Re: Atyfb questions and issues
From: Jim Ramsay
Date: Mon Aug 15 2005 - 14:22:06 EST
On 8/15/05, James Simmons <jsimmons@xxxxxxxxxxxxx> wrote:
>
> > > I wonder if James put that in mainstream, he already sent one patch
> > > for 2.6.5....
> > >
> > > please refer to
> > > http://www.linuxbios.org/pipermail/linuxbios/2004-May/007734.html
> >
> > It appears to me that this patch is in the 2.6.11 from linux-mips.org
> > that I am presently using.
>
> Its in the standard tree as well. The question is does it work in the mips
> branch? Last time I tried booting without the bios it did not work. Yhlu
> is right, atyfb_setup_generic is called which in x86 calls the
> init_from_bios function. Then in aty_init is the biosless initializing is
> done.
>
> > Maybe his mips FW does this, but mine doesn't. Any tips on how I can
> > do this in software?
>
> The idea of the patch is not to need FW.
Of course.
How about the replacement for 'xlinit.c' I have attached here?
I noticed that the big difference between what the 2.4 kernel and 2.6
kernel did is that the 'var_to_pll' (and its component functions) in
2.4 did a lot more probing than that in the 2.6 kernel.
So I copied the relevant 2.4 bits for non-i386 archs, and replaced the
call to 'var_to_pll' with the "new" stuff.
This seems to work for me. Enjoy!
--
Jim Ramsay
"Me fail English? That's unpossible!"
/*
* ATI Rage XL Initialization. Support for Xpert98 and Victoria
* PCI cards.
*
* Copyright (C) 2002 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* stevel@xxxxxxxxxx or source@xxxxxxxxxx
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <video/mach64.h>
#include "atyfb.h"
#define MPLL_GAIN 0xad
#define VPLL_GAIN 0xd5
enum {
VICTORIA = 0,
XPERT98,
NUM_XL_CARDS
};
extern const struct aty_pll_ops aty_pll_ct;
#define DEFAULT_CARD XPERT98
static int xl_card = DEFAULT_CARD;
static const struct xl_card_cfg_t {
int ref_crystal; // 10^4 Hz
int mem_type;
int mem_size;
u32 mem_cntl;
u32 ext_mem_cntl;
u32 mem_addr_config;
u32 bus_cntl;
u32 dac_cntl;
u32 hw_debug;
u32 custom_macro_cntl;
u8 dll2_cntl;
u8 pll_yclk_cntl;
} card_cfg[NUM_XL_CARDS] = {
// VICTORIA
{ 2700, SDRAM, 0x800000,
0x10757A3B, 0x64000C81, 0x00110202, 0x7b33A040,
0x82010102, 0x48803800, 0x005E0179,
0x50, 0x25
},
// XPERT98
{ 1432, WRAM, 0x800000,
0x00165A2B, 0xE0000CF1, 0x00200213, 0x7333A001,
0x8000000A, 0x48833800, 0x007F0779,
0x10, 0x19
}
};
typedef struct {
u8 lcd_reg;
u32 val;
} lcd_tbl_t;
static const lcd_tbl_t lcd_tbl[] = {
{ 0x01, 0x000520C0 },
{ 0x08, 0x02000408 },
{ 0x03, 0x00000F00 },
{ 0x00, 0x00000000 },
{ 0x02, 0x00000000 },
{ 0x04, 0x00000000 },
{ 0x05, 0x00000000 },
{ 0x06, 0x00000000 },
{ 0x33, 0x00000000 },
