[ckpatch][28/29] fs-fcache-v2.1.patch

From: Con Kolivas
Date: Sun Jun 18 2006 - 03:36:40 EST


A frontend cache for a block device. The purpose is to speedup a
fairly random but repeated read work load, like the boot of a system.

Signed-off-by: Jens Axboe <axboe@xxxxxxx>
---
block/ll_rw_blk.c | 11
drivers/block/Kconfig | 6
drivers/block/Makefile | 1
drivers/block/fcache.c | 1475 ++++++++++++++++++++++++++++++++++++++++++++++++
fs/ext3/super.c | 81 ++
include/linux/bio.h | 9
include/linux/ext3_fs.h | 14
7 files changed, 1587 insertions(+), 10 deletions(-)

Index: linux-ck-dev/block/ll_rw_blk.c
===================================================================
--- linux-ck-dev.orig/block/ll_rw_blk.c 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/block/ll_rw_blk.c 2006-06-18 15:25:27.000000000 +1000
@@ -2817,12 +2817,10 @@ static void init_request_from_bio(struct
*/
if (bio_rw_ahead(bio) || bio_failfast(bio))
req->flags |= REQ_FAILFAST;
-
- /*
- * REQ_BARRIER implies no merging, but lets make it explicit
- */
if (unlikely(bio_barrier(bio)))
- req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
+ req->flags |= REQ_HARDBARRIER;
+ if (!bio_mergeable(bio))
+ req->flags |= REQ_NOMERGE;

req->errors = 0;
req->hard_sector = req->sector = bio->bi_sector;
@@ -2870,7 +2868,7 @@ static int __make_request(request_queue_

spin_lock_irq(q->queue_lock);

- if (unlikely(barrier) || elv_queue_empty(q))
+ if (!bio_mergeable(bio) || elv_queue_empty(q))
goto get_rq;

el_ret = elv_merge(q, &req, bio);
@@ -3109,6 +3107,7 @@ void submit_bio(int rw, struct bio *bio)

BIO_BUG_ON(!bio->bi_size);
BIO_BUG_ON(!bio->bi_io_vec);
+ BIO_BUG_ON(bio->bi_next);
bio->bi_rw |= rw;
if (rw & WRITE)
mod_page_state(pgpgout, count);
Index: linux-ck-dev/drivers/block/Kconfig
===================================================================
--- linux-ck-dev.orig/drivers/block/Kconfig 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/drivers/block/Kconfig 2006-06-18 15:25:27.000000000 +1000
@@ -456,4 +456,10 @@ config ATA_OVER_ETH
This driver provides Support for ATA over Ethernet block
devices like the Coraid EtherDrive (R) Storage Blade.

+config BLK_FCACHE
+ bool "Boot frontend cache driver"
+ help
+ This driver puts the data needed for a boot sequentially in a
+ defined place, taking all seeks out of the boot process.
+
endmenu
Index: linux-ck-dev/drivers/block/Makefile
===================================================================
--- linux-ck-dev.orig/drivers/block/Makefile 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/drivers/block/Makefile 2006-06-18 15:25:27.000000000 +1000
@@ -5,6 +5,7 @@
# Rewritten to use lists instead of if-statements.
#

+obj-$(CONFIG_BLK_FCACHE) += fcache.o
obj-$(CONFIG_MAC_FLOPPY) += swim3.o
obj-$(CONFIG_BLK_DEV_FD) += floppy.o
obj-$(CONFIG_AMIGA_FLOPPY) += amiflop.o
Index: linux-ck-dev/drivers/block/fcache.c
===================================================================
--- /dev/null 1970-01-01 00:00:00.000000000 +0000
+++ linux-ck-dev/drivers/block/fcache.c 2006-06-18 15:25:27.000000000 +1000
@@ -0,0 +1,1475 @@
+/*
+ * A frontend cache for a block device. The purpose is to speedup a
+ * fairly random but repeated read work load, like the boot of a system.
+ *
+ * When run in priming mode, fcache allocates and writes data read from
+ * the source drive to our extent cache in the order in which they are
+ * accessed. When later run in non-priming mode, data accessed in the same
+ * order will be linearly available in the cache.
+ *
+ * Performance when priming is slower than non-fcache usage would be. If
+ * the fcache is located on another disk, the hit should be small. If the
+ * the fcache is located on the same disk (another partition), it runs
+ * at about half the speed. Non-priming performance should be fairly
+ * similar on same/other disk.
