A problem of Intel IOMMU hardware ?

From: Longpeng (Mike, Cloud Infrastructure Service Product Dept.)
Date: Tue Mar 16 2021 - 23:17:52 EST


Hi guys,

We find the Intel iommu cache (i.e. iotlb) maybe works wrong in a special
situation, it would cause DMA fails or get wrong data.

The reproducer (based on Alex's vfio testsuite[1]) is in attachment, it can
reproduce the problem with high probability (~50%).

The machine we used is:
processor : 47
vendor_id : GenuineIntel
cpu family : 6
model : 85
model name : Intel(R) Xeon(R) Gold 6146 CPU @ 3.20GHz
stepping : 4
microcode : 0x2000069

And the iommu capability reported is:
ver 1:0 cap 8d2078c106f0466 ecap f020df
(caching mode = 0 , page-selective invalidation = 1)

(The problem is also on 'Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz' and
'Intel(R) Xeon(R) Platinum 8378A CPU @ 3.00GHz')

We run the reproducer on Linux 4.18 and it works as follow:

Step 1. alloc 4G *2M-hugetlb* memory (N.B. no problem with 4K-page mapping)
Step 2. DMA Map 4G memory
Step 3.
while (1) {
{UNMAP, 0x0, 0xa0000}, ------------------------------------ (a)
{UNMAP, 0xc0000, 0xbff40000},
{MAP, 0x0, 0xc0000000}, --------------------------------- (b)
use GDB to pause at here, and then DMA read IOVA=0,
sometimes DMA success (as expected),
but sometimes DMA error (report not-present).
{UNMAP, 0x0, 0xc0000000}, --------------------------------- (c)
{MAP, 0x0, 0xa0000},
{MAP, 0xc0000, 0xbff40000},
}

The DMA read operations sholud success between (b) and (c), it should NOT report
not-present at least!

After analysis the problem, we think maybe it's caused by the Intel iommu iotlb.
It seems the DMA Remapping hardware still uses the IOTLB or other caches of (a).

When do DMA unmap at (a), the iotlb will be flush:
intel_iommu_unmap
domain_unmap
iommu_flush_iotlb_psi

When do DMA map at (b), no need to flush the iotlb according to the capability
of this iommu:
intel_iommu_map
domain_pfn_mapping
domain_mapping
__mapping_notify_one
if (cap_caching_mode(iommu->cap)) // FALSE
iommu_flush_iotlb_psi
But the problem will disappear if we FORCE flush here. So we suspect the iommu
hardware.

Do you have any suggestion ?







/*
* VFIO API definition
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@xxxxxxxxxx>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _UAPIVFIO_H
#define _UAPIVFIO_H

#include <linux/types.h>
#include <linux/ioctl.h>

#define VFIO_API_VERSION 0


/* Kernel & User level defines for VFIO IOCTLs. */

/* Extensions */

#define VFIO_TYPE1_IOMMU 1

/*
* The IOCTL interface is designed for extensibility by embedding the
* structure length (argsz) and flags into structures passed between
* kernel and userspace. We therefore use the _IO() macro for these
* defines to avoid implicitly embedding a size into the ioctl request.
* As structure fields are added, argsz will increase to match and flag
* bits will be defined to indicate additional fields with valid data.
* It's *always* the caller's responsibility to indicate the size of
* the structure passed by setting argsz appropriately.
*/

#define VFIO_TYPE (';')
#define VFIO_BASE 100

/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */

/**
* VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
*
* Report the version of the VFIO API. This allows us to bump the entire
* API version should we later need to add or change features in incompatible
* ways.
* Return: VFIO_API_VERSION
* Availability: Always
*/
#define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)

/**
* VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
*
* Check whether an extension is supported.
* Return: 0 if not supported, 1 (or some other positive integer) if supported.
* Availability: Always
*/
#define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)

/**
* VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
*
* Set the iommu to the given type. The type must be supported by an
* iommu driver as verified by calling CHECK_EXTENSION using the same
* type. A group must be set to this file descriptor before this
* ioctl is available. The IOMMU interfaces enabled by this call are
* specific to the value set.
* Return: 0 on success, -errno on failure
* Availability: When VFIO group attached
*/
#define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)

/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */

/**
* VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
* struct vfio_group_status)
*
* Retrieve information about the group. Fills in provided
* struct vfio_group_info. Caller sets argsz.
* Return: 0 on succes, -errno on failure.
* Availability: Always
*/
struct vfio_group_status {
__u32 argsz;
__u32 flags;
#define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
#define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
};
#define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)

/**
* VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
*
* Set the container for the VFIO group to the open VFIO file
* descriptor provided. Groups may only belong to a single
* container. Containers may, at their discretion, support multiple
* groups. Only when a container is set are all of the interfaces
* of the VFIO file descriptor and the VFIO group file descriptor
* available to the user.
* Return: 0 on success, -errno on failure.
* Availability: Always
*/
#define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)

