[PATCH 06/12] staging: comedi: s626: remove forward declarations 4

From: H Hartley Sweeten
Date: Wed Jun 20 2012 - 22:25:54 EST


Move the DAC functions up to remove the need for the forward
declarations.

Signed-off-by: H Hartley Sweeten <hsweeten@xxxxxxxxxxxxxxxxxxx>
Cc: Ian Abbott <abbotti@xxxxxxxxx>
Cc: Frank Mori Hess <fmhess@xxxxxxxxxxxxxxxxxxxxx>
Cc: Greg Kroah-Hartman <gregkh@xxxxxxxxxxxxxxxxxxx>
---
drivers/staging/comedi/drivers/s626.c | 488 +++++++++++++++++-----------------
1 file changed, 240 insertions(+), 248 deletions(-)

diff --git a/drivers/staging/comedi/drivers/s626.c b/drivers/staging/comedi/drivers/s626.c
index 5fcb43a..3cdb293 100644
--- a/drivers/staging/comedi/drivers/s626.c
+++ b/drivers/staging/comedi/drivers/s626.c
@@ -213,12 +213,6 @@ static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
static int s626_dio_clear_irq(struct comedi_device *dev);
static int s626_ns_to_timer(int *nanosec, int round_mode);

-/* internal routines */
-static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
- uint8_t DacData);
-static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
-static void SendDAC(struct comedi_device *dev, uint32_t val);
-
/* COUNTER OBJECT ------------------------------------------------ */
struct enc_private {
/* Pointers to functions that differ for A and B counters: */
@@ -552,6 +546,246 @@ static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
return rtnval;
}

+/* *********** DAC FUNCTIONS *********** */
+
+/* Slot 0 base settings. */
+#define VECT0 (XSD2 | RSD3 | SIB_A2)
+/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
+
+/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
+static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
+
+/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
+static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
+
+/* Private helper function: Transmit serial data to DAC via Audio
+ * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
+ * Dacpol contains valid target image.
+ */
+static void SendDAC(struct comedi_device *dev, uint32_t val)
+{
+
+ /* START THE SERIAL CLOCK RUNNING ------------- */
+
+ /* Assert DAC polarity control and enable gating of DAC serial clock
+ * and audio bit stream signals. At this point in time we must be
+ * assured of being in time slot 0. If we are not in slot 0, the
+ * serial clock and audio stream signals will be disabled; this is
+ * because the following DEBIwrite statement (which enables signals
+ * to be passed through the gate array) would execute before the
+ * trailing edge of WS1/WS3 (which turns off the signals), thus
+ * causing the signals to be inactive during the DAC write.
+ */
+ DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
+
+ /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
+
+ /* Copy DAC setpoint value to DAC's output DMA buffer. */
+
+ /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
+ *devpriv->pDacWBuf = val;
+
+ /* enab the output DMA transfer. This will cause the DMAC to copy
+ * the DAC's data value to A2's output FIFO. The DMA transfer will
+ * then immediately terminate because the protection address is
+ * reached upon transfer of the first DWORD value.
+ */
+ MC_ENABLE(P_MC1, MC1_A2OUT);
+
+ /* While the DMA transfer is executing ... */
+
+ /* Reset Audio2 output FIFO's underflow flag (along with any other
+ * FIFO underflow/overflow flags). When set, this flag will
+ * indicate that we have emerged from slot 0.
+ */
+ WR7146(P_ISR, ISR_AFOU);
+
+ /* Wait for the DMA transfer to finish so that there will be data
+ * available in the FIFO when time slot 1 tries to transfer a DWORD
+ * from the FIFO to the output buffer register. We test for DMA
+ * Done by polling the DMAC enable flag; this flag is automatically
+ * cleared when the transfer has finished.
+ */
+ while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
+ ;
+
+ /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
+
+ /* FIFO data is now available, so we enable execution of time slots
+ * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
+ * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
+ * detection.