{ 0x34, 0x00000000 },
{ 0x35, 0x00000000 },
{ 0x36, 0x00000000 },
{ 0x37, 0x00000000 }
};
static void reset_gui(struct atyfb_par *par)
{
aty_st_8(GEN_TEST_CNTL+1, 0x01, par);
aty_st_8(GEN_TEST_CNTL+1, 0x00, par);
aty_st_8(GEN_TEST_CNTL+1, 0x02, par);
mdelay(5);
}
static void reset_sdram(struct atyfb_par *par)
{
u8 temp;
temp = aty_ld_8(EXT_MEM_CNTL, par);
temp |= 0x02;
aty_st_8(EXT_MEM_CNTL, temp, par); // MEM_SDRAM_RESET = 1b
temp |= 0x08;
aty_st_8(EXT_MEM_CNTL, temp, par); // MEM_CYC_TEST = 10b
temp |= 0x0c;
aty_st_8(EXT_MEM_CNTL, temp, par); // MEM_CYC_TEST = 11b
mdelay(5);
temp &= 0xf3;
aty_st_8(EXT_MEM_CNTL, temp, par); // MEM_CYC_TEST = 00b
temp &= 0xfd;
aty_st_8(EXT_MEM_CNTL, temp, par); // MEM_SDRAM_REST = 0b
mdelay(5);
}
static void init_dll(struct atyfb_par *par)
{
// enable DLL
aty_st_pll_ct(PLL_GEN_CNTL,
aty_ld_pll_ct(PLL_GEN_CNTL, par) & 0x7f,
par);
// reset DLL
aty_st_pll_ct(DLL_CNTL, 0x82, par);
aty_st_pll_ct(DLL_CNTL, 0xE2, par);
mdelay(5);
aty_st_pll_ct(DLL_CNTL, 0x82, par);
mdelay(6);
}
static void reset_clocks(struct atyfb_par *par, struct pll_ct *pll,
int hsync_enb)
{
reset_gui(par);
aty_st_pll_ct(MCLK_FB_DIV, pll->mclk_fb_div, par);
aty_st_pll_ct(SCLK_FB_DIV, pll->sclk_fb_div, par);
mdelay(15);
init_dll(par);
aty_st_8(GEN_TEST_CNTL+1, 0x00, par);
mdelay(5);
aty_st_8(CRTC_GEN_CNTL+3, 0x04, par);
mdelay(6);
reset_sdram(par);
aty_st_8(CRTC_GEN_CNTL+3,
hsync_enb ? 0x00 : 0x04, par);
aty_st_pll_ct(SPLL_CNTL2, pll->spll_cntl2, par);
aty_st_pll_ct(PLL_GEN_CNTL, pll->pll_gen_cntl, par);
aty_st_pll_ct(PLL_VCLK_CNTL, pll->pll_vclk_cntl, par);
}
#ifndef __i386__
/*
* These 3 routines (init_valid_pll_ct, init_dsp_gt, init_calc_pll_ct)
* are copied from the 2.4 initialization which properly initializes a
* bios-less chip.
*
* The i386 version includes code which uses the bios init instead, so
* these are unnecessary there.
*/
#define FAIL(x) do { printk(x "\n"); return -EINVAL; } while (0)
static int init_valid_pll_ct(const struct fb_info *info, u32 vclk_per,
struct pll_ct *pll)
{
#ifdef DEBUG
int pllmclk, pllsclk;
#endif
u32 q;
struct atyfb_par *par = (struct atyfb_par *) info->par;
pll->pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
/* FIXME: use the VTB/GTB /3 post divider if it's better suited */
/* actually 8*q */
q = par->ref_clk_per*pll->pll_ref_div*4/par->mclk_per;
if (q < 16*8 || q > 255*8)
FAIL("mclk out of range");
else if (q < 32*8)
pll->mclk_post_div_real = 8;
else if (q < 64*8)
pll->mclk_post_div_real = 4;
else if (q < 128*8)
pll->mclk_post_div_real = 2;
else
pll->mclk_post_div_real = 1;
pll->sclk_fb_div = q*pll->mclk_post_div_real/8;
#ifdef DEBUG
pllsclk = (1000000 * 2 * pll->sclk_fb_div) /
