[PATCHv6 07/10] acpi/hmat: Register processor domain to its memory

From: Keith Busch
Date: Thu Feb 14 2019 - 12:11:17 EST


If the HMAT Subsystem Address Range provides a valid processor proximity
domain for a memory domain, or a processor domain matches the performance
access of the valid processor proximity domain, register the memory
target with that initiator so this relationship will be visible under
the node's sysfs directory.

By registering only the best performing relationships, this provides the
most useful information applications may want to know when considering
which CPU they should run on for a given memory node, or which memory
node they should allocate memory from for a given CPU.

Since HMAT requires valid address ranges have an equivalent SRAT entry,
verify each memory target satisfies this requirement.

Signed-off-by: Keith Busch <keith.busch@xxxxxxxxx>
---
drivers/acpi/hmat/Kconfig | 1 +
drivers/acpi/hmat/hmat.c | 396 +++++++++++++++++++++++++++++++++++++++++++++-
2 files changed, 396 insertions(+), 1 deletion(-)

diff --git a/drivers/acpi/hmat/Kconfig b/drivers/acpi/hmat/Kconfig
index c9637e2e7514..08e972ead159 100644
--- a/drivers/acpi/hmat/Kconfig
+++ b/drivers/acpi/hmat/Kconfig
@@ -2,6 +2,7 @@
config ACPI_HMAT
bool "ACPI Heterogeneous Memory Attribute Table Support"
depends on ACPI_NUMA
+ select HMEM_REPORTING
help
If set, this option causes the kernel to set the memory NUMA node
relationships and access attributes in accordance with ACPI HMAT
diff --git a/drivers/acpi/hmat/hmat.c b/drivers/acpi/hmat/hmat.c
index 7a809f6a5119..b29f7160c7bb 100644
--- a/drivers/acpi/hmat/hmat.c
+++ b/drivers/acpi/hmat/hmat.c
@@ -13,11 +13,105 @@
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
+#include <linux/list_sort.h>
#include <linux/node.h>
#include <linux/sysfs.h>

static __initdata u8 hmat_revision;

+static __initdata LIST_HEAD(targets);
+static __initdata LIST_HEAD(initiators);
+static __initdata LIST_HEAD(localities);
+
+/*
+ * The defined enum order is used to prioritize attributes selecting the best
+ * performing node.
+ */
+enum locality_types {
+ WRITE_LATENCY,
+ READ_LATENCY,
+ WRITE_BANDWIDTH,
+ READ_BANDWIDTH,
+};
+
+static struct memory_locality *localities_types[4];
+
+struct memory_target {
+ struct list_head node;
+ unsigned int memory_pxm;
+ unsigned int processor_pxm;
+ struct node_hmem_attrs hmem_attrs;
+};
+
+struct memory_initiator {
+ struct list_head node;
+ unsigned int processor_pxm;
+};
+
+struct memory_locality {
+ struct list_head node;
+ struct acpi_hmat_locality *hmat_loc;
+};
+
+static __init struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
+{
+ struct memory_initiator *intitator;
+
+ list_for_each_entry(intitator, &initiators, node)
+ if (intitator->processor_pxm == cpu_pxm)
+ return intitator;
+ return NULL;
+}
+
+static __init struct memory_target *find_mem_target(unsigned int mem_pxm)
+{
+ struct memory_target *target;
+
+ list_for_each_entry(target, &targets, node)
+ if (target->memory_pxm == mem_pxm)
+ return target;
+ return NULL;
+}
+
+static __init void alloc_memory_initiator(unsigned int cpu_pxm)
+{
+ struct memory_initiator *intitator;
+
+ if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
+ return;
+
+ intitator = find_mem_initiator(cpu_pxm);
+ if (intitator)
+ return;
+
+ intitator = kzalloc(sizeof(*intitator), GFP_KERNEL);
+ if (!intitator)
+ return;
+
+ intitator->processor_pxm = cpu_pxm;
+ list_add_tail(&intitator->node, &initiators);
+}
+
+static __init void alloc_memory_target(unsigned int mem_pxm)
+{
+ struct memory_target *target;
+
+ if (pxm_to_node(mem_pxm) == NUMA_NO_NODE)
+ return;
+
+ target = find_mem_target(mem_pxm);
+ if (target)
+ return;
+
+ target = kzalloc(sizeof(*target), GFP_KERNEL);
+ if (!target)
+ return;
+
+ target->memory_pxm = mem_pxm;
+ target->processor_pxm = PXM_INVAL;
+ list_add_tail(&target->node, &targets);
+}
+
static __init const char *hmat_data_type(u8 type)
{
switch (type) {
@@ -89,14 +183,83 @@ static __init u32 hmat_normalize(u16 entry, u64 base, u8 type)
return value;
}

