->data[_r + 1])) \
+ _r++; \
+ \
+ if (cmp((h)->data[_r], (h)->data[_i])) \
+ break; \
+ heap_swap(h, _r, _i, member); \
+ } \
+} while (0)
+
+#define heap_sift_down(h, i, member, cmp) \
+do { \
+ while (i) { \
+ long p = (i - 1) / 2; \
+ if (cmp((h)->data[i], (h)->data[p])) \
+ break; \
+ heap_swap(h, i, p, member); \
+ i = p; \
+ } \
+} while (0)
+
+#define heap_add(h, d, member, cmp) \
+do { \
+ long _i = (d)->member; \
+ \
+ if (_i == -1) { \
+ _i = (h)->size++; \
+ (h)->data[_i] = d; \
+ (d)->member = _i; \
+ } \
+ \
+ heap_sift_down(h, _i, member, cmp); \
+ heap_sift(h, _i, member, cmp); \
+} while (0)
+
+#define heap_pop(h, member, cmp) \
+({ \
+ typeof ((h)->data[0]) _r = (h)->data[0]; \
+ \
+ if ((h)->size) { \
+ (h)->size--; \
+ heap_swap(h, 0, (h)->size, member); \
+ heap_sift(h, 0, member, cmp); \
+ (h)->data[(h)->size] = NULL; \
+ _r->member = -1; \
+ } else \
+ _r = NULL; \
+ _r; \
+})
+
+#define heap_remove(h, d, member, cmp) \
+do { \
+ long _i = (d)->member; \
+ \
+ if (_i == -1) \
+ break; \
+ \
+ if (_i != --((h)->size)) { \
+ heap_swap(h, _i, (h)->size, member); \
+ heap_sift_down(h, _i, member, cmp); \
+ heap_sift(h, _i, member, cmp); \
+ } \
+ \
+ (h)->data[(h)->size] = NULL; \
+ (d)->member = -1; \
+} while (0)
+
+#define heap_peek(h) ((h)->size ? (h)->data[0] : NULL)
+
+#define DECLARE_FIFO(type, name) \
+ struct { \
+ size_t front, back, size; \
+ type *data; \
+ } name
+
+#define fifo_for_each(c, fifo) \
+ for (size_t _i = (fifo)->front; \
+ c = (fifo)->data[_i], _i != (fifo)->back; \
+ _i = (_i + 1) & (fifo)->size)
+
+#define init_fifo(f, s, gfp) \
+({ \
+ BUG_ON(!s); \
+ (f)->front = (f)->back = 0; \
+ (f)->size = roundup_pow_of_two(s); \
+ (f)->data = ((f)->size * sizeof(*(f)->data) >= KMALLOC_MAX_SIZE)\
+ ? vmalloc((f)->size-- * sizeof(*(f)->data)) \
+ : kmalloc((f)->size-- * sizeof(*(f)->data), gfp); \
+ (f)->data; \
+})
+
+#define free_fifo(fifo) \
+do { \
+ if ((fifo)->size * sizeof(*(fifo)->data) >= KMALLOC_MAX_SIZE) \
+ vfree((fifo)->data); \
+ else \
+ kfree((fifo)->data); \
+ (fifo)->data = NULL; \
+} while (0)
+
+#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->size)
+#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
+#define fifo_full(fifo) (fifo_free(fifo) == 0)
+#define fifo_empty(fifo) ((fifo)->front == (fifo)->back)
+
+#define fifo_push(fifo, i) \
+({ \
+ bool _r = false; \
+ if (!fifo_full(fifo)) { \
+ _r = true; \
+ (fifo)->data[(fifo)->back++] = i; \
+ (fifo)->back &= (fifo)->size; \
+ } \
+ _r; \
+})
+
+#define fifo_pop(fifo, i) \
+({ \
+ bool _r = false; \
+ if (!fifo_empty(fifo)) { \
+ _r = true; \
+ i = (fifo)->data[(fifo)->front++]; \
+ (fifo)->front &= (fifo)->size; \
+ } \
+ _r; \
+})
+
+#define fifo_swap(l, r) \
+do { \
+ swap((l)->front, (r)->front); \
+ swap((l)->back, (r)->back); \
+ swap((l)->size, (r)->size); \
+ swap((l)->data, (r)->data); \
+} while (0)
+
+#define fifo_move(dest, src) \
+do { \
+ typeof (*((dest)->data)) t; \
+ while (!fifo_full(dest) && \
+ fifo_pop(src, t)) \
+ fifo_push(dest, t); \
+} while (0)
+
+/*
+ * These are subject to the infamous aba problem...
+ */
+
+#define lockless_list_push(new, list, member) \
+ do { \
+ (new)->member = list; \
+ } while (cmpxchg(&(list), (new)->member, new) != (new)->member) \
+
+#define lockless_list_pop(list, member) ({ \
+ typeof(list) _r; \
+ do { \
+ _r = list; \
+ } while (_r && cmpxchg(&(list), _r, _r->member) != _r); \
+ _r; })
+
+#define ANYSINT_MAX(t) \
+ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
+
+int strtol_h(const char *, long *);
+int strtoll_h(const char *, long long *);
+int strtoul_h(const char *, unsigned long *);
+int strtoull_h(const char *, unsigned long long *);
+
+#define strtoi_h(cp, res) \
+ (__builtin_types_compatible_p(typeof(*res), long) \
+ ? strtol_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), long long) \
+ ? strtoll_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), unsigned long) \
+ ? strtoul_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
+ ? strtoull_h(cp, (void *) res) : -EINVAL)
+
+ssize_t hprint(char *buf, int64_t v);
+
+struct bio *bio_split_front(struct bio *, int, struct bio *(alloc_fn)(int));
+
+#define RB_INSERT(root, new, member, cmp) \
+({ \
+ __label__ dup; \
+ struct rb_node **n = &(root)->rb_node, *parent = NULL; \
+ int res, ret = -1; \
+ \
+ while (*n) { \
+ parent = *n; \
+ res = cmp(new, container_of(*n, typeof(*(new)), member));\
+ if (!res) \
+ goto dup; \
+ n = res < 0 \
+ ? &(*n)->rb_left \
+ : &(*n)->rb_right; \
+ } \
+ \
+ rb_link_node(&(new)->member, parent, n); \
+ rb_insert_color(&(new)->member, root); \
+ ret = 0; \
+dup: \
+ ret; \
+})
+
+#define RB_SEARCH(root, search, member, cmp) \
+{ \
+ struct rb_node *n = (root)->rb_node; \
+ typeof(&(search)) r, ret = NULL; \
+ int res; \
+ \
+ while (n) { \
+ r = container_of(n, typeof(search), member); \
+ res = cmp(r, &(search)); \
+ if (!r) { \
+ ret = r; \
+ break; \
+ } \
+ n = res < 0 \
+ ? n->rb_left \
+ : n->rb_right; \
+ } \
+ ret; \
+}
+
+#define RB_SEARCH_GREATER(root, search, member, cmp) \
+({ \
+ struct rb_node *n = (root)->rb_node; \
+ typeof(&(search)) r, ret = NULL; \
+ int res; \
+ \
+ while (n) { \
+ r = container_of(n, typeof(search), member); \
+ res = cmp(r, &(search)); \
+ if (res > 0) { \
+ ret = r; \
+ n = n->rb_left; \
+ } else \
+ n = n->rb_right; \
+ } \
+ ret; \
+})
+
+#define RB_FIRST(root, type, member) \
+ (root ? container_of(rb_first(root), type, member) : NULL)
diff --git a/block/blk-core.c b/block/blk-core.c
index f0640d7..4d54e9e 100644
--- a/block/blk-core.c
+++ b/block/blk-core.c
@@ -1428,11 +1428,11 @@ static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
* bi_sector for remaps as it sees fit. So the values of these fields
* should NOT be depended on after the call to generic_make_request.
*/
-static inline void __generic_make_request(struct bio *bio)
+inline void __generic_make_request(struct bio *bio)
{
struct request_queue *q;
sector_t old_sector;
- int ret, nr_sectors = bio_sectors(bio);
+ int ret = 1, nr_sectors = bio_sectors(bio);
dev_t old_dev;
int err = -EIO;

