Re: [PATCH v11 6/6] powerpc: Book3S 64-bit outline-only KASAN support

From: Balbir Singh
Date: Sat Mar 20 2021 - 07:40:35 EST


On Sat, Mar 20, 2021 at 01:40:58AM +1100, Daniel Axtens wrote:
> Implement a limited form of KASAN for Book3S 64-bit machines running under
> the Radix MMU, supporting only outline mode.
>

Could you highlight the changes from
https://patchwork.ozlabs.org/project/linuxppc-dev/patch/20170729140901.5887-1-bsingharora@xxxxxxxxx/?

Feel free to use my signed-off-by if you need to and add/update copyright
headers if appropriate.

> - Enable the compiler instrumentation to check addresses and maintain the
> shadow region. (This is the guts of KASAN which we can easily reuse.)
>
> - Require kasan-vmalloc support to handle modules and anything else in
> vmalloc space.
>
> - KASAN needs to be able to validate all pointer accesses, but we can't
> instrument all kernel addresses - only linear map and vmalloc. On boot,
> set up a single page of read-only shadow that marks all iomap and
> vmemmap accesses as valid.
>
> - Make our stack-walking code KASAN-safe by using READ_ONCE_NOCHECK -
> generic code, arm64, s390 and x86 all do this for similar sorts of
> reasons: when unwinding a stack, we might touch memory that KASAN has
> marked as being out-of-bounds. In our case we often get this when
> checking for an exception frame because we're checking an arbitrary
> offset into the stack frame.
>
> See commit 20955746320e ("s390/kasan: avoid false positives during stack
> unwind"), commit bcaf669b4bdb ("arm64: disable kasan when accessing
> frame->fp in unwind_frame"), commit 91e08ab0c851 ("x86/dumpstack:
> Prevent KASAN false positive warnings") and commit 6e22c8366416
> ("tracing, kasan: Silence Kasan warning in check_stack of stack_tracer")
>
> - Document KASAN in both generic and powerpc docs.
>
> Background
> ----------
>
> KASAN support on Book3S is a bit tricky to get right:
>
> - It would be good to support inline instrumentation so as to be able to
> catch stack issues that cannot be caught with outline mode.
>
> - Inline instrumentation requires a fixed offset.
>
> - Book3S runs code with translations off ("real mode") during boot,
> including a lot of generic device-tree parsing code which is used to
> determine MMU features.
>
> [ppc64 mm note: The kernel installs a linear mapping at effective
> address c000...-c008.... This is a one-to-one mapping with physical
> memory from 0000... onward. Because of how memory accesses work on
> powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
> same memory both with translations on (accessing as an 'effective
> address'), and with translations off (accessing as a 'real
> address'). This works in both guests and the hypervisor. For more
> details, see s5.7 of Book III of version 3 of the ISA, in particular
> the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
> KASAN implementation currently only supports Radix.]
>
> - Some code - most notably a lot of KVM code - also runs with translations
> off after boot.
>
> - Therefore any offset has to point to memory that is valid with
> translations on or off.
>
> One approach is just to give up on inline instrumentation. This way
> boot-time checks can be delayed until after the MMU is set is up, and we
> can just not instrument any code that runs with translations off after
> booting. Take this approach for now and require outline instrumentation.
>
> Previous attempts allowed inline instrumentation. However, they came with