+ *
+ * On-disk format is as follows:
+ * Block0: header
+ * Block1..X extent maps
+ * BlockX+1..Y extent data
+ *
+ * Copyright (C) 2006 Jens Axboe <axboe@xxxxxxx>
+ *
+ */
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/sched.h>
+#include <linux/blkdev.h>
+#include <linux/prio_tree.h>
+#include <linux/buffer_head.h>
+#include <linux/slab.h>
+
+#define FCACHE_MAGIC 0x61786663
+#define FCACHE_VERSION 0x02
+
+#define FCACHE_HEADER_BLOCK 0
+#define FCACHE_EXTENT_BLOCK 1
+
+#undef FCACHE_PAGES_PROTECTED
+
+struct fcache_dev {
+ struct block_device *bdev;
+ struct block_device *fs_bdev;
+ make_request_fn *mfn;
+ struct prio_tree_root prio_root;
+ unsigned long next_cache_block;
+ unsigned long nr_extents;
+ unsigned long max_extents;
+ unsigned int old_bs;
+ spinlock_t lock;
+
+ sector_t cache_start_sector;
+ unsigned long cache_blocks;
+ sector_t fs_start_sector;
+ sector_t fs_sectors;
+
+ unsigned long flags;
+ int priming;
+ int serial;
+ int chop_ios;
+
+ struct list_head list;
+ struct work_struct work;
+
+ /*
+ * stats
+ */
+ unsigned int ios[2];
+ unsigned int hits;
+ unsigned int misses;
+ unsigned int overwrites;
+};
+
+enum {
+ FDEV_F_DOWN = 0,
+};
+
+static struct fcache_dev fcache_dev;
+
+static int disable;
+module_param(disable, int, 0444);
+
+struct fcache_endio_data {
+ struct fcache_dev *fdev;
+ sector_t fs_sector;
+ unsigned int fs_size;
+ sector_t cache_sector;
+ atomic_t completions;
+ struct bio *bio;
+ int io_error;
+ struct list_head list;
+};
+
+/*
+ * Maps a file system block to the fcache
+ */
+struct fcache_extent {
+ sector_t fs_sector; /* real device offset */
+ unsigned int fs_size; /* extent length */
+ sector_t cache_sector; /* cache device offset */
+
+ struct prio_tree_node prio_node;
+};
+
+/*
+ * Header on fcache device - will take up the first page of data, so
+ * plenty of room to go around.
+ */
+struct fcache_header {
+ u32 magic; /* fcache magic */
+ u32 version; /* fcache version */
+ u32 nr_extents; /* nr of extents in cache */
+ u32 max_extents; /* max nr of extents available */
+ u32 serial; /* fs and cache serial */
+ u32 extent_offset; /* where extents start */
+ u64 fs_start_sector; /* where fs starts */
+ u64 fs_sectors; /* how big fs is */
+ char fs_dev[BDEVNAME_SIZE]; /* fs partition */
+ u64 cache_blocks; /* number of blocks in cache */
+ u64 cache_blocks_used; /* used blocks in cache */
+ u16 sector_t_size; /* user space helper */
+ u16 extent_size; /* user space helper */
+};
+
+#define BLOCK_SHIFT (PAGE_SHIFT - 9)
+
+static struct kmem_cache *fcache_slab;
+static struct kmem_cache *fcache_fed_slab;
+static mempool_t *fed_pool;
+static struct workqueue_struct *fcache_workqueue;
+
+static int fcache_rw_page_endio(struct bio *bio, unsigned int bytes, int err)
+{
+ if (bio->bi_size)
+ return 1;
+
+ complete(bio->bi_private);
+ return 0;
+}
+
+/*
+ * Writes out a page of data and waits for it to complete.
+ */
+static int fcache_rw_page(struct fcache_dev *fdev, sector_t index,
+ struct page *page, int rw)
+{
+ DECLARE_COMPLETION(wait);
+ struct bio *bio;
+ int ret = 0;
+
+ bio = bio_alloc(GFP_KERNEL, 1);
+
+ bio->bi_sector = index << BLOCK_SHIFT;
+ bio->bi_bdev = fdev->bdev;
+ bio->bi_rw |= (1 << BIO_RW_SYNC);
+ bio->bi_end_io = fcache_rw_page_endio;
+ bio->bi_private = &wait;
+
+ bio_add_page(bio, page, PAGE_SIZE, 0);
+ submit_bio(rw, bio);
+
+ wait_for_completion(&wait);
+
+ if (!bio_flagged(bio, BIO_UPTODATE))
+ ret = -EIO;
+
+ bio_put(bio);
+ return ret;
+}
+
+static inline void fcache_fill_header(struct fcache_dev *fdev,
+ struct fcache_header *header,
+ unsigned int nr_extents)
+{
+ /*
+ * See how many pages we need for extent headers, then we know where
+ * to start putting data. Assume worst case of 1 page per extent, and
+ * reserve the first page for the header.