/**
* VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
*
* Remove the group from the attached container. This is the
* opposite of the SET_CONTAINER call and returns the group to
* an initial state. All device file descriptors must be released
* prior to calling this interface. When removing the last group
* from a container, the IOMMU will be disabled and all state lost,
* effectively also returning the VFIO file descriptor to an initial
* state.
* Return: 0 on success, -errno on failure.
* Availability: When attached to container
*/
#define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)

/**
* VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
*
* Return a new file descriptor for the device object described by
* the provided string. The string should match a device listed in
* the devices subdirectory of the IOMMU group sysfs entry. The
* group containing the device must already be added to this context.
* Return: new file descriptor on success, -errno on failure.
* Availability: When attached to container
*/
#define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)

/* --------------- IOCTLs for DEVICE file descriptors --------------- */

/**
* VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
* struct vfio_device_info)
*
* Retrieve information about the device. Fills in provided
* struct vfio_device_info. Caller sets argsz.
* Return: 0 on success, -errno on failure.
*/
struct vfio_device_info {
__u32 argsz;
__u32 flags;
#define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
#define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
__u32 num_regions; /* Max region index + 1 */
__u32 num_irqs; /* Max IRQ index + 1 */
};
#define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)

/**
* VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
* struct vfio_region_info)
*
* Retrieve information about a device region. Caller provides
* struct vfio_region_info with index value set. Caller sets argsz.
* Implementation of region mapping is bus driver specific. This is
* intended to describe MMIO, I/O port, as well as bus specific
* regions (ex. PCI config space). Zero sized regions may be used
* to describe unimplemented regions (ex. unimplemented PCI BARs).
* Return: 0 on success, -errno on failure.
*/
struct vfio_region_info {
__u32 argsz;
__u32 flags;
#define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
#define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
#define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
__u32 index; /* Region index */
__u32 resv; /* Reserved for alignment */
__u64 size; /* Region size (bytes) */
__u64 offset; /* Region offset from start of device fd */
};
#define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)

/**
* VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
* struct vfio_irq_info)
*
* Retrieve information about a device IRQ. Caller provides
* struct vfio_irq_info with index value set. Caller sets argsz.
* Implementation of IRQ mapping is bus driver specific. Indexes
* using multiple IRQs are primarily intended to support MSI-like
* interrupt blocks. Zero count irq blocks may be used to describe
* unimplemented interrupt types.
*
* The EVENTFD flag indicates the interrupt index supports eventfd based
* signaling.
*
* The MASKABLE flags indicates the index supports MASK and UNMASK
* actions described below.
*
* AUTOMASKED indicates that after signaling, the interrupt line is
* automatically masked by VFIO and the user needs to unmask the line
* to receive new interrupts. This is primarily intended to distinguish
* level triggered interrupts.
*
* The NORESIZE flag indicates that the interrupt lines within the index
* are setup as a set and new subindexes cannot be enabled without first
* disabling the entire index. This is used for interrupts like PCI MSI
* and MSI-X where the driver may only use a subset of the available
* indexes, but VFIO needs to enable a specific number of vectors
* upfront. In the case of MSI-X, where the user can enable MSI-X and
* then add and unmask vectors, it's up to userspace to make the decision
* whether to allocate the maximum supported number of vectors or tear
* down setup and incrementally increase the vectors as each is enabled.
*/
struct vfio_irq_info {
__u32 argsz;
__u32 flags;
#define VFIO_IRQ_INFO_EVENTFD (1 << 0)
#define VFIO_IRQ_INFO_MASKABLE (1 << 1)
#define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
#define VFIO_IRQ_INFO_NORESIZE (1 << 3)
__u32 index; /* IRQ index */
__u32 count; /* Number of IRQs within this index */
};
#define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)

/**
* VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
*
* Set signaling, masking, and unmasking of interrupts. Caller provides
* struct vfio_irq_set with all fields set. 'start' and 'count' indicate
* the range of subindexes being specified.
*
* The DATA flags specify the type of data provided. If DATA_NONE, the
* operation performs the specified action immediately on the specified
* interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
* flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
*
* DATA_BOOL allows sparse support for the same on arrays of interrupts.
* For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
* flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
* data = {1,0,1}
*
* DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
* A value of -1 can be used to either de-assign interrupts if already
* assigned or skip un-assigned interrupts. For example, to set an eventfd
* to be trigger for interrupts [0,0] and [0,2]:
* flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
* data = {fd1, -1, fd2}
* If index [0,1] is previously set, two count = 1 ioctls calls would be
* required to set [0,0] and [0,2] without changing [0,1].
*
* Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
* with ACTION_TRIGGER to perform kernel level interrupt loopback testing
* from userspace (ie. simulate hardware triggering).
*
* Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
* enables the interrupt index for the device. Individual subindex interrupts
* can be disabled using the -1 value for DATA_EVENTFD or the index can be
* disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
*
* Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
* ACTION_TRIGGER specifies kernel->user signaling.
*/
struct vfio_irq_set {
__u32 argsz;
__u32 flags;
#define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
#define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
#define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
#define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
#define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
#define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
__u32 index;
__u32 start;
__u32 count;
__u8 data[];
};
#define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)