> some unfortunate restrictions: only physically contiguous memory could be
> used and it had to be specified at compile time. Maybe we can do better in
> the future.
>
> Cc: Balbir Singh <bsingharora@xxxxxxxxx> # ppc64 out-of-line radix version
> Cc: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxx> # ppc64 hash version
> Cc: Christophe Leroy <christophe.leroy@xxxxxxxxxx> # ppc32 version
> Signed-off-by: Daniel Axtens <dja@xxxxxxxxxx>
> ---
> Documentation/dev-tools/kasan.rst | 11 +--
> Documentation/powerpc/kasan.txt | 48 +++++++++-
> arch/powerpc/Kconfig | 4 +-
> arch/powerpc/Kconfig.debug | 3 +-
> arch/powerpc/include/asm/book3s/64/hash.h | 4 +
> arch/powerpc/include/asm/book3s/64/pgtable.h | 4 +
> arch/powerpc/include/asm/book3s/64/radix.h | 13 ++-
> arch/powerpc/include/asm/kasan.h | 22 +++++
> arch/powerpc/kernel/Makefile | 11 +++
> arch/powerpc/kernel/process.c | 16 ++--
> arch/powerpc/kvm/Makefile | 5 ++
> arch/powerpc/mm/book3s64/Makefile | 9 ++
> arch/powerpc/mm/kasan/Makefile | 1 +
> arch/powerpc/mm/kasan/init_book3s_64.c | 95 ++++++++++++++++++++
> arch/powerpc/mm/ptdump/ptdump.c | 20 ++++-
> arch/powerpc/platforms/Kconfig.cputype | 1 +
> arch/powerpc/platforms/powernv/Makefile | 6 ++
> arch/powerpc/platforms/pseries/Makefile | 3 +
> 18 files changed, 257 insertions(+), 19 deletions(-)
> create mode 100644 arch/powerpc/mm/kasan/init_book3s_64.c
>
> diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
> index 2cfd5d9068c0..8024b55c7aa8 100644
> --- a/Documentation/dev-tools/kasan.rst
> +++ b/Documentation/dev-tools/kasan.rst
> @@ -36,8 +36,9 @@ Both software KASAN modes work with SLUB and SLAB memory allocators,
> while the hardware tag-based KASAN currently only supports SLUB.
>
> Currently, generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390,
> -and riscv architectures. It is also supported on 32-bit powerpc kernels.
> -Tag-based KASAN modes are supported only for arm64.
> +and riscv architectures. It is also supported on powerpc for 32-bit kernels and
> +for 64-bit kernels running under the Radix MMU. Tag-based KASAN modes are
> +supported only for arm64.
>
> Usage
> -----
> @@ -335,10 +336,10 @@ CONFIG_KASAN_VMALLOC
>
> With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
> cost of greater memory usage. Currently, this is supported on x86,
> -riscv, s390, and 32-bit powerpc.
> +riscv, s390, and powerpc.
>
> -It is optional, except on 32-bit powerpc kernels with module support,
> -where it is required.
> +It is optional, except on 64-bit powerpc kernels, and on 32-bit
> +powerpc kernels with module support, where it is required.
>
> This works by hooking into vmalloc and vmap and dynamically
> allocating real shadow memory to back the mappings.
> diff --git a/Documentation/powerpc/kasan.txt b/Documentation/powerpc/kasan.txt
> index 26bb0e8bb18c..f032b4eaf205 100644
> --- a/Documentation/powerpc/kasan.txt
> +++ b/Documentation/powerpc/kasan.txt
> @@ -1,4 +1,4 @@
> -KASAN is supported on powerpc on 32-bit only.
> +KASAN is supported on powerpc on 32-bit and Radix 64-bit only.
>
> 32 bit support
> ==============
> @@ -10,3 +10,49 @@ fixmap area and occupies one eighth of the total kernel virtual memory space.
>
> Instrumentation of the vmalloc area is optional, unless built with modules,
> in which case it is required.
> +
> +64 bit support
> +==============
> +
> +Currently, only the radix MMU is supported. There have been versions for hash