+ */
+
+ header->magic = FCACHE_MAGIC;
+ header->version = FCACHE_VERSION;
+ header->nr_extents = nr_extents;
+ header->max_extents = ((fdev->cache_blocks - 1) * PAGE_SIZE) / (PAGE_SIZE - sizeof(struct fcache_extent));
+ header->serial = fdev->serial;
+
+ header->extent_offset = 1 + (header->max_extents * sizeof(struct fcache_extent) / PAGE_SIZE);
+
+ header->fs_start_sector = fdev->fs_start_sector;
+ header->fs_sectors = fdev->fs_sectors;
+ bdevname(fdev->fs_bdev, header->fs_dev);
+ header->cache_blocks = fdev->cache_blocks;
+ header->cache_blocks_used = fdev->next_cache_block;
+ header->sector_t_size = sizeof(sector_t);
+ header->extent_size = sizeof(struct fcache_extent);
+}
+
+static int fcache_write_new_header(struct fcache_dev *fdev)
+{
+ struct fcache_header *header;
+ struct page *page;
+ int ret;
+
+ page = alloc_page(GFP_HIGHUSER);
+ if (unlikely(!page))
+ return -ENOMEM;
+
+ header = kmap_atomic(page, KM_USER0);
+ clear_page(header);
+ fcache_fill_header(fdev, header, 0);
+ fdev->next_cache_block = header->extent_offset;
+ fdev->max_extents = header->max_extents;
+ kunmap_atomic(header, KM_USER0);
+
+ printk("fcache: new header: first block %lu, max %lu\n",
+ fdev->next_cache_block, fdev->max_extents);
+ ret = fcache_rw_page(fdev, FCACHE_HEADER_BLOCK, page, WRITE);
+ __free_page(page);
+ return ret;
+}
+
+static void fcache_free_prio_tree(struct fcache_dev *fdev)
+{
+ struct fcache_extent *fe;
+ struct prio_tree_iter iter;
+ struct prio_tree_node *node;
+
+ /*
+ * Now prune and free tree, wish there was a better way...
+ */
+ do {
+ prio_tree_iter_init(&iter, &fdev->prio_root, 0, ULONG_MAX);
+
+ node = prio_tree_next(&iter);
+ if (!node)
+ break;
+
+ fe = prio_tree_entry(node, struct fcache_extent, prio_node);
+ prio_tree_remove(&fdev->prio_root, node);
+ kmem_cache_free(fcache_slab, fe);
+ } while (1);
+}
+
+/*
+ * First clear the header, write extents, then write real header.
+ */
+static int fcache_write_extents(struct fcache_dev *fdev)
+{
+ struct fcache_header *header;
+ sector_t index, sectors;
+ unsigned int nr_extents, this_extents;
+ struct fcache_extent *fe;
+ struct prio_tree_iter iter;
+ struct prio_tree_node *node;
+ struct page *page;
+ void *p;
+ int ret;
+
+ page = alloc_page(GFP_KERNEL);
+ if (unlikely(!page))
+ return -ENOMEM;
+
+ header = page_address(page);
+ clear_page(header);
+ fcache_fill_header(fdev, header, 0);
+ ret = fcache_rw_page(fdev, FCACHE_HEADER_BLOCK, page, WRITE);
+ if (ret)
+ goto err;
+
+ /*
+ * Now write the extents in page size chunks.
+ */
+ p = page_address(page);
+ clear_page(p);
+ index = FCACHE_EXTENT_BLOCK;
+ sectors = 0;
+ this_extents = nr_extents = 0;
+
+ prio_tree_iter_init(&iter, &fdev->prio_root, 0, ULONG_MAX);
+
+ do {
+ node = prio_tree_next(&iter);
+ if (!node)
+ break;
+
+ fe = prio_tree_entry(node, struct fcache_extent, prio_node);
+ nr_extents++;
+ this_extents++;
+ sectors += fe->fs_size >> 9;
+ memcpy(p, fe, sizeof(*fe));
+ p += sizeof(*fe);
+ if ((this_extents + 1) * sizeof(*fe) > PAGE_SIZE) {
+ ret = fcache_rw_page(fdev, index, page, WRITE);
+ if (ret)
+ break;
+
+ this_extents = 0;
+ index++;
+ p = page_address(page);
+ }
+ } while (1);
+
+ if (this_extents)
+ ret = fcache_rw_page(fdev, index, page, WRITE);
+
+ fdev->nr_extents = nr_extents;
+ printk("fcache: wrote %d extents, holding %llu sectors of data\n",
+ nr_extents, (unsigned long long) sectors);
+err:
+ __free_page(page);
+ return ret;
+}
+
+static int fcache_write_header(struct fcache_dev *fdev)
+{
+ struct page *page;
+ int ret;
+