#define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
VFIO_IRQ_SET_DATA_BOOL | \
VFIO_IRQ_SET_DATA_EVENTFD)
#define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
VFIO_IRQ_SET_ACTION_UNMASK | \
VFIO_IRQ_SET_ACTION_TRIGGER)
/**
* VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
*
* Reset a device.
*/
#define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)

/*
* The VFIO-PCI bus driver makes use of the following fixed region and
* IRQ index mapping. Unimplemented regions return a size of zero.
* Unimplemented IRQ types return a count of zero.
*/

enum {
VFIO_PCI_BAR0_REGION_INDEX,
VFIO_PCI_BAR1_REGION_INDEX,
VFIO_PCI_BAR2_REGION_INDEX,
VFIO_PCI_BAR3_REGION_INDEX,
VFIO_PCI_BAR4_REGION_INDEX,
VFIO_PCI_BAR5_REGION_INDEX,
VFIO_PCI_ROM_REGION_INDEX,
VFIO_PCI_CONFIG_REGION_INDEX,
/*
* Expose VGA regions defined for PCI base class 03, subclass 00.
* This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
* as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
* range is found at it's identity mapped offset from the region
* offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
* between described ranges are unimplemented.
*/
VFIO_PCI_VGA_REGION_INDEX,
VFIO_PCI_NUM_REGIONS
};

enum {
VFIO_PCI_INTX_IRQ_INDEX,
VFIO_PCI_MSI_IRQ_INDEX,
VFIO_PCI_MSIX_IRQ_INDEX,
VFIO_PCI_NUM_IRQS
};

/* -------- API for Type1 VFIO IOMMU -------- */

/**
* VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
*
* Retrieve information about the IOMMU object. Fills in provided
* struct vfio_iommu_info. Caller sets argsz.
*
* XXX Should we do these by CHECK_EXTENSION too?
*/
struct vfio_iommu_type1_info {
__u32 argsz;
__u32 flags;
#define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
__u64 iova_pgsizes; /* Bitmap of supported page sizes */
};

#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)

/**
* VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
*
* Map process virtual addresses to IO virtual addresses using the
* provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
*/
struct vfio_iommu_type1_dma_map {
__u32 argsz;
__u32 flags;
#define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
__u64 vaddr; /* Process virtual address */
__u64 iova; /* IO virtual address */
__u64 size; /* Size of mapping (bytes) */
};

#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)

/**
* VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
* struct vfio_dma_unmap)
*
* Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
* Caller sets argsz. The actual unmapped size is returned in the size
* field. No guarantee is made to the user that arbitrary unmaps of iova
* or size different from those used in the original mapping call will
* succeed.
*/
struct vfio_iommu_type1_dma_unmap {
__u32 argsz;
__u32 flags;
__u64 iova; /* IO virtual address */
__u64 size; /* Size of mapping (bytes) */
};

#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)

#endif /* _UAPIVFIO_H */

#include <errno.h>
#include <libgen.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>

#include <linux/ioctl.h>

#define MAP_SIZE (4UL * 1024 * 1024 * 1024)
#define MAP_MAX 1024
#define DMA_CHUNK (2UL * 1024 * 1024)

#define DMA_CHUNK_640K (640 * 1024)
#define DMA_CHUNK_640K_ (15744 * 1024)
#define DMA_CHUNK_16M (16 * 1024 * 1024)
#define DMA_CHUNK_32M (32 * 1024 * 1024)
#define DMA_CHUNK_64M (64 * 1024 * 1024)
#define DMA_CHUNK_128M (128 * 1024 * 1024)
#define DMA_CHUNK_256M (256 * 1024 * 1024)
#define DMA_CHUNK_512M (512 * 1024 * 1024)

