Re: [PATCH] clk: Add Si5341/Si5340 driver

From: Stephen Boyd
Date: Thu Apr 25 2019 - 19:36:34 EST


Quoting Mike Looijmans (2019-04-24 02:00:38)
> Adds a driver for the Si5341 and Si5340 chips. The driver does not fully
> support all features of these chips, but allows the chip to be used
> without any support from the "clockbuilder pro" software.
>
> If the chip is preprogrammed, that is, you bought one with some defaults
> burned in, or you programmed the NVM in some way, the driver will just
> take over the current settings and only change them on demand. Otherwise
> the input must a fixed XTAL in its most basic configuration (no

must be

> predividers, no feedback, etc.).
>
> The driver supports dynamic changes of multisynth, output dividers and
> enabling or powering down outputs and multisynths.
>
> Signed-off-by: Mike Looijmans <mike.looijmans@xxxxxxxx>
> ---
> diff --git a/drivers/clk/clk-si5341.c b/drivers/clk/clk-si5341.c
> new file mode 100644
> index 000000000000..0d636658853b
> --- /dev/null
> +++ b/drivers/clk/clk-si5341.c
> @@ -0,0 +1,1452 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Driver for Silicon Labs Si5341/Si5340 Clock generator
> + * Copyright (C) 2019 Topic Embedded Products
> + * Author: Mike Looijmans <mike.looijmans@xxxxxxxx>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
> +#include <linux/delay.h>
> +#include <linux/gcd.h>
> +#include <linux/math64.h>
> +#include <linux/i2c.h>
> +#include <linux/module.h>
> +#include <linux/regmap.h>
> +#include <linux/slab.h>
> +
> +#define SI5341_MAX_NUM_OUTPUTS 10
> +#define SI5340_MAX_NUM_OUTPUTS 4
> +
> +#define SI5341_NUM_SYNTH 5
> +#define SI5340_NUM_SYNTH 4
> +
> +/* Range of the synthesizer fractional divider */
> +#define SI5341_SYNTH_N_MIN 10
> +#define SI5341_SYNTH_N_MAX 4095
> +
> +/* The chip can get its input clock from 3 input pins or an XTAL */
> +
> +/* There is one PLL running at 13500â14256 MHz */
> +#define SI5341_PLL_VCO_MIN 13500000000ull
> +#define SI5341_PLL_VCO_MAX 14256000000ull
> +
> +/* The 5 frequency synthesizers obtain their input from the PLL */
> +struct clk_si5341_synth {
> + struct clk_hw hw;
> + struct clk_si5341 *data;
> + u8 index;
> +};
> +#define to_clk_si5341_synth(_hw) \
> + container_of(_hw, struct clk_si5341_synth, hw)
> +
> +/* The output stages can be connected to any synth (full mux) */
> +struct clk_si5341_output {
> + struct clk_hw hw;
> + struct clk_si5341 *data;
> + u8 index;
> +};
> +#define to_clk_si5341_output(_hw) \
> + container_of(_hw, struct clk_si5341_output, hw)
> +
> +struct clk_si5341 {
> + struct clk_hw hw;
> + struct regmap *regmap;
> + struct i2c_client *i2c_client;
> + struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
> + struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
> + struct clk *pxtal;
> + const char *pxtal_name;
> + const u16 *reg_output_offset;
> + const u16 *reg_rdiv_offset;
> + u64 freq_vco; /* 13500â14256 MHz */
> + u8 num_outputs;
> + u8 num_synth;
> +};
> +#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
> +
> +struct clk_si5341_output_config {
> + u8 source_index;
> + u8 out_format_drv_bits;
> + u8 out_cm_ampl_bits;
> + bool synth_master;
> + bool always_on;
> + u32 synth_frequency;
> + u32 clock_frequency;
> +};
> +
> +#define SI5341_PAGE 0x0001
> +#define SI5341_PN_BASE 0x0002
> +#define SI5341_DEVICE_REV 0x0005
> +#define SI5341_STATUS 0x000C
> +#define SI5341_SOFT_RST 0x001C
> +
> +/* Input dividers (48-bit) */
> +#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
> +#define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
> +
> +/* PLL configuration */
> +#define SI5341_PLL_M_NUM 0x0235
> +#define SI5341_PLL_M_DEN 0x023B
> +
> +/* Output configuration */
> +#define SI5341_OUT_CONFIG(output) \
> + ((output)->data->reg_output_offset[(output)->index])
> +#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
> +#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
> +#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
> +#define SI5341_OUT_R_REG(output) \
> + ((output)->data->reg_rdiv_offset[(output)->index])
> +
> +/* Synthesize N divider */
> +#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
> +#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
> +#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
> +
> +/* Synthesizer output enable, phase bypass, power mode */
> +#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
> +#define SI5341_SYNTH_N_PIBYP 0x0A04
> +#define SI5341_SYNTH_N_PDNB 0x0A05
> +#define SI5341_SYNTH_N_CLK_DIS 0x0B4A
> +
> +/* SI5341_OUT_CONFIG bits */
> +#define SI5341_OUT_CFG_PDN BIT(0)
> +#define SI5341_OUT_CFG_OE BIT(1)
> +#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
> +
> +/* Static configuration (to be moved to firmware) */
> +struct si5341_reg_default {
> + u16 address;
> + u8 value;
> +};
> +
> +/* Output configuration registers 0..9 are not quite logically organized */

SUPER SIGH!!!!!!

> +static const u16 si5341_reg_output_offset[] = {
> + 0x0108,
> + 0x010D,
> + 0x0112,
> + 0x0117,
> + 0x011C,
> + 0x0121,
> + 0x0126,
> + 0x012B,
> + 0x0130,
> + 0x013A,
> +};
> +static const u16 si5340_reg_output_offset[] = {
> + 0x0112,
> + 0x0117,
> + 0x0126,
> + 0x012B,
> +};
> +
> +/* The location of the R divider registers */
> +static const u16 si5341_reg_rdiv_offset[] = {
> + 0x024A,
> + 0x024D,
> + 0x0250,
> + 0x0253,
> + 0x0256,
> + 0x0259,
> + 0x025C,
> + 0x025F,
> + 0x0262,
> + 0x0268,
> +};

Put a newline here please.