+ page = alloc_page(GFP_KERNEL);
+ if (unlikely(!page))
+ return -ENOMEM;
+
+ ret = fcache_rw_page(fdev, FCACHE_HEADER_BLOCK, page, READ);
+ if (!ret) {
+ struct fcache_header *header = page_address(page);
+
+ fcache_fill_header(fdev, header, fdev->nr_extents);
+ ret = fcache_rw_page(fdev, FCACHE_HEADER_BLOCK, page, WRITE);
+ printk("fcache: wrote header (extents=%lu,serial=%d)\n",
+ fdev->nr_extents, fdev->serial);
+ }
+
+ __free_page(page);
+ return ret;
+}
+
+static void fcache_tree_link(struct fcache_dev *fdev, struct fcache_extent *fe)
+{
+ struct prio_tree_node *node = &fe->prio_node;
+ unsigned long flags;
+
+ INIT_PRIO_TREE_NODE(node);
+ node->start = fe->fs_sector;
+ node->last = fe->fs_sector + (fe->fs_size >> 9) - 1;
+
+ spin_lock_irqsave(&fdev->lock, flags);
+ prio_tree_insert(&fdev->prio_root, node);
+ spin_unlock_irqrestore(&fdev->lock, flags);
+}
+
+#define MAX_FE 16
+
+/*
+ * Lookup the range of a given request in the prio tree. Used for both
+ * looking up a range covering a read operation to be served from cache,
+ * and to lookup potential conflicts from a new write with an existing
+ * extent.
+ */
+static int fcache_lookup_extent(struct fcache_dev *fdev, sector_t offset,
+ unsigned int bytes, struct fcache_extent **map)
+{
+ sector_t end_sector = offset + (bytes >> 9) - 1;
+ struct prio_tree_node *node;
+ struct prio_tree_iter iter;
+ int i = 0;
+
+ prio_tree_iter_init(&iter, &fdev->prio_root, offset, end_sector);
+
+ /*
+ * We only need to lock, if we are priming. The prio tree does
+ * not change when in normal mode.
+ */
+ if (fdev->priming)
+ spin_lock_irq(&fdev->lock);
+
+ do {
+ node = prio_tree_next(&iter);
+ if (!node)
+ break;
+
+ map[i] = prio_tree_entry(node, struct fcache_extent, prio_node);
+ } while (++i < MAX_FE);
+
+ if (fdev->priming)
+ spin_unlock_irq(&fdev->lock);
+
+ return i;
+}
+
+/*
+ * Our data write is done, now insert the fcache extents into the rbtree.
+ */
+static int fcache_instantiate_extent(struct fcache_dev *fdev,
+ struct fcache_endio_data *fed)
+{
+ struct fcache_extent *fe;
+
+ fe = kmem_cache_alloc(fcache_slab, GFP_ATOMIC);
+ if (fe) {
+ fe->fs_sector = fed->fs_sector;
+ fe->fs_size = fed->fs_size;
+ fe->cache_sector = fed->cache_sector;
+
+ fcache_tree_link(fdev, fe);
+ return 0;
+ }
+
+ return -ENOMEM;
+}
+
+/*
+ * Hang on to the bio and its pages - ideally we would want to ensure
+ * that the page data doesn't change between calling this function and
+ * fcache_put_bio_pages() as well...
+ */
+static void fcache_get_bio_pages(struct fcache_dev *fdev, struct bio *bio)
+{
+ /*
+ * Currently stubbed out, as we cannot end the bio read before
+ * the write completes without also making sure that the pages
+ * don't get reused for something else in the mean time.
+ */
+#ifdef FCACHE_PAGES_PROTECTED
+ struct bio_vec *bvec;
+ int i;
+
+ bio_get(bio);
+
+ __bio_for_each_segment(bvec, bio, i, 0)
+ get_page(bvec->bv_page);
+#endif
+}
+
+static void fcache_put_bio_pages(struct fcache_dev *fdev, struct bio *bio)
+{
+#ifdef FCACHE_PAGES_PROTECTED
+ struct bio_vec *bvec;
+ int i;
+
+ __bio_for_each_segment(bvec, bio, i, 0)
+ put_page(bvec->bv_page);
+
+ bio_put(bio);
+#endif
+}
+
+static void fcache_chop_write_done(struct fcache_endio_data *fed)
+{
+ /*
+ * Last io completes.
+ */
+ if (atomic_dec_and_test(&fed->completions)) {
+ struct fcache_dev *fdev = fed->fdev;
+ struct bio *bio = fed->bio;
+
+ /*
+ * Release our reference to the original bio and
+ * its pages.
+ */
+ fcache_put_bio_pages(fdev, bio);
+
+ /*
+ * End the read!