+ */
+ SETVECT(0, XSD2 | RSD3 | SIB_A2);
+
+ /* Wait for slot 1 to execute to ensure that the Packet will be
+ * transmitted. This is detected by polling the Audio2 output FIFO
+ * underflow flag, which will be set when slot 1 execution has
+ * finished transferring the DAC's data DWORD from the output FIFO
+ * to the output buffer register.
+ */
+ while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
+ ;
+
+ /* Set up to trap execution at slot 0 when the TSL sequencer cycles
+ * back to slot 0 after executing the EOS in slot 5. Also,
+ * simultaneously shift out and in the 0x00 that is ALWAYS the value
+ * stored in the last byte to be shifted out of the FIFO's DWORD
+ * buffer register.
+ */
+ SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
+
+ /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
+
+ /* Wait for the TSL to finish executing all time slots before
+ * exiting this function. We must do this so that the next DAC
+ * write doesn't start, thereby enabling clock/chip select signals:
+ *
+ * 1. Before the TSL sequence cycles back to slot 0, which disables
+ * the clock/cs signal gating and traps slot // list execution.
+ * we have not yet finished slot 5 then the clock/cs signals are
+ * still gated and we have not finished transmitting the stream.
+ *
+ * 2. While slots 2-5 are executing due to a late slot 0 trap. In
+ * this case, the slot sequence is currently repeating, but with
+ * clock/cs signals disabled. We must wait for slot 0 to trap
+ * execution before setting up the next DAC setpoint DMA transfer
+ * and enabling the clock/cs signals. To detect the end of slot 5,
+ * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
+ * the TSL has not yet finished executing slot 5 ...
+ */
+ if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
+ /* The trap was set on time and we are still executing somewhere
+ * in slots 2-5, so we now wait for slot 0 to execute and trap
+ * TSL execution. This is detected when FB_BUFFER2 MSB changes
+ * from 0xFF to 0x00, which slot 0 causes to happen by shifting
+ * out/in on SD2 the 0x00 that is always referenced by slot 5.
+ */
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
+ ;
+ }
+ /* Either (1) we were too late setting the slot 0 trap; the TSL
+ * sequencer restarted slot 0 before we could set the EOS trap flag,
+ * or (2) we were not late and execution is now trapped at slot 0.
+ * In either case, we must now change slot 0 so that it will store
+ * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
+ * In order to do this, we reprogram slot 0 so that it will shift in
+ * SD3, which is driven only by a pull-up resistor.
+ */
+ SETVECT(0, RSD3 | SIB_A2 | EOS);
+
+ /* Wait for slot 0 to execute, at which time the TSL is setup for
+ * the next DAC write. This is detected when FB_BUFFER2 MSB changes
+ * from 0x00 to 0xFF.
+ */
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
+ ;
+}
+
+/* Private helper function: Write setpoint to an application DAC channel. */
+static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
+{
+ register uint16_t signmask;
+ register uint32_t WSImage;
+
+ /* Adjust DAC data polarity and set up Polarity Control Register */
+ /* image. */
+ signmask = 1 << chan;
+ if (dacdata < 0) {
+ dacdata = -dacdata;
+ devpriv->Dacpol |= signmask;
+ } else
+ devpriv->Dacpol &= ~signmask;
+
+ /* Limit DAC setpoint value to valid range. */
+ if ((uint16_t) dacdata > 0x1FFF)
+ dacdata = 0x1FFF;
+
+ /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
+ * and V3 transmit the setpoint to the target DAC. V4 and V5 send
+ * data to a non-existent TrimDac channel just to keep the clock
+ * running after sending data to the target DAC. This is necessary
+ * to eliminate the clock glitch that would otherwise occur at the
+ * end of the target DAC's serial data stream. When the sequence
+ * restarts at V0 (after executing V5), the gate array automatically
+ * disables gating for the DAC clock and all DAC chip selects.