@@ -1505,7 +1505,10 @@ static inline void __generic_make_request(struct bio *bio)

trace_block_bio_queue(q, bio);

- ret = q->make_request_fn(q, bio);
+ if (bio->bi_bdev->bd_cache_fn)
+ ret = bio->bi_bdev->bd_cache_fn(q, bio);
+ if (ret)
+ ret = q->make_request_fn(q, bio);
} while (ret);

return;
@@ -1513,6 +1516,7 @@ static inline void __generic_make_request(struct bio *bio)
end_io:
bio_endio(bio, err);
}
+EXPORT_SYMBOL_GPL(__generic_make_request);

/*
* We only want one ->make_request_fn to be active at a time,
diff --git a/fs/bio.c b/fs/bio.c
index e7bf6ca..aeec1e6 100644
--- a/fs/bio.c
+++ b/fs/bio.c
@@ -257,6 +257,7 @@ void bio_init(struct bio *bio)
bio->bi_flags = 1 << BIO_UPTODATE;
bio->bi_comp_cpu = -1;
atomic_set(&bio->bi_cnt, 1);
+ atomic_set(&bio->bi_remaining, 1);
}
EXPORT_SYMBOL(bio_init);

@@ -452,10 +453,12 @@ void __bio_clone(struct bio *bio, struct bio *bio_src)
bio->bi_sector = bio_src->bi_sector;
bio->bi_bdev = bio_src->bi_bdev;
bio->bi_flags |= 1 << BIO_CLONED;
+ bio->bi_flags |= bio_src->bi_flags & (1 << BIO_CACHE_RECURSE);
bio->bi_rw = bio_src->bi_rw;
bio->bi_vcnt = bio_src->bi_vcnt;
bio->bi_size = bio_src->bi_size;
bio->bi_idx = bio_src->bi_idx;
+ atomic_set(&bio->bi_remaining, 1);
}
EXPORT_SYMBOL(__bio_clone);

