
Concurrency with tools/memory-model

Andrea Parri
andrea.parri@amarulasolutions.com

Kernel Summit 2018



. . . (part of) the LKMM subsystem

Merged in 4.17

∼ 5000 LoC and documentation

10 maintainers, 2 reviewers



Motivations



Test it, stupid!

static int data = 0;

static int flag = 0;

void producer(void)

{

WRITE_ONCE(data, 1);

smp_store_release(&flag, 1);

}

void consumer(void)

{

int r_flag;

r_flag = smp_load_acquire(&flag);

if (r_flag) {

int r_data;

r_data = READ_ONCE(data);

WARN_ON(r_data == 0);

/* process r_data */

}

}



Read the fine manual!

#define __smp_store_release(p, v) \

do { \

union { typeof(*p) __val; char __c[1]; } __u = \

{ .__val = (__force typeof(*p)) (v) }; \

compiletime_assert_atomic_type(*p); \

switch (sizeof(*p)) { \

[...] \

case 4: \

asm volatile ("stlr %w1, %0" \

: "=Q" (*p) \

: "r" (*(__u32 *)__u.__c) \

: "memory"); \

break; \

[...] \

} \

} while (0)



Are you for real?? (and gut feelings. . . )

Joe Random Developer is likely not going to review 10+

implementations of smp store release()

Architectures’ maintainers are likely not going to review
Joe’s patches about his cool new feature X



The LKMM as an intermediary

The purpose of this document is twofold:

(1) to specify the minimum functionality that one can

rely on for any particular barrier, and

(2) to provide a guide as to how to use the barriers

that are available.

(from Documentation/memory-barriers.txt)



Basic usage



Litmus tests, aka querying the memory model

C producer-consumer

{

int data = 0;

int flag = 0;

}

P0(int *data, int *flag)

{

WRITE_ONCE(*data, 1);

smp_store_release(flag, 1);

}

P1(int *data, int *flag)

{

int r_flag;

int r_data = -1;

r_flag = smp_load_acquire(flag);

if (r_flag) {

r_data = READ_ONCE(*data);

}

}

exists (1:r_flag=1 /\ 1:r_data=0)



Basic usage: reachable states

$ herd7 -conf linux-kernel.cfg producer-consumer.litmus

Test producer-consumer Allowed

States 2

1:r_data=-1; 1:r_flag=0;

1:r_data=1; 1:r_flag=1;

No

Witnesses

Positive: 0 Negative: 2

Condition exists (1:r_flag=1 /\ 1:r_data=0)

[...]



The LKMM as a formal specification

This memory model can (roughly speaking) be thought of

as an automated version of memory-barriers.txt. It is

written in the "cat" language, which is executable by

the externally provided "herd7" simulator [...]

Paul E. McKenney

LIMITATIONS

===========

1. [...] but there is [...] code that uses bare C memory accesses

[...] this [...] in turn limits LKMM’s ability to accurately

model address, control, and data dependencies.

2. Multiple access sizes for a single variable are not supported

and neither are misaligned or partially overlapping accesses.

3. Exceptions and interrupts are not modeled. [...]

4. I/O such as MMIO or DMA is not supported.

5. Self-modifying code [...] is not supported.

6. Complete modeling of all variants of atomic read-modify-write

operations, locking primitives, and RCU is not provided. [...]

(from tools/memory-model/README)



Examples



Coherence

C read-read-coherence

{

int x = 0;

}

P0(int *x)

{

WRITE_ONCE(*x, 1);

}

P1(int *x)

{

int r0;

int r1;

r0 = READ_ONCE(*x);

r1 = READ_ONCE(*x);

}

exists (1:r0=1 /\ 1:r1=0)

This ‘exists’ clause can NOT be satisfied!



Execution and propagation (release and acquire)

C message-passing

{

int x = 0;

int y = 0;

}

P0(int *x, int *y)

{

WRITE_ONCE(*x, 1);

smp_store_release(y, 1);

}

P1(int *x, int *y)

{

int r0;

int r1;

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

}

exists (1:r0=1 /\ 1:r1=0)

This ‘exists’ clause can NOT be satisfied!



Cumulativity

C release-is-(A-)cumulative

{

int x = 0;

int y = 0;

}

P0(int *x)

{

WRITE_ONCE(*x, 1);

}

P1(int *x, int *y)

{

int r0;

r0 = READ_ONCE(*x);

smp_store_release(y, 1);

}

P2(int *x, int *y)

{

int r0;

int r1;

r0 = smp_load_acquire(y);

r1 = READ_ONCE(*x);

}

exists (1:r0=1 /\ 2:r0=1 /\ 2:r1=0)

This ‘exists’ clause can NOT be satisfied!