> +static const u16 si5340_reg_rdiv_offset[] = {
> + 0x0250,
> + 0x0253,
> + 0x025C,
> + 0x025F,
> +};
> +
> +/*
> + * Programming sequence from ClockBuilder, settings to initialize the system
> + * using only the XTAL input, without pre-divider.
> + * This also contains settings that aren't mentioned anywhere in the datasheet.

That's awful! What a non-surprise!

> + * The "known" settings like synth and output configuration are done later.
> + */
> +static const struct si5341_reg_default si5341_reg_defaults[] = {
> + { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
> + { 0x0018, 0xFF }, /* INT mask */
> + { 0x0021, 0x0F }, /* Select XTAL as input */
> + { 0x0022, 0x00 }, /* Not in datasheet */
> + { 0x002B, 0x02 }, /* SPI config */
> + { 0x002C, 0x20 }, /* LOS enable for XTAL */
> + { 0x002D, 0x00 }, /* LOS timing */
> + { 0x002E, 0x00 },
> + { 0x002F, 0x00 },
> + { 0x0030, 0x00 },
> + { 0x0031, 0x00 },
> + { 0x0032, 0x00 },
> + { 0x0033, 0x00 },
> + { 0x0034, 0x00 },
> + { 0x0035, 0x00 },
> + { 0x0036, 0x00 },
> + { 0x0037, 0x00 },
> + { 0x0038, 0x00 }, /* LOS setting (thresholds) */
> + { 0x0039, 0x00 },
> + { 0x003A, 0x00 },
> + { 0x003B, 0x00 },
> + { 0x003C, 0x00 },
> + { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
> + { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
> + { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
> + { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
> + { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
> + { 0x009E, 0x00 }, /* Not in datasheet */
> + { 0x0102, 0x01 }, /* Enable outputs */
> + { 0x013F, 0x00 }, /* Not in datasheet */
> + { 0x0140, 0x00 }, /* Not in datasheet */
> + { 0x0141, 0x40 }, /* OUT LOS */
> + { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
> + { 0x0203, 0x00 },
> + { 0x0204, 0x00 },
> + { 0x0205, 0x00 },
> + { 0x0206, 0x00 }, /* PXAXB (2^x) */
> + { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
> + { 0x0209, 0x00 },
> + { 0x020A, 0x00 },
> + { 0x020B, 0x00 },
> + { 0x020C, 0x00 },
> + { 0x020D, 0x00 },
> + { 0x020E, 0x00 },
> + { 0x020F, 0x00 },
> + { 0x0210, 0x00 },
> + { 0x0211, 0x00 },
> + { 0x0212, 0x00 },
> + { 0x0213, 0x00 },
> + { 0x0214, 0x00 },
> + { 0x0215, 0x00 },
> + { 0x0216, 0x00 },
> + { 0x0217, 0x00 },
> + { 0x0218, 0x00 },
> + { 0x0219, 0x00 },
> + { 0x021A, 0x00 },
> + { 0x021B, 0x00 },
> + { 0x021C, 0x00 },
> + { 0x021D, 0x00 },
> + { 0x021E, 0x00 },
> + { 0x021F, 0x00 },
> + { 0x0220, 0x00 },
> + { 0x0221, 0x00 },
> + { 0x0222, 0x00 },
> + { 0x0223, 0x00 },
> + { 0x0224, 0x00 },
> + { 0x0225, 0x00 },
> + { 0x0226, 0x00 },
> + { 0x0227, 0x00 },
> + { 0x0228, 0x00 },
> + { 0x0229, 0x00 },
> + { 0x022A, 0x00 },
> + { 0x022B, 0x00 },
> + { 0x022C, 0x00 },
> + { 0x022D, 0x00 },
> + { 0x022E, 0x00 },
> + { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
> + { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
> + { 0x026C, 0x00 },
> + { 0x026D, 0x00 },
> + { 0x026E, 0x00 },
> + { 0x026F, 0x00 },
> + { 0x0270, 0x00 },
> + { 0x0271, 0x00 },
> + { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
> + { 0x0339, 0x1F }, /* N_FSTEP_MSK */
> + { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
> + { 0x033C, 0x00 },
> + { 0x033D, 0x00 },
> + { 0x033E, 0x00 },
> + { 0x033F, 0x00 },
> + { 0x0340, 0x00 },
> + { 0x0341, 0x00 },
> + { 0x0342, 0x00 },
> + { 0x0343, 0x00 },
> + { 0x0344, 0x00 },
> + { 0x0345, 0x00 },
> + { 0x0346, 0x00 },
> + { 0x0347, 0x00 },
> + { 0x0348, 0x00 },
> + { 0x0349, 0x00 },
> + { 0x034A, 0x00 },
> + { 0x034B, 0x00 },
> + { 0x034C, 0x00 },
> + { 0x034D, 0x00 },
> + { 0x034E, 0x00 },
> + { 0x034F, 0x00 },
> + { 0x0350, 0x00 },
> + { 0x0351, 0x00 },
> + { 0x0352, 0x00 },
> + { 0x0353, 0x00 },
> + { 0x0354, 0x00 },
> + { 0x0355, 0x00 },
> + { 0x0356, 0x00 },
> + { 0x0357, 0x00 },
> + { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
> + { 0x0359, 0x00 }, /* Nx_DELAY */
> + { 0x035A, 0x00 },
> + { 0x035B, 0x00 },
> + { 0x035C, 0x00 },
> + { 0x035D, 0x00 },
> + { 0x035E, 0x00 },
> + { 0x035F, 0x00 },
> + { 0x0360, 0x00 },
> + { 0x0361, 0x00 },
> + { 0x0362, 0x00 }, /* Nx_DELAY end */
> + { 0x0802, 0x00 }, /* Not in datasheet */
> + { 0x0803, 0x00 }, /* Not in datasheet */
> + { 0x0804, 0x00 }, /* Not in datasheet */
> + { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
> + { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
> + { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
> + { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
> + { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
> + { 0x0A02, 0x00 }, /* Not in datasheet */
> + { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
> +};
> +
> +/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
> +static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
> + u64 *val1, u32 *val2)
> +{
> + int err;
> + u8 r[10];
> +
> + err = regmap_bulk_read(regmap, reg, r, 10);
> + if (err < 0)
> + return err;
> +
> + *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
> + (u32)(r[3] << 24 | r[2] << 16 | r[1] << 8 | r[0]);
> + *val2 = r[9] << 24 | r[8] << 16 | r[7] << 8 | r[6];

Is this almost get_unaligned_le64()? Maybe with some masking thrown in
to ignore bytes at r6 and r7. And then a get_unaligned_le32() after that
starting at r6.

> +
> + return 0;
> +}
> +
> +static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
> + u64 n_num, u32 n_den)
> +{
> + u8 r[10];
> +
> + /* Shift left as far as possible without overflowing */
> + while (!(n_num & BIT(43)) && !(n_den & BIT(31))) {
> + n_num <<= 1;
> + n_den <<= 1;
> + }
> +
> + /* 44 bits (6 bytes) numerator */
> + r[0] = n_num & 0xff;
> + r[1] = (n_num >> 8) & 0xff;
> + r[2] = (n_num >> 16) & 0xff;
> + r[3] = (n_num >> 24) & 0xff;
> + r[4] = (n_num >> 32) & 0xff;
> + r[5] = (n_num >> 40) & 0x0f;
> + /* 32 bits denominator */
> + r[6] = n_den & 0xff;
> + r[7] = (n_den >> 8) & 0xff;
> + r[8] = (n_den >> 16) & 0xff;
> + r[9] = (n_den >> 24) & 0xff;

Maybe some put_unaligned_le64() and put_unaligned_le32()?

> +
> + /* Program the fraction */
> + return regmap_bulk_write(regmap, reg, r, sizeof(r));
> +}
> +
> +/* VCO, we assume it runs at a constant frequency */
> +static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + struct clk_si5341 *data = to_clk_si5341(hw);
> + int err;
> + u64 res;
> + u64 m_num;
> + u32 m_den;
> + unsigned int shift;
> +
> + /* Assume that PDIV is not being used, just read the PLL setting */
> + err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
> + &m_num, &m_den);
> + if (err < 0)
> + return 0;
> +
> + if (!m_num || !m_den)
> + return 0;
> +
> + /*
> + * Though m_num is 64-bit, only the upper bits are actually used. While
> + * calculating m_num and m_den, they are shifted as far as possible to
> + * the left. To avoid 96-bit division here, we just shift them back so
> + * we can do with just 64 bits.
> + */
> + shift = 0;
> + res = m_num;
> + while (res & 0xffff00000000) {
> + ++shift;
> + res >>= 1;
> + }
> + res *= parent_rate;
> + do_div(res, (m_den >> shift));
> +
> + dev_dbg(&data->i2c_client->dev,
> + "%s(p=%lu) m=0x%llx/0x%x shift=%u res=%llu\n",
> + __func__, parent_rate, m_num, m_den, shift, res);
> +
> + /* We cannot return the actual frequency in 32 bit, store it locally */
> + data->freq_vco = res;
> +
> + /* Report kHz since the value is out of range */
> + do_div(res, 1000);
> +
> + return (unsigned long)res;

Uh oh. Do you need really high frequencies that don't fit in 32-bits?

> +}
> +
> +static const struct clk_ops si5341_clk_ops = {
> + .recalc_rate = si5341_clk_recalc_rate,
> +};
> +
> +/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
> +
> +/* The synthesizer is on if all power and enable bits are set */
> +static int si5341_synth_clk_is_on(struct clk_hw *hw)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + int err;
> + u32 val;
> + u8 index = synth->index;
> +
> + err = regmap_read(synth->data->regmap,
> + SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
> + if (err < 0)
> + return err;

Should return 0 for off I suppose. Our "fail to read on/off" logic isn't
really there.

> +
> + dev_dbg(&synth->data->i2c_client->dev, "%s(%u): %#x\n",
> + __func__, index, val);
> +
> + if (!(val & BIT(index)))
> + return false;
> +
> + err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
> + if (err < 0)
> + return err;

Sam comment.

> +
> + if (!(val & BIT(index)))
> + return false;

false is not int, but ok.

> +
> + /* This bit must be 0 for the synthesizer to receive clock input */
> + err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
> + if (err < 0)
> + return err;
> +
> + return !(val & BIT(index));
> +}
> +
> +static void si5341_synth_clk_unprepare(struct clk_hw *hw)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + u8 index = synth->index;
> + u8 mask = BIT(index);

I hope that index isn't large causing overflow here.

> +
> + dev_dbg(&synth->data->i2c_client->dev, "%s(%u)\n", __func__, index);
> +
> + /* Disable output */
> + regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
> + /* Power down */
> + regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_PDNB, mask, 0);
> + /* Disable clock input to synth (set to 1 to disable) */
> + regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_CLK_DIS, mask, mask);
> +}
> +
> +static int si5341_synth_clk_prepare(struct clk_hw *hw)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + int err;
> + u8 index = synth->index;
> + u8 mask = BIT(index);
> +
> + dev_dbg(&synth->data->i2c_client->dev, "%s(%u)\n", __func__, index);
> +
> + /* Power up */
> + err = regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_PDNB, mask, mask);
> + if (err < 0)
> + return err;
> +
> + /* Enable clock input to synth (set bit to 0 to enable) */
> + err = regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_CLK_DIS, mask, 0);
> + if (err < 0)
> + return err;
> +
> + /* Enable output */
> + return regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
> +}
> +
> +/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
> +static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + u64 f;
> + u64 n_num;
> + u32 n_den;
> + int err;
> +
> + err = si5341_decode_44_32(synth->data->regmap,
> + SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
> + if (err < 0)
> + return err;
> +
> + /*
> + * n_num and n_den are shifted left as much as possible, so to prevent
> + * overflow in 64-bit math, we shift n_den 4 bits to the right
> + */
> + f = synth->data->freq_vco;
> + f *= (n_den >> 4);

Do we need these parenthesis? Maybe n_den >>= 4 should preceded this
line.

> +
> + /* Now we need to to 64-bit division: f/n_num */
> + /* And compensate for the 4 bits we dropped */
> + f = div64_u64(f, (n_num >> 4));
> +
> + dev_dbg(&synth->data->i2c_client->dev,
> + "%s(%u) p=%lu n=0x%llx d=0x%x f=%llu\n",
> + __func__, synth->index, parent_rate, n_num, n_den, f);
> +
> + return (unsigned long)f;

Drop useless cast please.

> +}
> +
> +static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long *parent_rate)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + u64 f;
> +
> + dev_dbg(&synth->data->i2c_client->dev, "%s(%u) r=%lu p=%lu\n",
> + __func__, synth->index, rate, *parent_rate);
> +
> + /* The synthesizer accuracy is such that anything in range will work */
> + f = synth->data->freq_vco;
> + do_div(f, SI5341_SYNTH_N_MAX);
> + if (rate < (unsigned long)f)

Why are we casting f to unsigned long?

> + return (long)f;

Drop cast?

> +
> + f = synth->data->freq_vco;
> + do_div(f, SI5341_SYNTH_N_MIN);
> + if (rate > (unsigned long)f)
> + return (long)f;

Drop cast? Or make rate = f?

> +
> + return (long)rate;

Drop cast?

> +}
> +
> +static int si5341_synth_program(struct clk_si5341_synth *synth,
> + u64 n_num, u32 n_den, bool is_integer)
> +{
> + int err;
> + u8 index = synth->index;
> +
> + err = si5341_encode_44_32(synth->data->regmap,
> + SI5341_SYNTH_N_NUM(index), n_num, n_den);
> +
> + /* Set the bit that indicates if the fraction is integer */

Useless comment.

> + err = regmap_update_bits(synth->data->regmap,
> + SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
> + if (err < 0)
> + return err;
> +
> + /* Write to the update bit to make the change take effect */

Useless comment?

> + return regmap_write(synth->data->regmap,
> + SI5341_SYNTH_N_UPD(index), 0x01);
> +}
> +
> +
> +static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long parent_rate)
> +{
> + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
> + u64 n_num;
> + u32 n_den;
> + u32 r;
> + u32 g;
> + bool is_integer;
> +
> + dev_dbg(&synth->data->i2c_client->dev, "%s(%u) r=%lu p=%lu\n",
> + __func__, synth->index, rate, parent_rate);
> +
> + /* obvious solution */

What?

> + n_num = synth->data->freq_vco;
> + n_den = rate;
> +
> + /* see if there's an integer solution */
> + r = do_div(n_num, rate);
> + is_integer = (r == 0);
> + if (is_integer) {
> + /* Integer divider equal to n_num */
> + n_den = 1;
> + } else {
> + /* Calculate a fractional solution */
> + g = gcd(r, rate);
> + n_den = rate / g;
> + n_num *= n_den;
> + n_num += r / g;
> + }
> +
> + dev_dbg(&synth->data->i2c_client->dev,
> + "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
> + synth->index, n_num, n_den,
> + is_integer ? "int" : "frac");
> +
> + return si5341_synth_program(synth, n_num, n_den, is_integer);
> +}
> +
> +static const struct clk_ops si5341_synth_clk_ops = {
> + .is_prepared = si5341_synth_clk_is_on,
> + .prepare = si5341_synth_clk_prepare,
> + .unprepare = si5341_synth_clk_unprepare,
> + .recalc_rate = si5341_synth_clk_recalc_rate,
> + .round_rate = si5341_synth_clk_round_rate,
> + .set_rate = si5341_synth_clk_set_rate,
> +};
> +
> +static int si5341_output_clk_is_on(struct clk_hw *hw)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + int err;
> + u32 val;
> +
> + err = regmap_read(output->data->regmap,
> + SI5341_OUT_CONFIG(output), &val);
> + if (err < 0)
> + return err;
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u): %#x\n",
> + __func__, output->index, val);
> +
> + /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
> + return (val & 0x03) == SI5341_OUT_CFG_OE;
> +}
> +
> +static void si5341_output_clk_unprepare(struct clk_hw *hw)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u)\n",
> + __func__, output->index);
> +
> + /* Disable and then power down the output */
> + regmap_update_bits(output->data->regmap,
> + SI5341_OUT_CONFIG(output),
> + SI5341_OUT_CFG_OE, 0);
> + regmap_update_bits(output->data->regmap,
> + SI5341_OUT_CONFIG(output),
> + SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
> +}
> +
> +static int si5341_output_clk_prepare(struct clk_hw *hw)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + int err;
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u)\n",
> + __func__, output->index);

Can you just use the tracepoints in clk framework? These prints are
really cluttering the code up making it hard to see what's going on.

> +
> + /* Power up first, then enable the output */

This comment could come above the function instead of inline.

> + err = regmap_update_bits(output->data->regmap,
> + SI5341_OUT_CONFIG(output),
> + SI5341_OUT_CFG_PDN, 0);
> + if (err < 0)
> + return err;
> +
> + return regmap_update_bits(output->data->regmap,
> + SI5341_OUT_CONFIG(output),
> + SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
> +}
> +
> +static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + int err;
> + u32 val;
> + u32 r_divider;
> + u8 r[3];
> +
> + err = regmap_read(output->data->regmap,
> + SI5341_OUT_CONFIG(output), &val);
> + if (err < 0)
> + return err;
> +
> + /* If bit(2) is set, the divider is forcibly set to "2" */

That's obvious from the code.

> + if (val & SI5341_OUT_CFG_RDIV_FORCE2) {
> + r_divider = 2;
> + } else {
> + err = regmap_bulk_read(output->data->regmap,
> + SI5341_OUT_R_REG(output), r, 3);
> + if (err < 0)
> + return err;
> +
> + /* Calculate value as 24-bit integer, (Rx_REG+1)x2 */
> + r_divider = ((r[2] << 16 | r[1] << 8 | r[0]) + 1) << 1;
> + }
> +
> + dev_dbg(&output->data->i2c_client->dev,
> + "%s(%u): p=%lu rd=%u %lu\n",
> + __func__, output->index, parent_rate,
> + r_divider, parent_rate / r_divider);
> +
> + return parent_rate / r_divider;
> +}
> +
> +static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long *parent_rate)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + unsigned long r;
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u): %lu\n",
> + __func__, output->index, rate);
> +
> + r = *parent_rate >> 1;
> +
> + /* If rate is an even divisor, no changes to parent required */
> + if (r && !(r % rate))
> + return (long)rate;
> +
> + if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
> + if (rate > 200000000)
> + /* minimum r-divider is 2 */
> + r = 2;
> + else
> + /* Take a parent frequency near 400 MHz */
> + r = (400000000u / rate) & ~1;

Style: Please enclose in braces if there's more than one line,
regardless of comment being one of those lines or not.

> + *parent_rate = r * rate;
> + } else {
> + /* We cannot change our parent's rate, report what we can do */
> + r /= rate;
> + rate = *parent_rate / (r << 1);
> + }
> +
> + return (long)rate;

Please drop useless cast.

> +}
> +
> +static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long parent_rate)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + /* Frequency divider is (r_div + 1) * 2 */
> + u32 r_div = (parent_rate / rate) >> 1;
> + int err;
> + u8 r[3];
> +
> + if (r_div <= 1)
> + r_div = 0;
> + else if (r_div >= BIT(24))
> + r_div = BIT(24) - 1;
> + else
> + --r_div;
> +
> + /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
> + err = regmap_update_bits(output->data->regmap,
> + SI5341_OUT_CONFIG(output),
> + SI5341_OUT_CFG_RDIV_FORCE2,
> + (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
> + if (err < 0)
> + return err;
> +
> + /* Just always write the R_REG */
> + r[0] = r_div & 0xff;
> + r[1] = (r_div >> 8) & 0xff;
> + r[2] = (r_div >> 16) & 0xff;
> + err = regmap_bulk_write(output->data->regmap,
> + SI5341_OUT_R_REG(output), r, 3);
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u): r=%lu p=%lu rd=%u\n",
> + __func__, output->index, rate, parent_rate, r_div);
> +
> + return 0;
> +}
> +
> +static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
> +{
> + return regmap_update_bits(output->data->regmap,
> + SI5341_OUT_MUX_SEL(output), 0x07, index);
> +}
> +
> +static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u): N%u\n",
> + __func__, output->index, index);
> +
> + if (index >= output->data->num_synth)
> + return -EINVAL;
> +
> + return si5341_output_reparent(output, index);
> +}
> +
> +static u8 si5341_output_get_parent(struct clk_hw *hw)
> +{
> + struct clk_si5341_output *output = to_clk_si5341_output(hw);
> + int err;
> + u32 val;
> +
> + err = regmap_read(output->data->regmap,
> + SI5341_OUT_MUX_SEL(output), &val);
> +
> + dev_dbg(&output->data->i2c_client->dev, "%s(%u): N%u\n",
> + __func__, output->index, val & 0x7);
> +
> + return val & 0x7;
> +}
> +
> +static const struct clk_ops si5341_output_clk_ops = {
> + .is_prepared = si5341_output_clk_is_on,
> + .prepare = si5341_output_clk_prepare,
> + .unprepare = si5341_output_clk_unprepare,
> + .recalc_rate = si5341_output_clk_recalc_rate,
> + .round_rate = si5341_output_clk_round_rate,
> + .set_rate = si5341_output_clk_set_rate,
> + .set_parent = si5341_output_set_parent,
> + .get_parent = si5341_output_get_parent,
> +};
> +
> +/* Called by probe, before output is actually registered */
> +static int si5341_output_set_parent_and_freq(
> + struct clk_si5341_output *output, u8 index, u32 parent_rate)
> +{
> + int err;
> +
> + if (index < output->data->num_synth) {
> + err = si5341_output_reparent(output, index);

Maybe this can be done via assigned-clock-parents?

> + if (err < 0)
> + return err;
> + }
> +
> + if (parent_rate) {
> + index = si5341_output_get_parent(&output->hw);
> + err = clk_set_rate(output->data->synth[index].hw.clk,

And assigned-clock-rates.

> + parent_rate);
> + }
> +
> + return err;
> +}
> +
> +/*
> + * The chip can be bought in a pre-programmed version, or one can program the
> + * NVM in the chip to boot up in a preset mode. This routine tries to determine
> + * if that's the case, or if we need to reset and program everything from
> + * scratch. Returns negative error, or true/false.
> + */
> +static int si5341_is_programmed_already(struct clk_si5341 *data)
> +{
> + int err;
> + u32 v;
> + u8 r[4];
> + u8 i;
> +
> + err = regmap_read(data->regmap, 0x00E2, &v);
> + if (err < 0)
> + return err;
> +
> + /* Read the PLL divider value, it must have a non-zero value */
> + err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, r, 4);
> + if (err < 0)
> + return err;
> +
> + dev_dbg(&data->i2c_client->dev, "%s: %#x md=%#x\n",
> + __func__, v,
> + r[3] << 24 | r[2] << 16 | r[1] << 8 | r[0]);

There isn't a macro for this byte to word? get_unaligned_le32()?

> +
> + for (i = 0; i < 4; ++i)
> + if (r[i])
> + return true;

This for loop could just be 'convert r into u32; print it; test it for 0'.

> +
> + return false;
> +}
> +
> +static struct clk_hw *of_clk_si5341_get(
> + struct of_phandle_args *clkspec, void *_data)

Please fix this style:

static struct clk_hw *
of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)

> +{
> + struct clk_si5341 *data = _data;
> + unsigned int idx = clkspec->args[0];
> +
> + if (idx >= data->num_outputs) {
> + dev_err(&data->i2c_client->dev, "invalid index %u\n", idx);
> + return ERR_PTR(-EINVAL);
> + }
> +
> + return &data->clk[idx].hw;
> +}
> +
> +static int si5341_probe_chip_id(struct clk_si5341 *data)
> +{
> + int err;
> + u8 reg[4];
> +
> + err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, 4);

ARRAY_SIZE(reg) instead of 4?

> + if (err < 0) {
> + dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
> + return err;
> + }
> +
> + dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
> + (reg[1] << 8) | reg[0], reg[2], reg[3]);
> +
> + /* The 5341 has 10 outputs, the 5340 has only 4 */

Alright! Thanks for the info!

> + switch (reg[0]) {
> + case 0x40:
> + data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
> + data->num_synth = SI5340_NUM_SYNTH;
> + data->reg_output_offset = si5340_reg_output_offset;
> + data->reg_rdiv_offset = si5340_reg_rdiv_offset;
> + break;
> + case 0x41:
> + data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
> + data->num_synth = SI5341_NUM_SYNTH;
> + data->reg_output_offset = si5341_reg_output_offset;
> + data->reg_rdiv_offset = si5341_reg_rdiv_offset;
> + break;
> + default:
> + dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
> + (reg[1] << 8) | reg[0]);
> + return -EINVAL;
> + }
> +
> + return 0;
> +}
> +
> +/* Read active settings into the regmap cache for later reference */
> +static int si5341_read_settings(struct clk_si5341 *data)
> +{
> + int err;
> + u8 i;
> + u8 r[10];
> +
> + err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
> + if (err < 0)
> + return err;
> +
> + err = regmap_bulk_read(data->regmap,
> + SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
> + if (err < 0)
> + return err;
> +
> + err = regmap_bulk_read(data->regmap,
> + SI5341_SYNTH_N_CLK_DIS, r, 1);
> + if (err < 0)
> + return err;
> +
> + for (i = 0; i < data->num_synth; ++i) {
> + err = regmap_bulk_read(data->regmap,
> + SI5341_SYNTH_N_NUM(i), r, 10);
> + if (err < 0)
> + return err;
> + }
> +
> + for (i = 0; i < data->num_outputs; ++i) {
> + err = regmap_bulk_read(data->regmap,
> + data->reg_output_offset[i], r, 4);
> + if (err < 0)
> + return err;
> +
> + err = regmap_bulk_read(data->regmap,
> + data->reg_rdiv_offset[i], r, 3);
> + if (err < 0)
> + return err;
> + }
> +
> + return 0;
> +}
> +
> +static int si5341_write_multiple(struct clk_si5341 *data,
> + const struct si5341_reg_default *values, unsigned int num_values)
> +{
> + unsigned int i;
> + int res;
> +
> + for (i = 0; i < num_values; ++i) {
> + res = regmap_write(data->regmap,
> + values[i].address, values[i].value);
> + if (res < 0) {
> + dev_err(&data->i2c_client->dev,
> + "Failed to write %#x:%#x\n",
> + values[i].address, values[i].value);
> + return res;
> + }
> + }
> +
> + return 0;
> +}
> +
> +const struct si5341_reg_default si5341_preamble[] = {
> + {0x0B25, 0x00},

Please put space around { and }

{ 0x0b25, 0x00 },

> + {0x0502, 0x01},
> + {0x0505, 0x03},
> + {0x0957, 0x1F},
> + {0x0B4E, 0x1A},
> +};
> +
> +static int si5341_send_preamble(struct clk_si5341 *data)
> +{
> + int res;
> + u32 revision;
> +
> + /* For revision 2 and up, the values are slightly different */
> + res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
> + if (res < 0)
> + return res;
> +
> + /* Write "preamble" as specified by datasheet */
> + res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
> + if (res < 0)
> + return res;
> + res = si5341_write_multiple(data,
> + si5341_preamble, ARRAY_SIZE(si5341_preamble));
> + if (res < 0)
> + return res;
> +
> + /* Wait for 300 ms */

Yeah that's obvious. Does the datasheet say to do that? That would be
more useful to indicate here instead of repeating what the code does.

> + msleep(300);
> +
> + return 0;
> +}
> +
> +/* Perform a soft reset and write post-amble */
> +static int si5341_finalize_defaults(struct clk_si5341 *data)
> +{
> + int res;
> + u32 revision;
> +
> + res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
> + if (res < 0)
> + return res;
> +
> + dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
> +
> + /* Perform a soft reset */

Obvious.

> + res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
> + if (res < 0)
> + return res;
> +
> + /* Write post-amble */
> + res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);

Why no define for SI5341_POST_AMBLE?

> + if (res < 0)
> + return res;
> + res = regmap_write(data->regmap, 0x0B25, 0x02);

And what register is this?

> + if (res < 0)
> + return res;
> +
> + return 0;
> +}
> +
> +
> +static const struct regmap_range si5341_regmap_volatile_range[] = {
> + regmap_reg_range(0x000C, 0x0012), /* Status */
> + regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
> + regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
> + /* Update bits for synth config */
> + regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
> + regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
> + regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
> + regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
> + regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
> +};
> +
> +const struct regmap_access_table si5341_regmap_volatile = {
> + .yes_ranges = si5341_regmap_volatile_range,
> + .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
> +};
> +
> +/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
> +static const struct regmap_range_cfg si5341_regmap_ranges[] = {
> + {
> + .range_min = 0,
> + .range_max = 12 * 256,
> + .selector_reg = SI5341_PAGE,
> + .selector_mask = 0xff,
> + .selector_shift = 0,
> + .window_start = 0,
> + .window_len = 256,
> + },
> +};
> +
> +static const struct regmap_config si5341_regmap_config = {
> + .reg_bits = 8,
> + .val_bits = 8,
> + .cache_type = REGCACHE_RBTREE,
> + .max_register = 0,
> + .ranges = si5341_regmap_ranges,
> + .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
> + .max_register = 12 * 256,

Maybe 12 * 256 should be a define.

> + .volatile_table = &si5341_regmap_volatile,
> +};
> +
> +static int si5341_dt_parse_dt(struct i2c_client *client,
> + struct clk_si5341_output_config *config)
> +{
> + struct device_node *child;
> + struct device_node *np = client->dev.of_node;
> + u32 num;
> + u32 val;
> +
> + memset(config, 0, sizeof(struct clk_si5341_output_config) *
> + SI5341_MAX_NUM_OUTPUTS);
> + /* Set defaults to no forced source, not a master */
> + for (num = 0; num < SI5341_MAX_NUM_OUTPUTS; ++num)
> + config[num].source_index = 0xff;
> +
> + for_each_child_of_node(np, child) {
> + if (of_property_read_u32(child, "reg", &num)) {
> + dev_err(&client->dev, "missing reg property of %s\n",
> + child->name);
> + goto put_child;
> + }
> +
> + if (num >= SI5341_MAX_NUM_OUTPUTS) {
> + dev_err(&client->dev, "invalid clkout %d\n", num);
> + goto put_child;
> + }
> +
> + if (!of_property_read_u32(child, "silabs,format", &val)) {
> + /* Set cm and ampl conservatively to 3v3 settings */
> + switch (val) {
> + case 1: /* normal differential */
> + config[num].out_cm_ampl_bits = 0x33;
> + break;
> + case 2: /* low-power differential */
> + config[num].out_cm_ampl_bits = 0x13;
> + break;
> + case 4: /* LVCMOS */
> + config[num].out_cm_ampl_bits = 0x33;
> + /* Set SI recommended impedance for LVCMOS */
> + config[num].out_format_drv_bits |= 0xc0;
> + break;
> + default:
> + dev_err(&client->dev,
> + "invalid silabs,format %u for %u\n",
> + val, num);
> + goto put_child;
> + }
> + config[num].out_format_drv_bits &= ~0x07;
> + config[num].out_format_drv_bits |= val & 0x07;
> + /* Always enable the SYNC feature */
> + config[num].out_format_drv_bits |= 0x08;
> + }
> +
> + if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
> + if (val > 0xf) {
> + dev_err(&client->dev,
> + "invalid silabs,common-mode %u\n",
> + val);
> + goto put_child;
> + }
> + config[num].out_cm_ampl_bits &= 0xf0;
> + config[num].out_cm_ampl_bits |= val & 0x0f;
> + }
> +
> + if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
> + if (val > 0xf) {
> + dev_err(&client->dev,
> + "invalid silabs,amplitude %u\n",
> + val);
> + goto put_child;
> + }
> + config[num].out_cm_ampl_bits &= 0x0f;
> + config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
> + }
> +
> + if (!of_property_read_u32(child, "silabs,synth-source",
> + &val)) {
> + /* Chip type not known at this point, assume largest */
> + if (val >= SI5341_NUM_SYNTH) {
> + dev_err(&client->dev,
> + "invalid synth-source %u for %u\n",
> + val, num);
> + goto put_child;
> + }
> +
> + config[num].source_index = val;
> + }
> +
> + if (!of_property_read_u32(child, "silabs,synth-frequency",
> + &val)) {
> + if (config[num].source_index >= SI5341_NUM_SYNTH) {
> + dev_err(&client->dev,
> + "synth-frequency requires synth-source "
> + "for %u\n", num);
> + goto put_child;
> + }
> +
> + config[num].synth_frequency = val;
> + }
> +
> + if (!of_property_read_u32(child, "clock-frequency", &val))
> + config[num].clock_frequency = val;
> +
> + if (of_property_read_bool(child, "silabs,disable-high"))
> + config[num].out_format_drv_bits |= 0x10;
> +
> + config[num].synth_master =
> + of_property_read_bool(child, "silabs,synth-master");
> +
> + config[num].always_on =
> + of_property_read_bool(child, "always-on");
> + }
> +
> + return 0;
> +
> +put_child:
> + of_node_put(child);
> + return -EINVAL;
> +}
> +
> +/*
> + * If not pre-configured, calculate and set the PLL configuration manually.
> + * For low-jitter performance, the PLL should be set such that the synthesizers
> + * only need integer division.
> + * Without any user guidance, we'll set the PLL to 14GHz, which still allows
> + * the chip to generate any frequency on its outputs, but jitter performance
> + * may be sub-optimal.
> + */
> +static int si5341_initialize_pll(struct clk_si5341 *data)
> +{
> + struct device_node *np = data->i2c_client->dev.of_node;
> + u32 m_num = 0;
> + u32 m_den = 0;
> +
> + if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
> + dev_err(&data->i2c_client->dev,
> + "PLL configuration requires silabs,pll-m-num\n");
> + }
> + if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
> + dev_err(&data->i2c_client->dev,
> + "PLL configuration requires silabs,pll-m-den\n");
> + }
> +
> + if (!m_num || !m_den) {
> + dev_err(&data->i2c_client->dev,
> + "PLL configuration invalid, assume 14GHz\n");
> + m_den = clk_get_rate(data->pxtal) / 10;
> + m_num = 1400000000;
> + }
> +
> + return si5341_encode_44_32(data->regmap,
> + SI5341_PLL_M_NUM, m_num, m_den);
> +}
> +
> +static int si5341_probe(struct i2c_client *client,
> + const struct i2c_device_id *id)
> +{
> + struct clk_si5341 *data;
> + struct clk_init_data init;
> + const char *root_clock_name;
> + const char *synth_clock_names[SI5341_NUM_SYNTH];
> + int err;
> + struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
> + u8 i;

Why not just an int or unsigned int? Why a u8?

> + bool initialization_required;
> +
> + data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
> + if (!data)
> + return -ENOMEM;
> +
> + data->i2c_client = client;
> +
> + data->pxtal = devm_clk_get(&client->dev, "xtal");
> + if (IS_ERR(data->pxtal)) {
> + if (PTR_ERR(data->pxtal) == -EPROBE_DEFER)
> + return -EPROBE_DEFER;
> +
> + dev_err(&client->dev, "Missing xtal clock input\n");
> + }
> +
> + err = si5341_dt_parse_dt(client, config);
> + if (err)
> + return err;
> +
> + if (of_property_read_string(client->dev.of_node, "clock-output-names",
> + &init.name))
> + init.name = client->dev.of_node->name;
> + root_clock_name = init.name;
> +
> + data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
> + if (IS_ERR(data->regmap))
> + return PTR_ERR(data->regmap);
> +
> + i2c_set_clientdata(client, data);
> +
> + err = si5341_probe_chip_id(data);
> + if (err < 0)
> + return err;
> +
> + /* "Activate" the xtal (usually a fixed clock) */
> + clk_prepare_enable(data->pxtal);
> +
> + if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
> + initialization_required = true;
> + } else {
> + err = si5341_is_programmed_already(data);
> + if (err < 0)
> + return err;
> +
> + initialization_required = !err;
> + }
> +
> + if (initialization_required) {
> + /* Populate the regmap cache in preparation for "cache only" */
> + err = si5341_read_settings(data);
> + if (err < 0)
> + return err;
> +
> + err = si5341_send_preamble(data);
> + if (err < 0)
> + return err;
> +
> + /*
> + * We intend to send all 'final' register values in a single
> + * transaction. So cache all register writes until we're done
> + * configuring.
> + */
> + regcache_cache_only(data->regmap, true);
> +
> + /* Write the configuration pairs from the firmware blob */
> + err = si5341_write_multiple(data, si5341_reg_defaults,
> + ARRAY_SIZE(si5341_reg_defaults));
> + if (err < 0)
> + return err;
> +
> + /* PLL configuration is required */
> + err = si5341_initialize_pll(data);
> + if (err < 0)
> + return err;
> + }
> +
> + /* Register the PLL */
> + data->pxtal_name = __clk_get_name(data->pxtal);
> + init.parent_names = &data->pxtal_name;
> + init.num_parents = 1; /* For now, only XTAL input supported */
> + init.ops = &si5341_clk_ops;
> + init.flags = 0;
> + data->hw.init = &init;
> +
> + err = devm_clk_hw_register(&client->dev, &data->hw);
> + if (err) {
> + dev_err(&client->dev, "clock registration failed\n");
> + return err;
> + }
> +
> + init.num_parents = 1;
> + init.parent_names = &root_clock_name;
> + init.ops = &si5341_synth_clk_ops;
> + for (i = 0; i < data->num_synth; ++i) {
> + synth_clock_names[i] = kasprintf(GFP_KERNEL, "%s.N%u",

Use devm_kasprintf() and let error paths cleanup?

> + client->dev.of_node->name, i);
> + init.name = synth_clock_names[i];
> + data->synth[i].index = i;
> + data->synth[i].data = data;
> + data->synth[i].hw.init = &init;
> + dev_dbg(&client->dev, "Register %s\n", init.name);

Is this necessary? Maybe we should add a pr_debug() deep in
clk_register() if you really want to know. I don't think I'd be too
opposed to that.

> + err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
> + if (err) {
> + dev_err(&client->dev,
> + "synth N%u registration failed\n", i);
> + }
> + }
> +
> + init.num_parents = data->num_synth;
> + init.parent_names = synth_clock_names;
> + init.ops = &si5341_output_clk_ops;
> + init.flags = 0;
> + for (i = 0; i < data->num_outputs; ++i) {
> + init.name = kasprintf(GFP_KERNEL, "%s.%d",
> + client->dev.of_node->name, i);
> + init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;

Ok, so synth_master means that it can change the rate of the parent?

> + data->clk[i].index = i;
> + data->clk[i].data = data;
> + data->clk[i].hw.init = &init;
> + if (config[i].out_format_drv_bits & 0x07) {

What is magic 0x07? Please make a define for it.

> + dev_dbg(&client->dev,
> + "out %u: fmt=%#x cm=%#x\n", i,
> + config[i].out_format_drv_bits,
> + config[i].out_cm_ampl_bits);

Can't we get this with regmap tracepoints?

> + regmap_write(data->regmap,
> + SI5341_OUT_FORMAT(&data->clk[i]),
> + config[i].out_format_drv_bits);
> + regmap_write(data->regmap,
> + SI5341_OUT_CM(&data->clk[i]),
> + config[i].out_cm_ampl_bits);
> + }
> + si5341_output_set_parent_and_freq(&data->clk[i],
> + config[i].source_index,
> + config[i].synth_frequency);
> + dev_dbg(&client->dev, "Register %s\n", init.name);

Ah this again!

> + err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
> + kfree(init.name); /* clock framework made a copy of the name */
> + if (err) {
> + dev_err(&client->dev,
> + "output %u registration failed\n", i);
> + goto error;
> + }
> + if (config[i].clock_frequency)
> + clk_set_rate(data->clk[i].hw.clk,
> + config[i].clock_frequency);
> + if (config[i].always_on)
> + clk_prepare(data->clk[i].hw.clk);
> + }
> +
> + err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,

Can you use devm_of_clk_add_hw_provider()?

> + data);
> + if (err) {
> + dev_err(&client->dev, "unable to add clk provider\n");
> + goto error;
> + }
> +
> + if (initialization_required) {
> + /* Synchronize */

Useless comment. Please remove.

> + regcache_cache_only(data->regmap, false);
> + err = regcache_sync(data->regmap);
> + if (err < 0)
> + goto error;
> +
> + err = si5341_finalize_defaults(data);
> + if (err < 0)
> + goto error;
> + }
> +
> +error:
> + /* Free the names, clk framework makes copies */
> + for (i = 0; i < data->num_synth; ++i)
> + kfree(synth_clock_names[i]);
> +
> + return err;
> +}
> +