+ */
+ bio_endio(bio, bio->bi_size, 0);
+
+ /*
+ * All done, now add extent to our list if io completed ok.
+ */
+ if (!fed->io_error)
+ fcache_instantiate_extent(fdev, fed);
+
+ mempool_free(fed, fed_pool);
+ }
+}
+
+/*
+ * Our data write to the cache completes, we can free our clone and
+ * instantiate the extent block.
+ */
+static int fcache_extent_write_endio(struct bio *bio, unsigned int bytes,
+ int err)
+{
+ struct fcache_endio_data *fed;
+
+ if (bio->bi_size)
+ return 1;
+
+ fed = bio->bi_private;
+
+ if (!bio_flagged(bio, BIO_UPTODATE))
+ fed->io_error = -EIO;
+
+ bio_put(bio);
+ fcache_chop_write_done(fed);
+ return 0;
+}
+
+static void fcache_chop_read_done(struct fcache_endio_data *fed)
+{
+ if (atomic_dec_and_test(&fed->completions)) {
+ struct bio *bio = fed->bio;
+
+ bio_endio(bio, bio->bi_size, fed->io_error);
+ mempool_free(fed, fed_pool);
+ }
+}
+
+static int fcache_chop_read_endio(struct bio *bio, unsigned int bytes, int err)
+{
+ struct fcache_endio_data *fed;
+
+ if (bio->bi_size)
+ return 1;
+
+ fed = bio->bi_private;
+
+ if (!bio_flagged(bio, BIO_UPTODATE))
+ fed->io_error = -EIO;
+
+ bio_put(bio);
+ fcache_chop_read_done(fed);
+ return 0;
+}
+
+typedef void (chopper_done_t) (struct fcache_endio_data *);
+
+/*
+ * This is our io chopper - it hacks a bio into smaller pieces, suitable
+ * for the target device. Caller supplies suitable end_io and done functions.
+ */
+static void fcache_io_chopper(struct fcache_dev *fdev,
+ struct fcache_endio_data *fed,
+ bio_end_io_t *endio, chopper_done_t *done, int rw)
+{
+ struct bio *bio = NULL;
+ struct bio_vec *bv;
+ unsigned int total_bytes;
+ sector_t sector;
+ int i, vecs;
+
+ /*
+ * Make sure 'fed' doesn't disappear while we are still issuing
+ * ios, the artificial reference is dropped at the end.
+ */
+ atomic_set(&fed->completions, 1);
+
+ sector = fed->cache_sector;
+ total_bytes = fed->fs_size;
+ vecs = fed->bio->bi_vcnt;
+ bio_for_each_segment(bv, fed->bio, i) {
+ unsigned int len;
+
+ if (!total_bytes)
+ break;
+
+ len = bv->bv_len;
+ if (len > total_bytes)
+ len = total_bytes;
+
+ do {
+ unsigned int l;
+
+ if (!bio) {
+ bio = bio_alloc(GFP_NOFS, vecs);
+
+ bio->bi_sector = sector;
+ bio->bi_bdev = fdev->bdev;
+ bio->bi_end_io = endio;
+ bio->bi_private = fed;
+ }
+
+ /*
+ * If successful, break out of this loop and move on.
+ */
+ l = bio_add_page(bio, bv->bv_page, len, bv->bv_offset);
+ if (l == len)
+ break;
+
+ BUG_ON(!bio->bi_size);
+
+ /*
+ * We could not add this page, submit what we have
+ * and alloc a new bio.
+ */
+ atomic_inc(&fed->completions);
+ submit_bio(rw, bio);
+ bio = NULL;
+ } while (1);
+
+ total_bytes -= len;
+ sector += len >> 9;
+ vecs--;
+ }
+
+ if (bio) {
+ atomic_inc(&fed->completions);
+ submit_bio(rw, bio);
+ }
+
+ /*
+ * Drop our reference to fed.
+ */
+ done(fed);
+}
+
+/*
+ * cache device has similar or higher queue restrictions than the fs
+ * device - in that case, we can resubmit the bio to the device directly.
+ */
+static void fcache_direct_cache_write(struct fcache_dev *fdev,
+ struct fcache_endio_data *fed)
+{
+ struct bio *bio = bio_clone(fed->bio, GFP_NOFS);
+
+ bio->bi_sector = fed->cache_sector;
+ bio->bi_bdev = fdev->bdev;
+ bio->bi_end_io = fcache_extent_write_endio;
+ bio->bi_private = fed;
+
+ atomic_set(&fed->completions, 1);
+ submit_bio(WRITE, bio);
+}
+
+/*
+ * cache device has more conservative restrictions than the fs device.
+ * The safest approach is to split up the bio and let bio_add_page()
+ * decide when it's time to submit the pieces.