+ */
+
+ WSImage = (chan & 2) ? WS1 : WS2;
+ /* Choose DAC chip select to be asserted. */
+ SETVECT(2, XSD2 | XFIFO_1 | WSImage);
+ /* Slot 2: Transmit high data byte to target DAC. */
+ SETVECT(3, XSD2 | XFIFO_0 | WSImage);
+ /* Slot 3: Transmit low data byte to target DAC. */
+ SETVECT(4, XSD2 | XFIFO_3 | WS3);
+ /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
+ SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
+ /* Slot 5: running after writing target DAC's low data byte. */
+
+ /* Construct and transmit target DAC's serial packet:
+ * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
+ * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
+ * to a non-existent TrimDac channel) that serves to keep the clock
+ * running after the packet has been sent to the target DAC.
+ */
+ SendDAC(dev, 0x0F000000
+ /* Continue clock after target DAC data (write to non-existent trimdac). */
+ | 0x00004000
+ /* Address the two main dual-DAC devices (TSL's chip select enables
+ * target device). */
+ | ((uint32_t) (chan & 1) << 15)
+ /* Address the DAC channel within the device. */
+ | (uint32_t) dacdata); /* Include DAC setpoint data. */
+
+}
+
+static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
+ uint8_t DacData)
+{
+ uint32_t chan;
+
+ /* Save the new setpoint in case the application needs to read it back later. */
+ devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
+
+ /* Map logical channel number to physical channel number. */
+ chan = (uint32_t) trimchan[LogicalChan];
+
+ /* Set up TSL2 records for TrimDac write operation. All slots shift
+ * 0xFF in from pulled-up SD3 so that the end of the slot sequence
+ * can be detected.
+ */
+
+ SETVECT(2, XSD2 | XFIFO_1 | WS3);
+ /* Slot 2: Send high uint8_t to target TrimDac. */
+ SETVECT(3, XSD2 | XFIFO_0 | WS3);
+ /* Slot 3: Send low uint8_t to target TrimDac. */
+ SETVECT(4, XSD2 | XFIFO_3 | WS1);
+ /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
+ SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
+ /* Slot 5: Send NOP low uint8_t to DAC0. */
+
+ /* Construct and transmit target DAC's serial packet:
+ * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
+ * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
+ * WORD value (that writes a channel 0 NOP command to a non-existent
+ * main DAC channel) that serves to keep the clock running after the
+ * packet has been sent to the target DAC.
+ */
+
+ /* Address the DAC channel within the trimdac device. */
+ SendDAC(dev, ((uint32_t) chan << 8)
+ | (uint32_t) DacData); /* Include DAC setpoint data. */
+}
+
+static void LoadTrimDACs(struct comedi_device *dev)
+{
+ register uint8_t i;
+
+ /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
+ for (i = 0; i < ARRAY_SIZE(trimchan); i++)
+ WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
+}
+
static unsigned int s626_ai_reg_to_uint(int data)
{
unsigned int tempdata;
@@ -1938,248 +2172,6 @@ static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
/* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
}

-/* *********** DAC FUNCTIONS *********** */
-
-/* Slot 0 base settings. */
-#define VECT0 (XSD2 | RSD3 | SIB_A2)
-/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
-
-/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
-static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
-
-/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
-static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
-
-static void LoadTrimDACs(struct comedi_device *dev)
-{
- register uint8_t i;
-
- /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
- for (i = 0; i < ARRAY_SIZE(trimchan); i++)
- WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
-}
-
-static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
- uint8_t DacData)
-{
- uint32_t chan;
-
- /* Save the new setpoint in case the application needs to read it back later. */
- devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
-
- /* Map logical channel number to physical channel number. */
- chan = (uint32_t) trimchan[LogicalChan];
-
- /* Set up TSL2 records for TrimDac write operation. All slots shift
- * 0xFF in from pulled-up SD3 so that the end of the slot sequence
- * can be detected.