+static __init void hmat_update_target_access(struct memory_target *target,
+ u8 type, u32 value)
+{
+ switch (type) {
+ case ACPI_HMAT_ACCESS_LATENCY:
+ target->hmem_attrs.read_latency = value;
+ target->hmem_attrs.write_latency = value;
+ break;
+ case ACPI_HMAT_READ_LATENCY:
+ target->hmem_attrs.read_latency = value;
+ break;
+ case ACPI_HMAT_WRITE_LATENCY:
+ target->hmem_attrs.write_latency = value;
+ break;
+ case ACPI_HMAT_ACCESS_BANDWIDTH:
+ target->hmem_attrs.read_bandwidth = value;
+ target->hmem_attrs.write_bandwidth = value;
+ break;
+ case ACPI_HMAT_READ_BANDWIDTH:
+ target->hmem_attrs.read_bandwidth = value;
+ break;
+ case ACPI_HMAT_WRITE_BANDWIDTH:
+ target->hmem_attrs.write_bandwidth = value;
+ break;
+ default:
+ break;
+ }
+}
+
+static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
+{
+ struct memory_locality *loc;
+
+ loc = kzalloc(sizeof(*loc), GFP_KERNEL);
+ if (!loc) {
+ pr_notice_once("Failed to allocate HMAT locality\n");
+ return;
+ }
+
+ loc->hmat_loc = hmat_loc;
+ list_add_tail(&loc->node, &localities);
+
+ switch (hmat_loc->data_type) {
+ case ACPI_HMAT_ACCESS_LATENCY:
+ localities_types[READ_LATENCY] = loc;
+ localities_types[WRITE_LATENCY] = loc;
+ break;
+ case ACPI_HMAT_READ_LATENCY:
+ localities_types[READ_LATENCY] = loc;
+ break;
+ case ACPI_HMAT_WRITE_LATENCY:
+ localities_types[WRITE_LATENCY] = loc;
+ break;
+ case ACPI_HMAT_ACCESS_BANDWIDTH:
+ localities_types[READ_BANDWIDTH] = loc;
+ localities_types[WRITE_BANDWIDTH] = loc;
+ break;
+ case ACPI_HMAT_READ_BANDWIDTH:
+ localities_types[READ_BANDWIDTH] = loc;
+ break;
+ case ACPI_HMAT_WRITE_BANDWIDTH:
+ localities_types[WRITE_BANDWIDTH] = loc;
+ break;
+ default:
+ break;
+ }
+}
+
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_locality *hmat_loc = (void *)header;
+ struct memory_target *target;
unsigned int init, targ, total_size, ipds, tpds;
u32 *inits, *targs, value;
u16 *entries;
- u8 type;
+ u8 type, mem_hier;

if (hmat_loc->header.length < sizeof(*hmat_loc)) {
pr_notice("HMAT: Unexpected locality header length: %d\n",
@@ -105,6 +268,7 @@ static __init int hmat_parse_locality(union acpi_subtable_headers *header,
}

type = hmat_loc->data_type;
+ mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
ipds = hmat_loc->number_of_initiator_Pds;
tpds = hmat_loc->number_of_target_Pds;
total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
@@ -123,6 +287,7 @@ static __init int hmat_parse_locality(union acpi_subtable_headers *header,
targs = inits + ipds;
entries = (u16 *)(targs + tpds);
for (init = 0; init < ipds; init++) {
+ alloc_memory_initiator(inits[init]);
for (targ = 0; targ < tpds; targ++) {
value = hmat_normalize(entries[init * tpds + targ],
hmat_loc->entry_base_unit,
@@ -130,9 +295,18 @@ static __init int hmat_parse_locality(union acpi_subtable_headers *header,
pr_info(" Initiator-Target[%d-%d]:%d%s\n",
inits[init], targs[targ], value,
hmat_data_type_suffix(type));
+
+ if (mem_hier == ACPI_HMAT_MEMORY) {
+ target = find_mem_target(targs[targ]);
+ if (target && target->processor_pxm == inits[init])
+ hmat_update_target_access(target, type, value);
+ }
}
}

