[PATCH 7/8] mm: memcontrol: account "kmem" consumers in cgroup2 memory controller

From: Johannes Weiner
Date: Tue Dec 08 2015 - 13:36:12 EST


The original cgroup memory controller has an extension to account slab
memory (and other "kernel memory" consumers) in a separate "kmem"
counter, once the user set an explicit limit on that "kmem" pool.

However, this includes various consumers whose sizes are directly
linked to userspace activity. Accounting them as an optional "kmem"
extension is problematic for several reasons:

1. It leaves the main memory interface with incomplete semantics. A
user who puts their workload into a cgroup and configures a memory
limit does not expect us to leave holes in the containment as big
as the dentry and inode cache, or the kernel stack pages.

2. If the limit set on this random historical subgroup of consumers is
reached, subsequent allocations will fail even when the main memory
pool available to the cgroup is not yet exhausted and/or has
reclaimable memory in it.

3. Calling it 'kernel memory' is misleading. The dentry and inode
caches are no more 'kernel' (or no less 'user') memory than the
page cache itself. Treating these consumers as different classes is
a historical implementation detail that should not leak to users.

So, in addition to page cache, anonymous memory, and network socket
memory, account the following memory consumers per default in the
cgroup2 memory controller:

- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems.

This should give us reasonable memory isolation for most common
workloads out of the box.

Signed-off-by: Johannes Weiner <hannes@xxxxxxxxxxx>
---
mm/memcontrol.c | 18 +++++++++++-------
1 file changed, 11 insertions(+), 7 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index ab72c47..d048137 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2356,13 +2356,14 @@ int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
if (!memcg_kmem_online(memcg))
return 0;

- if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
- return -ENOMEM;
-
ret = try_charge(memcg, gfp, nr_pages);
- if (ret) {
- page_counter_uncharge(&memcg->kmem, nr_pages);
+ if (ret)
return ret;
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
+ !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
+ cancel_charge(memcg, nr_pages);
+ return -ENOMEM;
}

page->mem_cgroup = memcg;
@@ -2391,7 +2392,9 @@ void __memcg_kmem_uncharge(struct page *page, int order)

VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);

- page_counter_uncharge(&memcg->kmem, nr_pages);
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ page_counter_uncharge(&memcg->kmem, nr_pages);
+
page_counter_uncharge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
@@ -2895,7 +2898,8 @@ static int memcg_propagate_kmem(struct mem_cgroup *memcg)
* onlined after this point, because it has at least one child
* already.
*/
- if (memcg_kmem_online(parent))
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
+ memcg_kmem_online(parent))
ret = memcg_online_kmem(memcg);
mutex_unlock(&memcg_limit_mutex);
return ret;
--
2.6.3

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/