uid-Another Problem in writing to /proc/loadavg file
From: sena
Date: Mon Jan 12 2004 - 23:04:24 EST
Hi Robin,
Though I was able to run my code and get good results as a kernel
module (This was everytime only one set of results per loading of the
module).
Anyway I felt that it was hanging on a bit while values being
calculated. (It looks like the host computer sends some messages to the
users)
Thinking everything was well, I then integrated it to the kernel code
with those extra loops of mine, this time there was nothing written to
/proc/loadavg file.
First I thought that this was because the long list(5) of USER's UIDs I
am saving in that file. (only 5)
Anyway it looks like that is not the real problem as I do calculate
every 5 seconds and that seems to be enough time.
Robin for further Real testing I thought of first running it as a
kernel module. Then this code has to be called every 5 seconds and will
have to be scheduled as a task.?
I made the following attempt.
I have 2 questions for you.
What is this error about? THE ERROR WAS sched.o: unresolved symbol
proc_unregister
Thanks
Sena Seneviratene
Computer Engineering Lab
Sydney University
sched.c
/* The necessary header files */
/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif
/* Necessary because we use the proc fs */
#include <linux/proc_fs.h>
/* We scheduale tasks here */
#include <linux/tqueue.h>
/* We also need the ability to put ourselves to sleep
* and wake up later */
#include <linux/sched.h>
/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so I add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif
/* The number of times the timer interrupt has been
* called so far */
static int TimerIntrpt = 0;
/* This is used by cleanup, to prevent the module from
* being unloaded while intrpt_routine is still in
* the task queue */
static struct wait_queue *WaitQ = NULL;
static void intrpt_routine(void *);
/* The task queue structure for this task, from tqueue.h */
static struct tq_struct Task = {
NULL, /* Next item in list - queue_task will do
* this for us */
0, /* A flag meaning we haven't been inserted
* into a task queue yet */
intrpt_routine, /* The function to run */
NULL /* The void* parameter for that function */
};
/*IN THIS FUNCTION LOAD AVERAGE CALCULATIONS BE INCLUDED*/
static void intrpt_routine(void *irrelevant)
{
/* Increment the counter */
TimerIntrpt++;
/* If cleanup wants us to die */
if (WaitQ != NULL)
wake_up(&WaitQ); /* Now cleanup_module can return */
else
/* Put ourselves back in the task queue */
queue_task(&Task, &tq_timer);
}
/* Put data into the proc fs file. */
int procfile_read(char *buffer,
char **buffer_location, off_t offset,
int buffer_length, int zero)
{
int len; /* The number of bytes actually used */
static char my_buffer[80];
static int count = 1;
if (offset > 0)
return 0;
/* Fill the buffer and get its length */
len = sprintf(my_buffer,
"Timer was called %d times so far\n",
TimerIntrpt);
count++;
/* Tell the function which called us where the
* buffer is */
*buffer_location = my_buffer;
/* Return the length */
return len;
}
struct proc_dir_entry Our_Proc_File =
{
0, /* Inode number - ignore, it will be filled by
* proc_register_dynamic */
5, /* Length of the file name */
"sched", /* The file name */
S_IFREG | S_IRUGO,
/* File mode - this is a regular file which can
* be read by its owner, its group, and everybody
* else */
1, /* Number of links (directories where
* the file is referenced) */
0, 0, /* The uid and gid for the file - we give
* it to root */
80, /* The size of the file reported by ls. */
NULL, /* functions which can be done on the
* inode (linking, removing, etc.) - we don't
* support any. */
procfile_read,
/* The read function for this file, the function called
* when somebody tries to read something from it. */
NULL
/* We could have here a function to fill the
* file's inode, to enable us to play with
* permissions, ownership, etc. */
};
/* Initialize the module - register the proc file */
int init_module()
{
/* Put the task in the tq_timer task queue, so it
* will be executed at next timer interrupt */
queue_task(&Task, &tq_timer);
/* Success if proc_register_dynamic is a success,
* failure otherwise */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
return proc_register(&proc_root, &Our_Proc_File);
#else
return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif
}
/* Cleanup */
void cleanup_module()
{
/* Unregister our /proc file */
proc_unregister(&proc_root, Our_Proc_File.low_ino);
/* Sleep until intrpt_routine is called one last
* time. This is necessary, because otherwise we'll
* deallocate the memory holding intrpt_routine and
* Task while tq_timer still references them.
* Notice that here we don't allow signals to
* interrupt us.
*
* Since WaitQ is now not NULL, this automatically
* tells the interrupt routine it's time to die. */
sleep_on(&WaitQ);
}
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/