+ if (mem_hier == ACPI_HMAT_MEMORY)
+ hmat_add_locality(hmat_loc);
+
return 0;
}

@@ -160,6 +334,7 @@ static int __init hmat_parse_address_range(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_address_range *spa = (void *)header;
+ struct memory_target *target = NULL;

if (spa->header.length != sizeof(*spa)) {
pr_notice("HMAT: Unexpected address range header length: %d\n",
@@ -175,6 +350,23 @@ static int __init hmat_parse_address_range(union acpi_subtable_headers *header,
pr_info("HMAT: Memory Flags:%04x Processor Domain:%d Memory Domain:%d\n",
spa->flags, spa->processor_PD, spa->memory_PD);

+ if (spa->flags & ACPI_HMAT_MEMORY_PD_VALID) {
+ target = find_mem_target(spa->memory_PD);
+ if (!target) {
+ pr_debug("HMAT: Memory Domain missing from SRAT\n");
+ return -EINVAL;
+ }
+ }
+ if (target && spa->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
+ int p_node = pxm_to_node(spa->processor_PD);
+
+ if (p_node == NUMA_NO_NODE) {
+ pr_debug("HMAT: Invalid Processor Domain\n");
+ return -EINVAL;
+ }
+ target->processor_pxm = p_node;
+ }
+
return 0;
}

@@ -198,6 +390,195 @@ static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
}
}