> +and Book3E processors floating around on the mailing list, but nothing has been
> +merged.
> +
> +KASAN support on Book3S is a bit tricky to get right:
> +
> + - It would be good to support inline instrumentation so as to be able to catch
> + stack issues that cannot be caught with outline mode.
> +
> + - Inline instrumentation requires a fixed offset.
> +
> + - Book3S runs code with translations off ("real mode") during boot, including a
> + lot of generic device-tree parsing code which is used to determine MMU
> + features.
> +
> + - Some code - most notably a lot of KVM code - also runs with translations off
> + after boot.
> +
> + - Therefore any offset has to point to memory that is valid with
> + translations on or off.
> +
> +One approach is just to give up on inline instrumentation. This way boot-time
> +checks can be delayed until after the MMU is set is up, and we can just not
> +instrument any code that runs with translations off after booting. This is the
> +current approach.
> +
> +To avoid this limitiation, the KASAN shadow would have to be placed inside the
> +linear mapping, using the same high-bits trick we use for the rest of the linear
> +mapping. This is tricky:
> +
> + - We'd like to place it near the start of physical memory. In theory we can do
> + this at run-time based on how much physical memory we have, but this requires
> + being able to arbitrarily relocate the kernel, which is basically the tricky
> + part of KASLR. Not being game to implement both tricky things at once, this
> + is hopefully something we can revisit once we get KASLR for Book3S.
> +
> + - Alternatively, we can place the shadow at the _end_ of memory, but this
> + requires knowing how much contiguous physical memory a system has _at compile
> + time_. This is a big hammer, and has some unfortunate consequences: inablity
> + to handle discontiguous physical memory, total failure to boot on machines
> + with less memory than specified, and that machines with more memory than
> + specified can't use it. This was deemed unacceptable.
> diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
> index 4232d3f539c8..04aa817d1c5a 100644
> --- a/arch/powerpc/Kconfig
> +++ b/arch/powerpc/Kconfig
> @@ -118,6 +118,7 @@ config PPC
> # Please keep this list sorted alphabetically.
> #
> select ARCH_32BIT_OFF_T if PPC32
> + select ARCH_DISABLE_KASAN_INLINE if PPC_RADIX_MMU
> select ARCH_HAS_DEBUG_VIRTUAL
> select ARCH_HAS_DEVMEM_IS_ALLOWED
> select ARCH_HAS_ELF_RANDOMIZE
> @@ -183,7 +184,8 @@ config PPC
> select HAVE_ARCH_HUGE_VMAP if PPC_BOOK3S_64 && PPC_RADIX_MMU
> select HAVE_ARCH_JUMP_LABEL
> select HAVE_ARCH_KASAN if PPC32 && PPC_PAGE_SHIFT <= 14
> - select HAVE_ARCH_KASAN_VMALLOC if PPC32 && PPC_PAGE_SHIFT <= 14
> + select HAVE_ARCH_KASAN if PPC_RADIX_MMU
> + select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
> select HAVE_ARCH_KGDB
> select HAVE_ARCH_MMAP_RND_BITS
> select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
> diff --git a/arch/powerpc/Kconfig.debug b/arch/powerpc/Kconfig.debug
> index ae084357994e..195f7845f41a 100644
> --- a/arch/powerpc/Kconfig.debug
> +++ b/arch/powerpc/Kconfig.debug
> @@ -398,4 +398,5 @@ config PPC_FAST_ENDIAN_SWITCH
> config KASAN_SHADOW_OFFSET
> hex
> depends on KASAN
> - default 0xe0000000
> + default 0xe0000000 if PPC32
> + default 0xa80e000000000000 if PPC64
> diff --git a/arch/powerpc/include/asm/book3s/64/hash.h b/arch/powerpc/include/asm/book3s/64/hash.h