(par->ref_clk_per * pll->pll_ref_div);
printk(__FUNCTION__ ": pllsclk=%d MHz, mclk=%d MHz\n",
pllsclk, pllsclk / pll->mclk_post_div_real);
#endif
pll->mclk_fb_mult = M64_HAS(MFB_FORCE_4) ? 4 : 2;
/* actually 8*q */
q = par->ref_clk_per * pll->pll_ref_div * 8 /
(pll->mclk_fb_mult * par->xclk_per);
if (q < 16*8 || q > 255*8)
FAIL("mclk out of range");
else if (q < 32*8)
pll->xclk_post_div_real = 8;
else if (q < 64*8)
pll->xclk_post_div_real = 4;
else if (q < 128*8)
pll->xclk_post_div_real = 2;
else
pll->xclk_post_div_real = 1;
pll->mclk_fb_div = q*pll->xclk_post_div_real/8;
#ifdef DEBUG
pllmclk = (1000000 * pll->mclk_fb_mult * pll->mclk_fb_div) /
(par->ref_clk_per * pll->pll_ref_div);
printk(__FUNCTION__ ": pllmclk=%d MHz, xclk=%d MHz\n",
pllmclk, pllmclk / pll->xclk_post_div_real);
#endif
/* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
q = par->ref_clk_per*pll->pll_ref_div*4/vclk_per; /* actually 8*q */
if (q < 16*8 || q > 255*8)
FAIL("vclk out of range");
else if (q < 32*8)
pll->vclk_post_div_real = 8;
else if (q < 64*8)
pll->vclk_post_div_real = 4;
else if (q < 128*8)
pll->vclk_post_div_real = 2;
else
pll->vclk_post_div_real = 1;
pll->vclk_fb_div = q*pll->vclk_post_div_real/8;
return 0;
}
static int init_dsp_gt(const struct fb_info *info, u32 bpp,
struct pll_ct *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 dsp_xclks_per_row, dsp_loop_latency, dsp_precision, dsp_off, dsp_on;
u32 xclks_per_row, fifo_off, fifo_on, y, fifo_size;
u32 memcntl, n, t_pfc, t_rp, t_ras, t_rcd, t_crd, t_rcc, t_lat;
#ifdef DEBUG
printk(__FUNCTION__ ": mclk_fb_mult=%d\n", pll->mclk_fb_mult);
#endif
/* (64*xclk/vclk/bpp)<<11 = xclocks_per_row<<11 */
xclks_per_row = ((u32)pll->mclk_fb_mult * (u32)pll->mclk_fb_div *
(u32)pll->vclk_post_div_real * 64) << 11;
xclks_per_row /=
(2 * (u32)pll->vclk_fb_div * (u32)pll->xclk_post_div_real * bpp);
if (xclks_per_row < (1<<11))
FAIL("Dotclock too high");
if (M64_HAS(FIFO_32)) {
fifo_size = 32;
dsp_loop_latency = 2;
} else {
fifo_size = 24;
dsp_loop_latency = 0;
}
dsp_precision = 0;
y = (xclks_per_row*fifo_size)>>11;
while (y) {
y >>= 1;
dsp_precision++;
}
dsp_precision -= 5;
/* fifo_off<<6 */
fifo_off = ((xclks_per_row*(fifo_size-1))>>5); // + (3<<6);
if (info->fix.smem_len > 1*1024*1024) {
switch (par->ram_type) {
case WRAM:
/* >1 MB WRAM */
dsp_loop_latency += 9;
n = 4;
break;
case SDRAM:
case SGRAM:
/* >1 MB SDRAM */
dsp_loop_latency += 8;
n = 2;
break;
default:
/* >1 MB DRAM */
dsp_loop_latency += 6;
n = 3;
break;
}
} else {
if (par->ram_type >= SDRAM) {
/* <2 MB SDRAM */
dsp_loop_latency += 9;
n = 2;
} else {
/* <2 MB DRAM */
dsp_loop_latency += 8;
n = 3;
}
}
memcntl = aty_ld_le32(MEM_CNTL, par);