+ */
+static void fcache_submit_cache_write(struct fcache_dev *fdev,
+ struct fcache_endio_data *fed)
+{
+ if (!fdev->chop_ios)
+ fcache_direct_cache_write(fdev, fed);
+ else
+ fcache_io_chopper(fdev, fed, fcache_extent_write_endio,
+ fcache_chop_write_done, WRITE);
+}
+
+/*
+ * We punt work to fcache_work() whenever we need do work that blocks. The
+ * only thing that this thread handles is submitting the extent write
+ * when the real read has completed. We used to do the extent instantiation
+ * here as well, but fcache_extent_write_endio handles that now.
+ */
+static void fcache_work(void *data)
+{
+ struct fcache_dev *fdev = data;
+
+ do {
+ struct fcache_endio_data *fed = NULL;
+ struct bio *bio;
+
+ spin_lock_irq(&fdev->lock);
+ if (!list_empty(&fdev->list)) {
+ fed = list_entry(fdev->list.next, struct fcache_endio_data,list);
+ list_del_init(&fed->list);
+ }
+ spin_unlock_irq(&fdev->lock);
+
+ if (!fed)
+ break;
+
+ bio = fed->bio;
+
+ if (fed->io_error) {
+ printk(KERN_ERR "fcache: read error from device\n");
+ bio_endio(bio, bio->bi_size, fed->io_error);
+ continue;
+ }
+
+ /*
+ * Get a ref on the original bio and pages, then
+ * we should be able to signal completion of the READ
+ * without waiting for the write to finish first.
+ */
+ fcache_get_bio_pages(fdev, bio);
+
+ /*
+ * Submit the read data as cache writes.
+ */
+ fcache_submit_cache_write(fdev, fed);
+
+ /*
+ * If fcache_get_bio_pages() could protect the pages from
+ * being changed, we could end the io here instead of in
+ * fcache_extent_fed_completes().
+ */
+ } while (1);
+}
+
+/*
+ * Align bio to start at extent and stop sooner if extent is short. Must
+ * be called cautiously - it's only allowed to modify the bio if this is
+ * a clone and a write request, reads must be fully aligned and only
+ * possibly require a starting offset modification.
+ */
+static void fcache_bio_align(struct bio *bio, struct fcache_extent *fe)
+{
+ struct bio_vec *bvec;
+ sector_t start, end;
+ sector_t org_start, org_end;
+ unsigned int org_size, org_idx;
+ int i;
+
+ start = bio->bi_sector;
+ bio->bi_sector = fe->cache_sector;
+
+ /*
+ * Nothing to do, perfectly aligned.
+ */
+ if (start == fe->fs_sector && bio->bi_size == fe->fs_size)
+ return;
+
+ org_start = bio->bi_sector;
+ org_end = bio->bi_sector + (bio->bi_size >> 9);
+ org_size = bio->bi_size;
+ org_idx = bio->bi_idx;
+
+ /*
+ * Adjust beginning.
+ */
+ if (start > fe->fs_sector)
+ bio->bi_sector += (start - fe->fs_sector);
+ else if (start < fe->fs_sector) {
+ sector_t diff = fe->fs_sector - start;
+ int idx = 0;
+
+ BUG_ON(!(bio->bi_flags & (1 << BIO_CLONED)));
+ BUG_ON(bio_data_dir(bio) != WRITE);
+
+ /*
+ * Adjust where bio starts
+ */
+ __bio_for_each_segment(bvec, bio, i, 0) {
+ unsigned int bsec = bvec->bv_len >> 9;
+ unsigned int this_diff = bsec;
+
+ if (!diff)
+ break;
+ if (this_diff > diff)
+ this_diff = diff;
+
+ bio->bi_sector += this_diff;
+ bio->bi_size -= (this_diff << 9);
+
+ /*
+ * Bigger than this chunk, skip ahead.
+ */
+ if (this_diff == bsec) {
+ idx++;
+ diff -= this_diff;
+ continue;
+ }
+
+ /*
+ * Adjust this bvec
+ */
+ bvec->bv_offset += (this_diff << 9);
+ bvec->bv_len -= (this_diff << 9);
+ break;
+ }
+ bio->bi_idx += idx;
+ }
+
+ /*
+ * Goes beyond the end, shrink size.
+ */
+ end = bio->bi_sector + (bio->bi_size >> 9);
+ if (end > fe->cache_sector + (fe->fs_size >> 9)) {
+ sector_t diff = end - (fe->cache_sector + (fe->fs_size >> 9));
+ int vecs = 0;
+
+ BUG_ON(!(bio->bi_flags & (1 << BIO_CLONED)));
+ BUG_ON(bio_data_dir(bio) != WRITE);
+
+ /*
+ * This is __bio_for_each_segment_reverse().