Execution and propagation (full memory barriers)

C store-buffering

{

int x = 0;

int y = 0;

}

P0(int *x, int *y)

{

int r0;

WRITE_ONCE(*x, 1);

smp_mb();

r0 = READ_ONCE(*y);

}

P1(int *x, int *y)

{

int r0;

WRITE_ONCE(*y, 1);

smp_mb();

r0 = READ_ONCE(*x);

}

exists (0:r0=0 /\ 1:r0=0)

This ‘exists’ clause can NOT be satisfied!



Atomicity

C atomic-increment

{

atomic_t v = ATOMIC_INIT(0);

}

P0(atomic_t *v)

{

int r0;

r0 = atomic_inc_return_relaxed(v);

}

P1(atomic_t *v)

{

int r0;

r0 = atomic_inc_return_relaxed(v);

}

exists (~v=2)

This ‘exists’ clause can NOT be satisfied!



Mappings to processors

x86 powerpc arm64 riscv

READ ONCE() mov ldw ldr lw

smp load acquire() mov ldw; lwsync ldar lw; fence r,rw

smp store release() mov lwsync; stw stlr fence rw,w; sw

smp mb() lock; addl sync dmb ish fence rw,rw

atomic inc() lock; incl LL/SC stadd amoadd.w

I’m now seeing 1% difference between the runs with 0.3% noise

for either of them, [...] I still think that is significant

Will Deacon, on ldr vs. ldar in rcu_dereference()

18-32% slower, or 23-47 cycles. [...] So although this test

is not a real workload it is a proxy for something people do

complain to us about.

Michael Ellerman, on lwsync vs. sync in spin_unlock()



Concluding remarks



‘the minimum functionality...’ we can rely on?

unsigned long __xchg_u32(volatile u32 *ptr, u32 new)

{

[...] spin_lock_irqsave(ATOMIC_HASH(ptr), flags);

prev = *ptr; *ptr = new; [...]

(from arch/sparc/lib/atomic32.c)

In fact, a recent bug (since fixed) caused GCC to incorrectly

use this optimization in a volatile store. In the absence of

such bugs, use of WRITE_ONCE() prevents store tearing [...]

(from Documentation/memory-barriers.txt)

("lightweight sync") The memory barrier provides an ordering

function for the storage accesses caused by Load, Store, and

dcbz instructions [...] in storage that is [...]

(from Power ISA Version 3.0B - Sect. 4.6.3, p. 873)

On all versions of the Cortex-A9 MPCore processor [...]

successive reads from the same location [...] can result

in the read values not appearing in program order.

(from Read-after-Read Hazards - ARM Ref. 761319)



‘a guide as to how to use...’ memory barriers?

Did you consider locking, RCU, . . . ?

Write a litmus test, or try to

Cc: these people. . .



We want to hear from you!

Maintainers: Alan Stern, Andrea Parri, Will Deacon, Peter Zijlstra,

Boqun Feng, Nicholas Piggin, David Howells,

Jade Alglave, Luc Maranget, and Paul E. McKenney

Reviewers: Akira Yokosawa and Daniel Lustig

Email lists: linux-kernel@vger.kernel.org,

linux-arch@vger.kernel.org



The perfect memory-barrier comment?

/* Guarantees that we have nice foo’s. */

smp_store_release(&foo->flag, new_flag);



The perfect memory-barrier comment?

WRITE_ONCE(foo->data, new_data); /* A */

[...]

/*

* Guarantees that we have nice foo’s.

*

* Orders (A) before (B).

*/

smp_store_release(&foo->flag, new_flag); /* B */



The perfect memory-barrier comment?

WRITE_ONCE(foo->data, new_data); /* A */

[...]

/*

* Guarantees that we have nice foo’s.

*

* Orders (A) before (B). Matches the smp_load_acquire()

* in consumer() that orders (C) before (D).

*/

smp_store_release(&foo->flag, new_flag); /* B */



The perfect memory-barrier comment?

WRITE_ONCE(foo->data, new_data); /* A */

[...]

/*

* Guarantees that we have nice foo’s.

*

* Orders (A) before (B). Matches the smp_load_acquire()

* in consumer() that orders (C) before (D).

*

* Forbids: (C) reads-from (B) AND (A) overwrites (D).

*/

smp_store_release(&foo->flag, new_flag); /* B */



The perfect memory-barrier comment?

WRITE_ONCE(foo->data, new_data); /* A */

[...]

/*

* Guarantees that we have nice foo’s.

*

* Orders (A) before (B). Matches the smp_load_acquire()

* in consumer() that orders (C) before (D).

*

* Forbids: (C) reads-from (B) AND (A) overwrites (D).

*/

smp_store_release(&foo->flag, new_flag); /* B */



What’s next?

SRCU

Data races?

Mixed-size accesses?



Thanks!

Faster crap is still crap.

Ingo Molnar

Golden rule #12: When the comments do not match the

code, they probably are both wrong ;)

Steven Rostedt