- */
-
- SETVECT(2, XSD2 | XFIFO_1 | WS3);
- /* Slot 2: Send high uint8_t to target TrimDac. */
- SETVECT(3, XSD2 | XFIFO_0 | WS3);
- /* Slot 3: Send low uint8_t to target TrimDac. */
- SETVECT(4, XSD2 | XFIFO_3 | WS1);
- /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
- SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
- /* Slot 5: Send NOP low uint8_t to DAC0. */
-
- /* Construct and transmit target DAC's serial packet:
- * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
- * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
- * WORD value (that writes a channel 0 NOP command to a non-existent
- * main DAC channel) that serves to keep the clock running after the
- * packet has been sent to the target DAC.
- */
-
- /* Address the DAC channel within the trimdac device. */
- SendDAC(dev, ((uint32_t) chan << 8)
- | (uint32_t) DacData); /* Include DAC setpoint data. */
-}
-
-/* Private helper function: Write setpoint to an application DAC channel. */
-
-static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
-{
- register uint16_t signmask;
- register uint32_t WSImage;
-
- /* Adjust DAC data polarity and set up Polarity Control Register */
- /* image. */
- signmask = 1 << chan;
- if (dacdata < 0) {
- dacdata = -dacdata;
- devpriv->Dacpol |= signmask;
- } else
- devpriv->Dacpol &= ~signmask;
-
- /* Limit DAC setpoint value to valid range. */
- if ((uint16_t) dacdata > 0x1FFF)
- dacdata = 0x1FFF;
-
- /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
- * and V3 transmit the setpoint to the target DAC. V4 and V5 send
- * data to a non-existent TrimDac channel just to keep the clock
- * running after sending data to the target DAC. This is necessary
- * to eliminate the clock glitch that would otherwise occur at the
- * end of the target DAC's serial data stream. When the sequence
- * restarts at V0 (after executing V5), the gate array automatically
- * disables gating for the DAC clock and all DAC chip selects.
- */
-
- WSImage = (chan & 2) ? WS1 : WS2;
- /* Choose DAC chip select to be asserted. */
- SETVECT(2, XSD2 | XFIFO_1 | WSImage);
- /* Slot 2: Transmit high data byte to target DAC. */
- SETVECT(3, XSD2 | XFIFO_0 | WSImage);
- /* Slot 3: Transmit low data byte to target DAC. */
- SETVECT(4, XSD2 | XFIFO_3 | WS3);
- /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
- SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
- /* Slot 5: running after writing target DAC's low data byte. */
-
- /* Construct and transmit target DAC's serial packet:
- * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
- * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
- * to a non-existent TrimDac channel) that serves to keep the clock
- * running after the packet has been sent to the target DAC.
- */
- SendDAC(dev, 0x0F000000
- /* Continue clock after target DAC data (write to non-existent trimdac). */
- | 0x00004000
- /* Address the two main dual-DAC devices (TSL's chip select enables
- * target device). */
- | ((uint32_t) (chan & 1) << 15)
- /* Address the DAC channel within the device. */
- | (uint32_t) dacdata); /* Include DAC setpoint data. */
-
-}
-
-/* Private helper function: Transmit serial data to DAC via Audio
- * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
- * Dacpol contains valid target image.
- */
-
-static void SendDAC(struct comedi_device *dev, uint32_t val)
-{
-
- /* START THE SERIAL CLOCK RUNNING ------------- */
-
- /* Assert DAC polarity control and enable gating of DAC serial clock
- * and audio bit stream signals. At this point in time we must be
- * assured of being in time slot 0. If we are not in slot 0, the
- * serial clock and audio stream signals will be disabled; this is
- * because the following DEBIwrite statement (which enables signals
- * to be passed through the gate array) would execute before the
- * trailing edge of WS1/WS3 (which turns off the signals), thus
- * causing the signals to be inactive during the DAC write.