#define MAP 1
#define UNMAP 2

typedef struct {
int type;
unsigned long iova;
unsigned long size;
} IOMMU_TEST_TYPE;


static IOMMU_TEST_TYPE test_val[] = {
{UNMAP, 0x0, 0xa0000},
{UNMAP, 0xc0000, 0xbff40000},
{MAP, 0x0, 0xc0000000},
{UNMAP, 0x0, 0xc0000000},
{MAP, 0x0, 0xa0000},
{MAP, 0xc0000, 0xbff40000},
};


void usage(char *name)
{
printf("usage: %s ssss:bb:dd.f\n", name);
printf("\tssss: PCI segment, ex. 0000\n");
printf("\tbb: PCI bus, ex. 01\n");
printf("\tdd: PCI device, ex. 06\n");
printf("\tf: PCI function, ex. 0\n");
}

static int test_map(int container, unsigned long iova,
unsigned long vaddr, unsigned long size)
{
int ret;
struct vfio_iommu_type1_dma_map dma_map = {
.argsz = sizeof(dma_map),
.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE,
};

dma_map.iova = iova;
dma_map.vaddr = vaddr;
dma_map.size = size;

ret = ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);
if (ret) {
printf("Failed to map memory 0x%lx/0x%lx 0x%lx %s\n",
iova, vaddr, size, strerror(errno));
return ret;
}

printf("Succ to MAP memory 0x%lx/0x%lx 0x%lx\n",
iova, vaddr, size);
return 0;
}

static int test_unmap(int container, unsigned long iova,
unsigned long size)
{
int ret;
struct vfio_iommu_type1_dma_unmap dma_unmap = {
.argsz = sizeof(dma_unmap)
};

dma_unmap.iova = iova;
dma_unmap.size = size;

ret = ioctl(container, VFIO_IOMMU_UNMAP_DMA, &dma_unmap);
if (ret) {
printf("Failed to unmap memory 0x%lx/0x%lx (%s)\n",
iova, size, strerror(errno));
return ret;
}

printf("Succ to unmap memory 0x%lx/0x%lx\n",
iova, size);
return 0;
}

int main(int argc, char **argv)
{
int seg, bus, slot, func;
int ret, container, group, groupid;
char path[50], iommu_group_path[50], *group_name;
struct stat st;
ssize_t len;
unsigned long i, j, vaddr, *val;
struct vfio_group_status group_status = {
.argsz = sizeof(group_status)
};

if (argc != 2) {
usage(argv[0]);
return -1;
}

ret = sscanf(argv[1], "%04x:%02x:%02x.%d", &seg, &bus, &slot, &func);
if (ret != 4) {
usage(argv[0]);
return -1;
}

container = open("/dev/vfio/vfio", O_RDWR);
if (container < 0) {
printf("Failed to open /dev/vfio/vfio, %d (%s)\n",
container, strerror(errno));
return container;
}

snprintf(path, sizeof(path),
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
seg, bus, slot, func);

ret = stat(path, &st);
if (ret < 0) {
printf("No such device\n");
return ret;
}

strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);

len = readlink(path, iommu_group_path, sizeof(iommu_group_path));
if (len <= 0) {
printf("No iommu_group for device\n");
return -1;
}

iommu_group_path[len] = 0;
group_name = basename(iommu_group_path);

if (sscanf(group_name, "%d", &groupid) != 1) {
printf("Unknown group\n");
return -1;
}

snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
group = open(path, O_RDWR);
if (group < 0) {
printf("Failed to open %s, %d (%s)\n",
path, group, strerror(errno));
return group;
}

ret = ioctl(group, VFIO_GROUP_GET_STATUS, &group_status);
if (ret) {
printf("ioctl(VFIO_GROUP_GET_STATUS) failed\n");
return ret;
}

if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
printf("Group not viable, are all devices attached to vfio?\n");
return -1;
}

ret = ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);
if (ret) {
printf("Failed to set group container\n");
return ret;
}

ret = ioctl(container, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU);
if (ret) {
printf("Failed to set IOMMU\n");
return ret;
}

vaddr = (unsigned long)mmap(0, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
if (!vaddr) {
printf("Failed to allocate memory\n");
return -1;
}
printf("%lx\n", vaddr);

for (i = 0; i < (MAP_SIZE / 4096); i++) {
val = (unsigned long *)(vaddr + 4096 * i);
for (j = 0; j < (4096 / sizeof(unsigned long)); j++)
val[j] = i;
}
printf("inited data\n");

test_map(container, 0, vaddr, MAP_SIZE);
while (1) {
for (int i = 0; i < sizeof(test_val) / sizeof(IOMMU_TEST_TYPE); i++) {
if (test_val[i].type == MAP) {
test_map(container, test_val[i].iova, vaddr + test_val[i].iova, test_val[i].size);
if (test_val[i].iova == 0 && test_val[i].size == 0xc0000000) {
usleep(2000000);
}
} else if (test_val[i].type == UNMAP) {
test_unmap(container, test_val[i].iova, test_val[i].size);
} else {
printf("unknoww type\n");
}
}
}

return 0;
}