+static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
+ const unsigned long end)
+{
+ struct acpi_srat_mem_affinity *ma = (void *)header;
+
+ if (!ma)
+ return -EINVAL;
+ if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
+ return 0;
+ alloc_memory_target(ma->proximity_domain);
+ return 0;
+}
+
+static __init u32 hmat_initiator_perf(struct memory_target *target,
+ struct memory_initiator *initiator,
+ struct acpi_hmat_locality *hmat_loc)
+{
+ unsigned int ipds, tpds, i, idx = 0, tdx = 0;
+ u32 *inits, *targs;
+ u16 *entries;
+
+ ipds = hmat_loc->number_of_initiator_Pds;
+ tpds = hmat_loc->number_of_target_Pds;
+ inits = (u32 *)(hmat_loc + 1);
+ targs = inits + ipds;
+ entries = (u16 *)(targs + tpds);
+
+ for (i = 0; i < ipds; i++) {
+ if (inits[i] == initiator->processor_pxm) {
+ idx = i;
+ break;
+ }
+ }
+
+ if (i == ipds)
+ return 0;
+
+ for (i = 0; i < tpds; i++) {
+ if (targs[i] == target->memory_pxm) {
+ tdx = i;
+ break;
+ }
+ }
+ if (i == tpds)
+ return 0;
+
+ return hmat_normalize(entries[idx * tpds + tdx],
+ hmat_loc->entry_base_unit,
+ hmat_loc->data_type);
+}
+
+static __init bool hmat_update_best(u8 type, u32 value, u32 *best)
+{
+ bool updated = false;
+
+ if (!value)
+ return false;
+
+ switch (type) {
+ case ACPI_HMAT_ACCESS_LATENCY:
+ case ACPI_HMAT_READ_LATENCY:
+ case ACPI_HMAT_WRITE_LATENCY:
+ if (!*best || *best > value) {
+ *best = value;
+ updated = true;
+ }
+ break;
+ case ACPI_HMAT_ACCESS_BANDWIDTH:
+ case ACPI_HMAT_READ_BANDWIDTH:
+ case ACPI_HMAT_WRITE_BANDWIDTH:
+ if (!*best || *best < value) {
+ *best = value;
+ updated = true;
+ }
+ break;
+ }
+
+ return updated;
+}
+
+static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+ struct memory_initiator *ia;
+ struct memory_initiator *ib;
+ unsigned long *p_nodes = priv;
+
+ ia = list_entry(a, struct memory_initiator, node);
+ ib = list_entry(b, struct memory_initiator, node);
+
+ set_bit(ia->processor_pxm, p_nodes);
+ set_bit(ib->processor_pxm, p_nodes);
+
+ return ia->processor_pxm - ib->processor_pxm;
+}
+
+static __init void hmat_register_target_initiators(struct memory_target *target)
+{
+ static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
+ struct memory_initiator *initiator;
+ unsigned int mem_nid, cpu_nid;
+ struct memory_locality *loc = NULL;
+ u32 best = 0;
+ int i;
+
+ if (target->processor_pxm == PXM_INVAL)
+ return;
+
+ mem_nid = pxm_to_node(target->memory_pxm);
+
+ /*
+ * If the Address Range Structure provides a local processor pxm, link
+ * only that one. Otherwise, find the best performance attribtes and
+ * register all initiators that match.
+ */
+ if (target->processor_pxm != PXM_INVAL) {
+ cpu_nid = pxm_to_node(target->processor_pxm);
+ register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
+ return;
+ }
+
+ if (list_empty(&localities))
+ return;
+
+ /*
+ * We need the initiator list iteration sorted so we can use
+ * bitmap_clear for previously set initiators when we find a better
+ * memory accessor. We'll also use the sorting to prime the candidate
+ * nodes with known initiators.
+ */
+ bitmap_zero(p_nodes, MAX_NUMNODES);
+ list_sort(p_nodes, &initiators, initiator_cmp);
+ for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
+ loc = localities_types[i];
+ if (!loc)
+ continue;
+
+ best = 0;
+ list_for_each_entry(initiator, &initiators, node) {
+ u32 value;
+
+ if (!test_bit(initiator->processor_pxm, p_nodes))
+ continue;
+
+ value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
+ if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
+ bitmap_clear(p_nodes, 0, initiator->processor_pxm);
+ if (value != best)
+ clear_bit(initiator->processor_pxm, p_nodes);
+ }
+ if (best)
+ hmat_update_target_access(target, loc->hmat_loc->data_type, best);
+ }
+
+ for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
+ cpu_nid = pxm_to_node(i);
+ register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
+ }
+}
+
+static __init void hmat_register_targets(void)
+{
+ struct memory_target *target;
+
+ list_for_each_entry(target, &targets, node)
+ hmat_register_target_initiators(target);
+}
+
+static __init void hmat_free_structures(void)
+{
+ struct memory_target *target, *tnext;
+ struct memory_locality *loc, *lnext;
+ struct memory_initiator *intitator, *inext;
+
+ list_for_each_entry_safe(target, tnext, &targets, node) {
+ list_del(&target->node);
+ kfree(target);
+ }
+
+ list_for_each_entry_safe(intitator, inext, &initiators, node) {
+ list_del(&intitator->node);
+ kfree(intitator);
+ }
+
+ list_for_each_entry_safe(loc, lnext, &localities, node) {
+ list_del(&loc->node);
+ kfree(loc);
+ }
+}
+
static __init int hmat_init(void)
{
struct acpi_table_header *tbl;
@@ -207,6 +588,17 @@ static __init int hmat_init(void)
if (srat_disabled())
return 0;

+ status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
+ if (ACPI_FAILURE(status))
+ return 0;
+
+ if (acpi_table_parse_entries(ACPI_SIG_SRAT,
+ sizeof(struct acpi_table_srat),
+ ACPI_SRAT_TYPE_MEMORY_AFFINITY,
+ srat_parse_mem_affinity, 0) < 0)
+ goto out_put;
+ acpi_put_table(tbl);
+
status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
if (ACPI_FAILURE(status))
return 0;
@@ -229,7 +621,9 @@ static __init int hmat_init(void)
goto out_put;
}
}
+ hmat_register_targets();
out_put:
+ hmat_free_structures();
acpi_put_table(tbl);
return 0;
}
--
2.14.4