- */
- DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
-
- /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
-
- /* Copy DAC setpoint value to DAC's output DMA buffer. */
-
- /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
- *devpriv->pDacWBuf = val;
-
- /* enab the output DMA transfer. This will cause the DMAC to copy
- * the DAC's data value to A2's output FIFO. The DMA transfer will
- * then immediately terminate because the protection address is
- * reached upon transfer of the first DWORD value.
- */
- MC_ENABLE(P_MC1, MC1_A2OUT);
-
- /* While the DMA transfer is executing ... */
-
- /* Reset Audio2 output FIFO's underflow flag (along with any other
- * FIFO underflow/overflow flags). When set, this flag will
- * indicate that we have emerged from slot 0.
- */
- WR7146(P_ISR, ISR_AFOU);
-
- /* Wait for the DMA transfer to finish so that there will be data
- * available in the FIFO when time slot 1 tries to transfer a DWORD
- * from the FIFO to the output buffer register. We test for DMA
- * Done by polling the DMAC enable flag; this flag is automatically
- * cleared when the transfer has finished.
- */
- while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
- ;
-
- /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
-
- /* FIFO data is now available, so we enable execution of time slots
- * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
- * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
- * detection.
- */
- SETVECT(0, XSD2 | RSD3 | SIB_A2);
-
- /* Wait for slot 1 to execute to ensure that the Packet will be
- * transmitted. This is detected by polling the Audio2 output FIFO
- * underflow flag, which will be set when slot 1 execution has
- * finished transferring the DAC's data DWORD from the output FIFO
- * to the output buffer register.
- */
- while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
- ;
-
- /* Set up to trap execution at slot 0 when the TSL sequencer cycles
- * back to slot 0 after executing the EOS in slot 5. Also,
- * simultaneously shift out and in the 0x00 that is ALWAYS the value
- * stored in the last byte to be shifted out of the FIFO's DWORD
- * buffer register.
- */
- SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
-
- /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
-
- /* Wait for the TSL to finish executing all time slots before
- * exiting this function. We must do this so that the next DAC
- * write doesn't start, thereby enabling clock/chip select signals:
- *
- * 1. Before the TSL sequence cycles back to slot 0, which disables
- * the clock/cs signal gating and traps slot // list execution.
- * we have not yet finished slot 5 then the clock/cs signals are
- * still gated and we have not finished transmitting the stream.
- *
- * 2. While slots 2-5 are executing due to a late slot 0 trap. In
- * this case, the slot sequence is currently repeating, but with
- * clock/cs signals disabled. We must wait for slot 0 to trap
- * execution before setting up the next DAC setpoint DMA transfer
- * and enabling the clock/cs signals. To detect the end of slot 5,
- * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
- * the TSL has not yet finished executing slot 5 ...
- */
- if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
- /* The trap was set on time and we are still executing somewhere
- * in slots 2-5, so we now wait for slot 0 to execute and trap
- * TSL execution. This is detected when FB_BUFFER2 MSB changes
- * from 0xFF to 0x00, which slot 0 causes to happen by shifting
- * out/in on SD2 the 0x00 that is always referenced by slot 5.
- */
- while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
- ;
- }
- /* Either (1) we were too late setting the slot 0 trap; the TSL
- * sequencer restarted slot 0 before we could set the EOS trap flag,
- * or (2) we were not late and execution is now trapped at slot 0.
- * In either case, we must now change slot 0 so that it will store
- * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
- * In order to do this, we reprogram slot 0 so that it will shift in
- * SD3, which is driven only by a pull-up resistor.
- */
- SETVECT(0, RSD3 | SIB_A2 | EOS);
-
- /* Wait for slot 0 to execute, at which time the TSL is setup for
- * the next DAC write. This is detected when FB_BUFFER2 MSB changes
- * from 0x00 to 0xFF.
- */
- while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
- ;
-}
-
static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
{
DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
--
1.7.11

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/