+ */
+ for (i = bio->bi_vcnt - 1; i >= bio->bi_idx; i--) {
+ struct bio_vec *bvec = &bio->bi_io_vec[i];
+ unsigned int bsec = bvec->bv_len >> 9;
+ unsigned int this_diff = bsec;
+
+ if (!diff)
+ break;
+ if (this_diff > diff)
+ this_diff = diff;
+
+ bio->bi_size -= (this_diff << 9);
+
+ /*
+ * Bigger than this chunk, skip ahead.
+ */
+ if (this_diff == bsec) {
+ vecs++;
+ diff -= this_diff;
+ continue;
+ }
+
+ /*
+ * Adjust this bvec
+ */
+ bvec->bv_len -= (this_diff << 9);
+ break;
+ }
+ bio->bi_vcnt -= vecs;
+ }
+
+ BUG_ON(bio->bi_sector < fe->cache_sector);
+ BUG_ON(bio->bi_sector + (bio->bi_size >> 9) > fe->cache_sector + (fe->fs_size >> 9));
+
+ /*
+ * Invalidate the segment counts, we changed the bio layout.
+ */
+ bio->bi_flags &= ~(1 << BIO_SEG_VALID);
+ bio->bi_flags |= (1 << BIO_NOMERGE);
+}
+
+static int fcache_overwrite_endio(struct bio *bio, unsigned int bytes, int err)
+{
+ if (bio->bi_size)
+ return 1;
+
+ if (!bio_flagged(bio, BIO_UPTODATE)) {
+ struct fcache_dev *fdev = bio->bi_private;
+
+ printk(KERN_ERR "fcache: overwrite error, cache off\n");
+ set_bit(FDEV_F_DOWN, &fdev->flags);
+ }
+
+ bio_put(bio);
+ return 0;
+}
+
+/*
+ * Schedule overwrite of some existing block(s).
+ */
+static int fcache_overwrite_extent(struct fcache_dev *fdev,
+ struct fcache_extent *fe, struct bio *bio)
+{
+ struct bio *clone = bio_clone(bio, GFP_NOFS);
+
+ clone->bi_bdev = fdev->bdev;
+ clone->bi_end_io = fcache_overwrite_endio;
+ clone->bi_private = fdev;
+ fcache_bio_align(clone, fe);
+ submit_bio(WRITE, clone);
+ return 0;
+}
+
+/*
+ * Our real data read is complete. Kick our process context handler so it
+ * can submit the write to our cache.
+ */
+static int fcache_extent_endio(struct bio *bio, unsigned int bytes, int err)
+{
+ struct fcache_dev *fdev;
+ struct fcache_endio_data *fed;
+ unsigned long flags;
+
+ if (bio->bi_size)
+ return 1;
+
+ fed = bio->bi_private;
+
+ if (!bio_flagged(bio, BIO_UPTODATE))
+ fed->io_error = -EIO;
+
+ bio_put(bio);
+
+ fdev = fed->fdev;
+ spin_lock_irqsave(&fdev->lock, flags);
+ list_add_tail(&fed->list, &fdev->list);
+ spin_unlock_irqrestore(&fdev->lock, flags);
+ queue_work(fcache_workqueue, &fdev->work);
+ return 0;
+}
+
+/*
+ * This initiates adding an extent to our list. We do this by cloning the
+ * original bio and submitting that to the real device and when that completes
+ * we write that out to the cache device and instantiate the extent.