t_rcd = ((memcntl >> 10) & 0x03) + 1;
t_crd = ((memcntl >> 12) & 0x01);
t_rp = ((memcntl >> 8) & 0x03) + 1;
t_ras = ((memcntl >> 16) & 0x07) + 1;
t_lat = (memcntl >> 4) & 0x03;
t_pfc = t_rp + t_rcd + t_crd;
t_rcc = max(t_rp + t_ras, t_pfc + n);
/* fifo_on<<6 */
fifo_on = (2 * t_rcc + t_pfc + n - 1) << 6;
dsp_xclks_per_row = xclks_per_row>>dsp_precision;
dsp_on = fifo_on>>dsp_precision;
dsp_off = fifo_off>>dsp_precision;
pll->dsp_config = (dsp_xclks_per_row & 0x3fff) |
((dsp_loop_latency & 0xf)<<16) |
((dsp_precision & 7)<<20);
pll->dsp_on_off = (dsp_off & 0x7ff) | ((dsp_on & 0x7ff)<<16);
return 0;
}
void init_calc_pll_ct(const struct fb_info *info, struct pll_ct *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u8 xpostdiv = 0;
u8 mpostdiv = 0;
u8 vpostdiv = 0;
if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
pll->pll_gen_cntl = 0x64; /* mclk = sclk */
else
pll->pll_gen_cntl = 0xe4; /* mclk = sclk */
switch (pll->mclk_post_div_real) {
case 1:
mpostdiv = 0;
break;
case 2:
mpostdiv = 1;
break;
case 4:
mpostdiv = 2;
break;
case 8:
mpostdiv = 3;
break;
}
pll->spll_cntl2 = mpostdiv << 4; /* sclk == pllsclk / mpostdiv */
switch (pll->xclk_post_div_real) {
case 1:
xpostdiv = 0;
break;
case 2:
xpostdiv = 1;
break;
case 3:
xpostdiv = 4;
break;
case 4:
xpostdiv = 2;
break;
case 8:
xpostdiv = 3;
break;
}
if (M64_HAS(MAGIC_POSTDIV))
pll->pll_ext_cntl = 0;
else
pll->pll_ext_cntl = xpostdiv; /* xclk == pllmclk / xpostdiv */
if (pll->mclk_fb_mult == 4)
pll->pll_ext_cntl |= 0x08;
switch (pll->vclk_post_div_real) {
case 2:
vpostdiv = 1;
break;
case 3:
pll->pll_ext_cntl |= 0x10;
case 1:
vpostdiv = 0;
break;
case 6:
pll->pll_ext_cntl |= 0x10;
case 4:
vpostdiv = 2;
break;
case 12:
pll->pll_ext_cntl |= 0x10;
case 8:
vpostdiv = 3;
break;
}
pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
pll->vclk_post_div = vpostdiv;
}
#endif // __i386__
int atyfb_xl_init(struct fb_info *info)
{
const struct xl_card_cfg_t * card = &card_cfg[xl_card];
struct atyfb_par *par = (struct atyfb_par *) info->par;
union aty_pll pll;
int err;
u32 temp;
aty_st_8(CONFIG_STAT0, 0x85, par);
mdelay(10);
/*
* The following needs to be set before the call
* to var_to_pll() below. They'll be re-set again
* to the same values in aty_init().
*/
par->ref_clk_per = 100000000UL/card->ref_crystal;
par->ram_type = card->mem_type;
info->fix.smem_len = card->mem_size;
if (xl_card == VICTORIA) {
// the MCLK, XCLK are 120MHz on victoria card
par->mclk_per = 1000000/120;
par->xclk_per = 1000000/120;
par->features &= ~M64F_MFB_FORCE_4;
}
/*
* Calculate mclk and xclk dividers, etc. The passed
* pixclock and bpp values don't matter yet, the vclk
* isn't programmed until later.