> index d959b0195ad9..222669864ff6 100644
> --- a/arch/powerpc/include/asm/book3s/64/hash.h
> +++ b/arch/powerpc/include/asm/book3s/64/hash.h
> @@ -18,6 +18,10 @@
> #include <asm/book3s/64/hash-4k.h>
> #endif
>
> +#define H_PTRS_PER_PTE (1 << H_PTE_INDEX_SIZE)
> +#define H_PTRS_PER_PMD (1 << H_PMD_INDEX_SIZE)
> +#define H_PTRS_PER_PUD (1 << H_PUD_INDEX_SIZE)
> +
> /* Bits to set in a PMD/PUD/PGD entry valid bit*/
> #define HASH_PMD_VAL_BITS (0x8000000000000000UL)
> #define HASH_PUD_VAL_BITS (0x8000000000000000UL)
> diff --git a/arch/powerpc/include/asm/book3s/64/pgtable.h b/arch/powerpc/include/asm/book3s/64/pgtable.h
> index 058601efbc8a..7598a5b055bd 100644
> --- a/arch/powerpc/include/asm/book3s/64/pgtable.h
> +++ b/arch/powerpc/include/asm/book3s/64/pgtable.h
> @@ -230,6 +230,10 @@ extern unsigned long __pmd_frag_size_shift;
> #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
> #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
>
> +#define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
> +#define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
> +#define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
> +
> /* PMD_SHIFT determines what a second-level page table entry can map */
> #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
> #define PMD_SIZE (1UL << PMD_SHIFT)
> diff --git a/arch/powerpc/include/asm/book3s/64/radix.h b/arch/powerpc/include/asm/book3s/64/radix.h
> index c7813dc628fc..b3492b80f858 100644
> --- a/arch/powerpc/include/asm/book3s/64/radix.h
> +++ b/arch/powerpc/include/asm/book3s/64/radix.h
> @@ -35,6 +35,11 @@
> #define RADIX_PMD_SHIFT (PAGE_SHIFT + RADIX_PTE_INDEX_SIZE)
> #define RADIX_PUD_SHIFT (RADIX_PMD_SHIFT + RADIX_PMD_INDEX_SIZE)
> #define RADIX_PGD_SHIFT (RADIX_PUD_SHIFT + RADIX_PUD_INDEX_SIZE)
> +
> +#define R_PTRS_PER_PTE (1 << RADIX_PTE_INDEX_SIZE)
> +#define R_PTRS_PER_PMD (1 << RADIX_PMD_INDEX_SIZE)
> +#define R_PTRS_PER_PUD (1 << RADIX_PUD_INDEX_SIZE)
> +
> /*
> * Size of EA range mapped by our pagetables.
> */
> @@ -68,11 +73,11 @@
> *
> *
> * 3rd quadrant expanded:
> - * +------------------------------+
> + * +------------------------------+ Highest address (0xc010000000000000)
> + * +------------------------------+ KASAN shadow end (0xc00fc00000000000)
> * | |
> * | |
> - * | |
> - * +------------------------------+ Kernel vmemmap end (0xc010000000000000)
> + * +------------------------------+ Kernel vmemmap end/shadow start (0xc00e000000000000)
> * | |
> * | 512TB |
> * | |
> @@ -126,6 +131,8 @@
> #define RADIX_VMEMMAP_SIZE RADIX_KERN_MAP_SIZE
> #define RADIX_VMEMMAP_END (RADIX_VMEMMAP_START + RADIX_VMEMMAP_SIZE)
>
> +/* For the sizes of the shadow area, see kasan.h */
> +
> #ifndef __ASSEMBLY__
> #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
> #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
> diff --git a/arch/powerpc/include/asm/kasan.h b/arch/powerpc/include/asm/kasan.h
> index 7355ed05e65e..df946165812d 100644
> --- a/arch/powerpc/include/asm/kasan.h
> +++ b/arch/powerpc/include/asm/kasan.h
> @@ -30,9 +30,31 @@
>
> #define KASAN_SHADOW_OFFSET ASM_CONST(CONFIG_KASAN_SHADOW_OFFSET)
>
> +#ifdef CONFIG_PPC32
> #define KASAN_SHADOW_END (-(-KASAN_SHADOW_START >> KASAN_SHADOW_SCALE_SHIFT))
> +#endif
>
> #ifdef CONFIG_KASAN
> +#ifdef CONFIG_PPC_BOOK3S_64
> +/*
> + * The shadow ends before the highest accessible address
> + * because we don't need a shadow for the shadow. Instead:
> + * c00e000000000000 << 3 + a80e000000000000000 = c00fc00000000000