@@ -1422,16 +1425,28 @@ EXPORT_SYMBOL(bio_flush_dcache_pages);
**/
void bio_endio(struct bio *bio, int error)
{
+ int r;
if (error)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
error = -EIO;

- if (bio->bi_end_io)
+ r = atomic_dec_return(&bio->bi_remaining);
+ BUG_ON(r < 0);
+
+ if (!r && bio->bi_end_io)
bio->bi_end_io(bio, error);
}
EXPORT_SYMBOL(bio_endio);

+void bio_split_endio(struct bio *bio, int error)
+{
+ struct bio *p = bio->bi_private;
+ bio_put(bio);
+ bio_endio(p, error);
+}
+EXPORT_SYMBOL(bio_split_endio);
+
void bio_pair_release(struct bio_pair *bp)
{
if (atomic_dec_and_test(&bp->cnt)) {
diff --git a/include/linux/bio.h b/include/linux/bio.h
index 7fc5606..5bf7e9a 100644
--- a/include/linux/bio.h
+++ b/include/linux/bio.h
@@ -94,6 +94,8 @@ struct bio {

struct bio_vec *bi_io_vec; /* the actual vec list */

+ atomic_t bi_remaining; /* split count */
+
bio_end_io_t *bi_end_io;

void *bi_private;
@@ -126,6 +128,7 @@ struct bio {
#define BIO_NULL_MAPPED 9 /* contains invalid user pages */
#define BIO_FS_INTEGRITY 10 /* fs owns integrity data, not block layer */
#define BIO_QUIET 11 /* Make BIO Quiet */
+#define BIO_CACHE_RECURSE 12 /* Bcache recursion hack for writeback */
#define bio_flagged(bio, flag) ((bio)->bi_flags & (1 << (flag)))

/*
@@ -364,6 +367,7 @@ extern void bio_put(struct bio *);
extern void bio_free(struct bio *, struct bio_set *);

extern void bio_endio(struct bio *, int);
+extern void bio_split_endio(struct bio *bio, int error);
struct request_queue;
extern int bio_phys_segments(struct request_queue *, struct bio *);

diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
index 09a8402..8978c29 100644
--- a/include/linux/blkdev.h
+++ b/include/linux/blkdev.h
@@ -347,6 +347,7 @@ struct request_queue
make_request_fn *make_request_fn;
prep_rq_fn *prep_rq_fn;
unplug_fn *unplug_fn;
+ unplug_fn *cache_unplug_fn;
merge_bvec_fn *merge_bvec_fn;
prepare_flush_fn *prepare_flush_fn;
softirq_done_fn *softirq_done_fn;
@@ -772,6 +773,7 @@ static inline void rq_flush_dcache_pages(struct request *rq)
extern int blk_register_queue(struct gendisk *disk);
extern void blk_unregister_queue(struct gendisk *disk);
extern void register_disk(struct gendisk *dev);
+extern void __generic_make_request(struct bio *bio);
extern void generic_make_request(struct bio *bio);
extern void blk_rq_init(struct request_queue *q, struct request *rq);
extern void blk_put_request(struct request *);
diff --git a/include/linux/fs.h b/include/linux/fs.h
index 68ca1b0..489413b 100644
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -514,6 +514,8 @@ enum positive_aop_returns {
struct page;
struct address_space;
struct writeback_control;
+struct bio;
+struct request_queue;

struct iov_iter {
const struct iovec *iov;
@@ -665,6 +667,9 @@ struct block_device {
int bd_invalidated;
struct gendisk * bd_disk;
struct list_head bd_list;
+
+ int (*bd_cache_fn)(struct request_queue *q, struct bio *bio);
+ unsigned char bd_cache_identifier;
/*
* Private data. You must have bd_claim'ed the block_device
* to use this. NOTE: bd_claim allows an owner to claim
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 0478888..e37b9c5 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1504,6 +1504,10 @@ struct task_struct {
unsigned long memsw_bytes; /* uncharged mem+swap usage */
} memcg_batch;
#endif
+#if defined(CONFIG_BLK_CACHE) || defined(CONFIG_BLK_CACHE_MODULE)
+ unsigned int nr_ios;
+ unsigned int sequential_io;
+#endif
};

/* Future-safe accessor for struct task_struct's cpus_allowed. */
diff --git a/kernel/fork.c b/kernel/fork.c
index b6cce14..1de14a7 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1118,6 +1118,9 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->memcg_batch.do_batch = 0;
p->memcg_batch.memcg = NULL;
#endif
+#ifdef CONFIG_BLK_CACHE
+ p->sequential_io = p->nr_ios = 0;
+#endif

/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p, clone_flags);
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/