*/
#ifndef __i386__
// These were stolen from the working 2.4 kernel xlinit.c
// This is what 'var_to_pll' used to do.
if( (err = init_valid_pll_ct( info, 39726, &(pll.ct) ) ) )
return err;
if( M64_HAS(GTB_DSP) && (err = init_dsp_gt( info, 8, &(pll.ct) ) ) )
return err;
init_calc_pll_ct( info, &(pll.ct) );
#else
// The current 'var_to_pll' assumes you have already called
// 'init_from_bios' which only occurrs for __i386__
if ((err = aty_pll_ct.var_to_pll(info, 39726, 8, &pll)))
return err;
#endif
aty_st_pll_ct(LVDS_CNTL0, 0x00, par);
aty_st_pll_ct(DLL2_CNTL, card->dll2_cntl, par);
aty_st_pll_ct(V2PLL_CNTL, 0x10, par);
aty_st_pll_ct(MPLL_CNTL, MPLL_GAIN, par);
aty_st_pll_ct(VPLL_CNTL, VPLL_GAIN, par);
aty_st_pll_ct(PLL_VCLK_CNTL, 0x00, par);
aty_st_pll_ct(VFC_CNTL, 0x1B, par);
aty_st_pll_ct(PLL_REF_DIV, pll.ct.pll_ref_div, par);
aty_st_pll_ct(PLL_EXT_CNTL, pll.ct.pll_ext_cntl, par);
aty_st_pll_ct(SPLL_CNTL2, 0x03, par);
aty_st_pll_ct(PLL_GEN_CNTL, 0x44, par);
reset_clocks(par, &pll.ct, 0);
mdelay(10);
aty_st_pll_ct(VCLK_POST_DIV, 0x03, par);
aty_st_pll_ct(VCLK0_FB_DIV, 0xDA, par);
aty_st_pll_ct(VCLK_POST_DIV, 0x0F, par);
aty_st_pll_ct(VCLK1_FB_DIV, 0xF5, par);
aty_st_pll_ct(VCLK_POST_DIV, 0x3F, par);
aty_st_pll_ct(PLL_EXT_CNTL, 0x40 | pll.ct.pll_ext_cntl, par);
aty_st_pll_ct(VCLK2_FB_DIV, 0x00, par);
aty_st_pll_ct(VCLK_POST_DIV, 0xFF, par);
aty_st_pll_ct(PLL_EXT_CNTL, 0xC0 | pll.ct.pll_ext_cntl, par);
aty_st_pll_ct(VCLK3_FB_DIV, 0x00, par);
aty_st_8(BUS_CNTL, 0x01, par);
aty_st_le32(BUS_CNTL, card->bus_cntl | 0x08000000, par);
aty_st_le32(CRTC_GEN_CNTL, 0x04000200, par);
aty_st_le16(CONFIG_STAT0, 0x0020, par);
aty_st_le32(MEM_CNTL, 0x10151A33, par);
aty_st_le32(EXT_MEM_CNTL, 0xE0000C01, par);
aty_st_le16(CRTC_GEN_CNTL+2, 0x0000, par);
aty_st_le32(DAC_CNTL, card->dac_cntl, par);
aty_st_le16(GEN_TEST_CNTL, 0x0100, par);
aty_st_le32(CUSTOM_MACRO_CNTL, 0x003C0171, par);
aty_st_le32(MEM_BUF_CNTL, 0x00382848, par);
aty_st_le32(HW_DEBUG, card->hw_debug, par);
aty_st_le16(MEM_ADDR_CONFIG, 0x0000, par);
aty_st_le16(GP_IO+2, 0x0000, par);
aty_st_le16(GEN_TEST_CNTL, 0x0000, par);
aty_st_le16(EXT_DAC_REGS+2, 0x0000, par);
aty_st_le32(CRTC_INT_CNTL, 0x00000000, par);
aty_st_le32(TIMER_CONFIG, 0x00000000, par);
aty_st_le32(0xEC, 0x00000000, par);
aty_st_le32(0xFC, 0x00000000, par);
#if defined(CONFIG_PM) || defined(CONFIG_PMAC_BACKLIGHT) || defined (CONFIG_FB_ATY_GENERIC_LCD)
{
int i;
for (i=0; i<sizeof(lcd_tbl)/sizeof(lcd_tbl_t); i++) {
aty_st_lcd(lcd_tbl[i].lcd_reg, lcd_tbl[i].val, par);
}
}
#endif
aty_st_le16(CONFIG_STAT0, 0x00A4, par);
mdelay(10);
aty_st_8(BUS_CNTL+1, 0xA0, par);
mdelay(10);
reset_clocks(par, &pll.ct, 1);
mdelay(10);
// something about power management
aty_st_8(LCD_INDEX, 0x08, par);
aty_st_8(LCD_DATA, 0x0A, par);
aty_st_8(LCD_INDEX, 0x08, par);
aty_st_8(LCD_DATA+3, 0x02, par);
aty_st_8(LCD_INDEX, 0x08, par);
aty_st_8(LCD_DATA, 0x0B, par);
mdelay(2);
// enable display requests, enable CRTC
aty_st_8(CRTC_GEN_CNTL+3, 0x02, par);
// disable display
aty_st_8(CRTC_GEN_CNTL, 0x40, par);
// disable display requests, disable CRTC
aty_st_8(CRTC_GEN_CNTL+3, 0x04, par);
mdelay(10);
aty_st_pll_ct(PLL_YCLK_CNTL, 0x25, par);
aty_st_le16(CUSTOM_MACRO_CNTL, 0x0179, par);
aty_st_le16(CUSTOM_MACRO_CNTL+2, 0x005E, par);
aty_st_le16(CUSTOM_MACRO_CNTL+2, card->custom_macro_cntl>>16, par);
aty_st_8(CUSTOM_MACRO_CNTL+1,
(card->custom_macro_cntl>>8) & 0xff, par);
aty_st_le32(MEM_ADDR_CONFIG, card->mem_addr_config, par);
aty_st_le32(MEM_CNTL, card->mem_cntl, par);
aty_st_le32(EXT_MEM_CNTL, card->ext_mem_cntl, par);
aty_st_8(CONFIG_STAT0, 0xA0 | card->mem_type, par);
aty_st_pll_ct(PLL_YCLK_CNTL, 0x01, par);
mdelay(15);
aty_st_pll_ct(PLL_YCLK_CNTL, card->pll_yclk_cntl, par);
mdelay(1);
reset_clocks(par, &pll.ct, 0);
mdelay(50);
reset_clocks(par, &pll.ct, 0);
mdelay(50);
// enable extended register block
aty_st_8(BUS_CNTL+3, 0x7B, par);
mdelay(1);
// disable extended register block
aty_st_8(BUS_CNTL+3, 0x73, par);
aty_st_8(CONFIG_STAT0, 0x80 | card->mem_type, par);
// disable display requests, disable CRTC
aty_st_8(CRTC_GEN_CNTL+3, 0x04, par);
// disable mapping registers in VGA aperture
aty_st_8(CONFIG_CNTL, aty_ld_8(CONFIG_CNTL, par) & ~0x04, par);
mdelay(50);
// enable display requests, enable CRTC
aty_st_8(CRTC_GEN_CNTL+3, 0x02, par);
// make GPIO's 14,15,16 all inputs
aty_st_8(LCD_INDEX, 0x07, par);
aty_st_8(LCD_DATA+3, 0x00, par);
// enable the display
aty_st_8(CRTC_GEN_CNTL, 0x00, par);
mdelay(17);
// reset the memory controller
aty_st_8(GEN_TEST_CNTL+1, 0x02, par);
mdelay(15);
aty_st_8(GEN_TEST_CNTL+1, 0x00, par);
mdelay(30);
// enable extended register block
aty_st_8(BUS_CNTL+3,
(u8)(aty_ld_8(BUS_CNTL+3, par) | 0x08),
par);
// set FIFO size to 512 (PIO)
aty_st_le32(GUI_CNTL,
aty_ld_le32(GUI_CNTL, par) & ~0x3,
par);
// enable CRT and disable lcd
aty_st_8(LCD_INDEX, 0x01, par);
temp = aty_ld_le32(LCD_DATA, par);
temp = (temp | 0x01) & ~0x02;
aty_st_le32(LCD_DATA, temp, par);
return 0;
}