Re: [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions

From: John Hubbard
Date: Mon Jan 14 2019 - 14:09:28 EST


On 1/14/19 9:21 AM, Jerome Glisse wrote:
> On Mon, Jan 14, 2019 at 03:54:47PM +0100, Jan Kara wrote:
>> On Fri 11-01-19 19:06:08, John Hubbard wrote:
>>> On 1/11/19 6:46 PM, Jerome Glisse wrote:
>>>> On Fri, Jan 11, 2019 at 06:38:44PM -0800, John Hubbard wrote:
>>>> [...]
>>>>
>>>>>>> The other idea that you and Dan (and maybe others) pointed out was a debug
>>>>>>> option, which we'll certainly need in order to safely convert all the call
>>>>>>> sites. (Mirror the mappings at a different kernel offset, so that put_page()
>>>>>>> and put_user_page() can verify that the right call was made.) That will be
>>>>>>> a separate patchset, as you recommended.
>>>>>>>
>>>>>>> I'll even go as far as recommending the page lock itself. I realize that this
>>>>>>> adds overhead to gup(), but we *must* hold off page_mkclean(), and I believe
>>>>>>> that this (below) has similar overhead to the notes above--but is *much* easier
>>>>>>> to verify correct. (If the page lock is unacceptable due to being so widely used,
>>>>>>> then I'd recommend using another page bit to do the same thing.)
>>>>>>
>>>>>> Please page lock is pointless and it will not work for GUP fast. The above
>>>>>> scheme do work and is fine. I spend the day again thinking about all memory
>>>>>> ordering and i do not see any issues.
>>>>>>
>>>>>
>>>>> Why is it that page lock cannot be used for gup fast, btw?
>>>>
>>>> Well it can not happen within the preempt disable section. But after
>>>> as a post pass before GUP_fast return and after reenabling preempt then
>>>> it is fine like it would be for regular GUP. But locking page for GUP
>>>> is also likely to slow down some workload (with direct-IO).
>>>>
>>>
>>> Right, and so to crux of the matter: taking an uncontended page lock
>>> involves pretty much the same set of operations that your approach does.
>>> (If gup ends up contended with the page lock for other reasons than these
>>> paths, that seems surprising.) I'd expect very similar performance.
>>>
>>> But the page lock approach leads to really dramatically simpler code (and
>>> code reviews, let's not forget). Any objection to my going that
>>> direction, and keeping this idea as a Plan B? I think the next step will
>>> be, once again, to gather some performance metrics, so maybe that will
>>> help us decide.
>>
>> FWIW I agree that using page lock for protecting page pinning (and thus
>> avoid races with page_mkclean()) looks simpler to me as well and I'm not
>> convinced there will be measurable difference to the more complex scheme
>> with barriers Jerome suggests unless that page lock contended. Jerome is
>> right that you cannot just do lock_page() in gup_fast() path. There you
>> have to do trylock_page() and if that fails just bail out to the slow gup
>> path.
>>

Yes, understood about gup fast.

>> Regarding places other than page_mkclean() that need to check pinned state:
>> Definitely page migration will want to check whether the page is pinned or
>> not so that it can deal differently with short-term page references vs
>> longer-term pins.

OK.

>>
>> Also there is one more idea I had how to record number of pins in the page:
>>
>> #define PAGE_PIN_BIAS 1024
>>
>> get_page_pin()
>> atomic_add(&page->_refcount, PAGE_PIN_BIAS);
>>
>> put_page_pin();
>> atomic_add(&page->_refcount, -PAGE_PIN_BIAS);
>>
>> page_pinned(page)
>> (atomic_read(&page->_refcount) - page_mapcount(page)) > PAGE_PIN_BIAS
>>
>> This is pretty trivial scheme. It still gives us 22-bits for page pins
>> which should be plenty (but we should check for that and bail with error if
>> it would overflow). Also there will be no false negatives and false
>> positives only if there are more than 1024 non-page-table references to the
>> page which I expect to be rare (we might want to also subtract
>> hpage_nr_pages() for radix tree references to avoid excessive false
>> positives for huge pages although at this point I don't think they would
>> matter). Thoughts?
>
> Racing PUP are as likely to cause issues:
>
> CPU0 | CPU1 | CPU2
> | |
> | PUP() |
> page_pinned(page) | |
> (page_count(page) - | |
> page_mapcount(page)) | |
> | | GUP()
>
> So here the refcount snap-shot does not include the second GUP and
> we can have a false negative ie the page_pinned() will return false
> because of the PUP happening just before on CPU1 despite the racing
> GUP on CPU2 just after.
>
> I believe only either lock or memory ordering with barrier can
> guarantee that we do not miss GUP ie no false negative. Still the
> bias idea might be usefull as with it we should not need a flag.
>
> So to make the above safe it would still need the page write back
> double check that i described so that GUP back-off if it raced with
> page_mkclean,clear_page_dirty_for_io and the fs write page call back
> which call test_set_page_writeback() (yes it is very unlikely but
> might still happen).
>
>
> I still need to ponder some more on all the races.
>

Tentatively, so far I prefer the _mapcount scheme, because it seems more
accurate to add mapcounts than to overload the _refcount field. And the
implementation is going to be cleaner. And we've already figured out the
races.

For example, the following already survives a basic boot to graphics mode.
It requires a bunch of callsite conversions, and a page flag (neither of which
is shown here), and may also have "a few" gross conceptual errors, but take a
peek: