Re: [RFC PATCH] sched/fair: first try to fix the scheduling impact of NUMA diameter > 2

From: Vincent Guittot
Date: Mon Jan 18 2021 - 06:20:52 EST


On Fri, 15 Jan 2021 at 21:42, Barry Song <song.bao.hua@xxxxxxxxxxxxx> wrote:
>
> This patch is a follow-up of the 3-hops issue reported by Valentin Schneider:
> [1] https://lore.kernel.org/lkml/jhjtux5edo2.mognet@xxxxxxx/
> [2] https://lore.kernel.org/lkml/20201110184300.15673-1-valentin.schneider@xxxxxxx/
>
> Here is a brief summary of the background:
> For a NUMA system with 3-hops, sched_group for NUMA 2-hops could be not a
> subset of sched_domain.
> For example, for a system with the below topology(two cpus in each NUMA
> node):
> node 0 1 2 3
> 0: 10 12 20 22
> 1: 12 10 22 24
> 2: 20 22 10 12
> 3: 22 24 12 10
>
> For CPU0, domain-2 will span 0-5, but its group will span 0-3, 4-7.
> 4-7 isn't a subset of 0-5.
>
> CPU0 attaching sched-domain(s):
> domain-0: span=0-1 level=MC
> groups: 0:{ span=0 cap=989 }, 1:{ span=1 cap=1016 }
> domain-1: span=0-3 level=NUMA
> groups: 0:{ span=0-1 cap=2005 }, 2:{ span=2-3 cap=2028 }
> domain-2: span=0-5 level=NUMA
> groups: 0:{ span=0-3 cap=4033 }, 4:{ span=4-7 cap=3909 }
> ERROR: groups don't span domain->span
> domain-3: span=0-7 level=NUMA
> groups: 0:{ span=0-5 mask=0-1 cap=6062 }, 6:{ span=4-7 mask=6-7 cap=3928 }
>
> All other cpus also have the same issue: sched_group could be not a subset
> of sched_domain.
>
> Here I am trying to figure out the scheduling impact of this issue from
> two aspects:
> 1. find busiest cpu in load_balance
> 2. find idlest cpu in fork/exec/wake balance

Would be better to fix the error in the sched domain topology instead
of hacking the load balance to compensate the topology problem

>
> For case 1, load_balance() seems to be handling this issue correctly as it only
> fills cpus in sched_domain to the cpus of lb_env. Also, find_busiest_group()
> and find_busiest_queue() will result in scanning cpus within env.cpus only:
>
> static int load_balance(int this_cpu, struct rq *this_rq,
> struct sched_domain *sd, enum cpu_idle_type idle,
> int *continue_balancing)
> {`
> ...
>
> struct lb_env env = {
> ...
> .cpus = cpus,
> .fbq_type = all,
> .tasks = LIST_HEAD_INIT(env.tasks),
> };
>
> /* added by barry: only cpus in sched_domain are put in lb_env */
> cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
> ...
> /*
> * added by barry: the below functions are only scanning cpus
> * in env.cpus
> */
> group = find_busiest_group(&env);
> ...
>
> busiest = find_busiest_queue(&env, group);
> ...
> }
>
> But one thing which looks wrong is that update_sg_lb_stats() is only counting
> tasks in sched_domain, but sgs->group_capacity and sgs->group_weight are
> counting all cpus in the sched_group. Then finally, update_sg_lb_stats()
> uses the load of cpus which are in the sched_domain to calculate group_type
> and avg_load which can be seriously underestimated. This is explained in
> detail as the comments added by me in the code:
>
> static inline void update_sg_lb_stats()
> {
> int i, nr_running, local_group;
>
> /* added by barry: here it only counts cpu in the sched_domain */
> for_each_cpu_and(i, sched_group_span(group), env->cpus) {
> ...
> sgs->group_load += cpu_load(rq);
> sgs->group_util += cpu_util(i);
> sgs->group_runnable += cpu_runnable(rq);
> sgs->sum_h_nr_running += rq->cfs.h_nr_running;
> nr_running = rq->nr_running;
> sgs->sum_nr_running += nr_running;
> ...
> }
>
> ...
> /* added by barry: here it count all cpus which might not be in the domain */
> sgs->group_capacity = group->sgc->capacity;
>
> sgs->group_weight = group->group_weight;
>
> /* added by barry: finally the group_type and avg_load could be wrong */
>
> sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
>
> if (sgs->group_type == group_overloaded)
> sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
> sgs->group_capacity;
> ...
> }
> For example, if we have 2 cpus in sched_domain and 4 cpus in sched_group, the
> code is using the load of 2 cpus to calculate the group_type and avg_load of 4
> cpus, the sched_group is likely to get much lower load than the real case.
> This patch fixed it by only counting cpus within sched_domain for group_capacity
> and group_weight.
>
> For case 2, find_idlest_group() and find_idlest_group_cpu() don't use sched_domain
> for scanning at all. They are scanning all cpus in the sched_group though sched_group
> isn't a subset of sched_domain. So they can result in picking an idle cpu outside
> the sched_domain but inside the sched_group.
> This patch moved to only scan cpus within the sched_domain, which would be similar
> with load_balance().
>
> For this moment, this is pretty much PoC code to get feedback.
>
> Signed-off-by: Barry Song <song.bao.hua@xxxxxxxxxxxxx>
> ---
> kernel/sched/fair.c | 22 +++++++++++-----------
> 1 file changed, 11 insertions(+), 11 deletions(-)
>
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 04a3ce20da67..f183dba4961e 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -5901,7 +5901,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
> * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
> */
> static int
> -find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
> +find_idlest_group_cpu(struct sched_domain *sd, struct sched_group *group, struct task_struct *p, int this_cpu)
> {
> unsigned long load, min_load = ULONG_MAX;
> unsigned int min_exit_latency = UINT_MAX;
> @@ -5916,6 +5916,10 @@ find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this
>
> /* Traverse only the allowed CPUs */
> for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
> + /* when sched_group isn't a subset of sched_domain */
> + if (!cpumask_test_cpu(i, sched_domain_span(sd)))
> + continue;
> +
> if (sched_idle_cpu(i))
> return i;
>
> @@ -5984,7 +5988,7 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
> continue;
> }
>
> - new_cpu = find_idlest_group_cpu(group, p, cpu);
> + new_cpu = find_idlest_group_cpu(sd, group, p, cpu);
> if (new_cpu == cpu) {
> /* Now try balancing at a lower domain level of 'cpu': */
> sd = sd->child;
> @@ -8416,6 +8420,8 @@ static inline void update_sg_lb_stats(struct lb_env *env,
> if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
> env->flags |= LBF_NOHZ_AGAIN;
>
> + sgs->group_capacity += capacity_of(i);
> + sgs->group_weight++;
> sgs->group_load += cpu_load(rq);
> sgs->group_util += cpu_util(i);
> sgs->group_runnable += cpu_runnable(rq);
> @@ -8462,10 +8468,6 @@ static inline void update_sg_lb_stats(struct lb_env *env,
> sgs->group_asym_packing = 1;
> }
>
> - sgs->group_capacity = group->sgc->capacity;
> -
> - sgs->group_weight = group->group_weight;
> -
> sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
>
> /* Computing avg_load makes sense only when group is overloaded */
> @@ -8688,10 +8690,12 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
>
> memset(sgs, 0, sizeof(*sgs));
>
> - for_each_cpu(i, sched_group_span(group)) {
> + for_each_cpu_and(i, sched_group_span(group), sched_domain_span(sd)) {
> struct rq *rq = cpu_rq(i);
> unsigned int local;
>
> + sgs->group_capacity += capacity_of(i);
> + sgs->group_weight++;
> sgs->group_load += cpu_load_without(rq, p);
> sgs->group_util += cpu_util_without(i, p);
> sgs->group_runnable += cpu_runnable_without(rq, p);
> @@ -8715,10 +8719,6 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
> sgs->group_misfit_task_load = 1;
> }
>
> - sgs->group_capacity = group->sgc->capacity;
> -
> - sgs->group_weight = group->group_weight;
> -
> sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
>
> /*
> --
> 2.25.1
>