The comment has one extra 0 in a80e.., I did the math and had to use
the data from the defines :)

> + */
> +#define KASAN_SHADOW_END 0xc00fc00000000000UL
> +
> +DECLARE_STATIC_KEY_FALSE(powerpc_kasan_enabled_key);
> +
> +static __always_inline bool kasan_arch_is_ready(void)
> +{
> + if (static_branch_likely(&powerpc_kasan_enabled_key))
> + return true;
> + return false;
> +}
> +
> +#define kasan_arch_is_ready kasan_arch_is_ready
> +#endif
> +
> void kasan_early_init(void);
> void kasan_mmu_init(void);
> void kasan_init(void);
> diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile
> index 6084fa499aa3..163755b1cef4 100644
> --- a/arch/powerpc/kernel/Makefile
> +++ b/arch/powerpc/kernel/Makefile
> @@ -32,6 +32,17 @@ KASAN_SANITIZE_early_32.o := n
> KASAN_SANITIZE_cputable.o := n
> KASAN_SANITIZE_prom_init.o := n
> KASAN_SANITIZE_btext.o := n
> +KASAN_SANITIZE_paca.o := n
> +KASAN_SANITIZE_setup_64.o := n
> +KASAN_SANITIZE_mce.o := n
> +KASAN_SANITIZE_mce_power.o := n
> +
> +# we have to be particularly careful in ppc64 to exclude code that
> +# runs with translations off, as we cannot access the shadow with
> +# translations off. However, ppc32 can sanitize this.
> +ifdef CONFIG_PPC64
> +KASAN_SANITIZE_traps.o := n
> +endif
>
> ifdef CONFIG_KASAN
> CFLAGS_early_32.o += -DDISABLE_BRANCH_PROFILING
> diff --git a/arch/powerpc/kernel/process.c b/arch/powerpc/kernel/process.c
> index 3231c2df9e26..d4ae21b9e9b7 100644
> --- a/arch/powerpc/kernel/process.c
> +++ b/arch/powerpc/kernel/process.c
> @@ -2160,8 +2160,8 @@ void show_stack(struct task_struct *tsk, unsigned long *stack,
> break;
>
> stack = (unsigned long *) sp;
> - newsp = stack[0];
> - ip = stack[STACK_FRAME_LR_SAVE];
> + newsp = READ_ONCE_NOCHECK(stack[0]);
> + ip = READ_ONCE_NOCHECK(stack[STACK_FRAME_LR_SAVE]);
> if (!firstframe || ip != lr) {
> printk("%s["REG"] ["REG"] %pS",
> loglvl, sp, ip, (void *)ip);
> @@ -2179,17 +2179,19 @@ void show_stack(struct task_struct *tsk, unsigned long *stack,
> * See if this is an exception frame.
> * We look for the "regshere" marker in the current frame.
> */
> - if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
> - && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
> + if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS) &&
> + (READ_ONCE_NOCHECK(stack[STACK_FRAME_MARKER]) ==
> + STACK_FRAME_REGS_MARKER)) {
> struct pt_regs *regs = (struct pt_regs *)
> (sp + STACK_FRAME_OVERHEAD);
>
> - lr = regs->link;
> + lr = READ_ONCE_NOCHECK(regs->link);
> printk("%s--- interrupt: %lx at %pS\n",
> - loglvl, regs->trap, (void *)regs->nip);
> + loglvl, READ_ONCE_NOCHECK(regs->trap),
> + (void *)READ_ONCE_NOCHECK(regs->nip));
> __show_regs(regs);
> printk("%s--- interrupt: %lx\n",
> - loglvl, regs->trap);
> + loglvl, READ_ONCE_NOCHECK(regs->trap));
>
> firstframe = 1;
> }
> diff --git a/arch/powerpc/kvm/Makefile b/arch/powerpc/kvm/Makefile
> index 2bfeaa13befb..7f1592dacbeb 100644
> --- a/arch/powerpc/kvm/Makefile
> +++ b/arch/powerpc/kvm/Makefile
> @@ -136,3 +136,8 @@ obj-$(CONFIG_KVM_BOOK3S_64_PR) += kvm-pr.o
> obj-$(CONFIG_KVM_BOOK3S_64_HV) += kvm-hv.o
>
> obj-y += $(kvm-book3s_64-builtin-objs-y)
> +
> +# KVM does a lot in real-mode, and 64-bit Book3S KASAN doesn't support that
> +ifdef CONFIG_PPC_BOOK3S_64
> +KASAN_SANITIZE := n
> +endif
> diff --git a/arch/powerpc/mm/book3s64/Makefile b/arch/powerpc/mm/book3s64/Makefile
> index 1b56d3af47d4..a7d8a68bd2c5 100644
> --- a/arch/powerpc/mm/book3s64/Makefile
> +++ b/arch/powerpc/mm/book3s64/Makefile
> @@ -21,3 +21,12 @@ obj-$(CONFIG_PPC_PKEY) += pkeys.o
>
> # Instrumenting the SLB fault path can lead to duplicate SLB entries
> KCOV_INSTRUMENT_slb.o := n
> +
> +# Parts of these can run in real mode and therefore are
> +# not safe with the current outline KASAN implementation
> +KASAN_SANITIZE_mmu_context.o := n
> +KASAN_SANITIZE_pgtable.o := n
> +KASAN_SANITIZE_radix_pgtable.o := n
> +KASAN_SANITIZE_radix_tlb.o := n
> +KASAN_SANITIZE_slb.o := n
> +KASAN_SANITIZE_pkeys.o := n
> diff --git a/arch/powerpc/mm/kasan/Makefile b/arch/powerpc/mm/kasan/Makefile
> index 42fb628a44fd..07eef87abd6c 100644
> --- a/arch/powerpc/mm/kasan/Makefile
> +++ b/arch/powerpc/mm/kasan/Makefile
> @@ -5,3 +5,4 @@ KASAN_SANITIZE := n
> obj-$(CONFIG_PPC32) += init_32.o
> obj-$(CONFIG_PPC_8xx) += 8xx.o
> obj-$(CONFIG_PPC_BOOK3S_32) += book3s_32.o
> +obj-$(CONFIG_PPC_BOOK3S_64) += init_book3s_64.o
> diff --git a/arch/powerpc/mm/kasan/init_book3s_64.c b/arch/powerpc/mm/kasan/init_book3s_64.c
> new file mode 100644
> index 000000000000..ca913ed951a2
> --- /dev/null
> +++ b/arch/powerpc/mm/kasan/init_book3s_64.c
> @@ -0,0 +1,95 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * KASAN for 64-bit Book3S powerpc
> + *
> + * Copyright (C) 2019-2020 IBM Corporation
> + * Author: Daniel Axtens <dja@xxxxxxxxxx>
> + */
> +
> +#define DISABLE_BRANCH_PROFILING
> +
> +#include <linux/kasan.h>
> +#include <linux/printk.h>
> +#include <linux/sched/task.h>
> +#include <linux/memblock.h>
> +#include <asm/pgalloc.h>
> +
> +DEFINE_STATIC_KEY_FALSE(powerpc_kasan_enabled_key);
> +
> +static void __init kasan_init_phys_region(void *start, void *end)
> +{
> + unsigned long k_start, k_end, k_cur;
> + void *va;
> +
> + if (start >= end)
> + return;
> +
> + k_start = ALIGN_DOWN((unsigned long)kasan_mem_to_shadow(start), PAGE_SIZE);
> + k_end = ALIGN((unsigned long)kasan_mem_to_shadow(end), PAGE_SIZE);
> +
> + va = memblock_alloc(k_end - k_start, PAGE_SIZE);
> + for (k_cur = k_start; k_cur < k_end; k_cur += PAGE_SIZE, va += PAGE_SIZE)
> + map_kernel_page(k_cur, __pa(va), PAGE_KERNEL);
> +}
> +
> +void __init kasan_init(void)
> +{
> + /*
> + * We want to do the following things:
> + * 1) Map real memory into the shadow for all physical memblocks
> + * This takes us from c000... to c008...
> + * 2) Leave a hole over the shadow of vmalloc space. KASAN_VMALLOC
> + * will manage this for us.
> + * This takes us from c008... to c00a...
> + * 3) Map the 'early shadow'/zero page over iomap and vmemmap space.
> + * This takes us up to where we start at c00e...
> + */
> +

assuming we have
#define VMEMMAP_END R_VMEMMAP_END
and ditto for hash we probably need

BUILD_BUG_ON(VMEMMAP_END + KASAN_SHADOW_OFFSET != KASAN_SHADOW_END);

Looks good otherwise, I've not been able to test it yet

Balbir Singh.