+ */
+static int fcache_add_extent(struct fcache_dev *fdev, struct bio *bio)
+{
+ struct fcache_endio_data *fed;
+ struct bio *clone;
+
+ fed = mempool_alloc(fed_pool, GFP_NOIO);
+
+ fed->fdev = fdev;
+ fed->fs_sector = bio->bi_sector;
+ fed->fs_size = bio->bi_size;
+ fed->cache_sector = -1;
+ fed->bio = bio;
+ fed->io_error = 0;
+ INIT_LIST_HEAD(&fed->list);
+
+ /*
+ * Allocate/assign an extent block for this range
+ */
+ spin_lock_irq(&fdev->lock);
+ if (fdev->nr_extents < fdev->max_extents) {
+ unsigned long nr = (bio->bi_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+
+ if (fdev->next_cache_block + nr <= fdev->cache_blocks) {
+ fdev->nr_extents++;
+ fed->cache_sector = fdev->next_cache_block << BLOCK_SHIFT;
+ fdev->next_cache_block += nr;
+ }
+ }
+ spin_unlock_irq(&fdev->lock);
+
+ /*
+ * Ran out of room
+ */
+ if (fed->cache_sector == -1) {
+ printk(KERN_ERR "fcache: ran out of space, priming now off\n");
+ fdev->priming = 0;
+ mempool_free(fed, fed_pool);
+ return -ENOENT;
+ }
+
+ clone = bio_clone(bio, GFP_NOFS);
+ clone->bi_private = fed;
+ clone->bi_end_io = fcache_extent_endio;
+ clone->bi_rw |= (1 << BIO_RW_SYNC);
+
+ generic_make_request(clone);
+ return 0;
+}
+
+static int fcache_parse_extents(struct fcache_dev *fdev, void *addr,
+ unsigned int max_extents)
+{
+ int nr_extents = PAGE_SIZE / sizeof(struct fcache_extent);
+ int extents_read;
+
+ if (nr_extents > max_extents)
+ nr_extents = max_extents;
+
+ extents_read = 0;
+ while (nr_extents) {
+ struct fcache_extent *fe, *__fe = addr;
+
+ fe = kmem_cache_alloc(fcache_slab, GFP_KERNEL);
+ if (unlikely(!fe))
+ return -ENOMEM;
+
+ memset(fe, 0, sizeof(*fe));
+ fe->fs_sector = __fe->fs_sector;
+ fe->fs_size = __fe->fs_size;
+ fe->cache_sector = __fe->cache_sector;
+
+ fcache_tree_link(fdev, fe);
+
+ nr_extents--;
+ extents_read++;
+ addr += sizeof(*fe);
+ }
+
+ return extents_read;
+}
+
+static int fcache_read_extents(struct fcache_dev *fdev)
+{
+ unsigned int nr_extents = fdev->nr_extents;
+ int ret, extents, total_extents;
+ struct page *page;
+ sector_t index;
+ void *p;
+
+ page = alloc_page(GFP_KERNEL);
+ if (unlikely(!page))
+ return -ENOMEM;
+
+ ret = 0;
+ total_extents = 0;
+ index = FCACHE_EXTENT_BLOCK;
+ while (nr_extents) {
+ ret = fcache_rw_page(fdev, index, page, READ);
+ if (ret)
+ break;
+
+ p = page_address(page);
+ extents = fcache_parse_extents(fdev, p, nr_extents);
+
+ if (extents < 0) {
+ ret = extents;
+ break;
+ }
+
+ index++;
+ nr_extents -= extents;
+ total_extents += extents;
+ }
+
+ __free_page(page);
+
+ if (ret)
+ return ret;
+
+ return total_extents;
+}
+
+/*
+ * Read an existing fcache header from the device, and then proceed to
+ * reading and adding the extents to out prio tree.
+ */
+static int fcache_load_header(struct fcache_dev *fdev, int serial)
+{
+ struct fcache_header *header = NULL;
+ struct page *page;
+ int ret, wrong_serial = 0;
+ char b[BDEVNAME_SIZE];
+
+ page = alloc_page(GFP_HIGHUSER);
+ if (unlikely(!page))
+ return -ENOMEM;
+
+ ret = fcache_rw_page(fdev, FCACHE_HEADER_BLOCK, page, READ);
+ if (unlikely(ret))
+ goto err;
+
+ ret = -EINVAL;
+ header = kmap_atomic(page, KM_USER0);
+ if (header->magic != FCACHE_MAGIC) {
+ printk(KERN_ERR "fcache: bad magic %x\n", header->magic);
+ goto err;
+ }
+ if (header->version != FCACHE_VERSION) {
+ printk(KERN_ERR "fcache: bad version %d\n", header->version);
+ goto err;
+ }
+ if (strcmp(bdevname(fdev->fs_bdev, b), header->fs_dev)) {
+ printk(KERN_ERR "fcache: device mismatch (%s/%s\n", b,
+ header->fs_dev);
+ goto err;
+ }
+ if (header->fs_start_sector != fdev->fs_start_sector ||
+ header->fs_sectors != fdev->fs_sectors) {
+ printk(KERN_ERR "fcache: fs appears to have changed size\n");
+ goto err;
+ }
+
+ fdev->nr_extents = header->nr_extents;
+ fdev->max_extents = header->max_extents;
+
+ /*
+ * Don't fail on out-of-date serial, just warn that the user needs
+ * to prime the cache again. Until then we'll just bypass the cache.
+ */
+ if (header->serial != serial) {
+ printk(KERN_ERR "fcache: found serial %d, expected %d.\n",
+ header->serial, serial);
+ printk(KERN_ERR "fcache: reprime the cache!\n");
+ wrong_serial = 1;
+ }
+
+ fdev->serial = header->serial;
+ kunmap_atomic(header, KM_USER0);
+ __free_page(page);
+
+ if (!wrong_serial) {
+ printk("fcache: header looks valid (extents=%ld extents, serial=%u)\n", fdev->nr_extents, fdev->serial);
+
+ ret = fcache_read_extents(fdev);
+ printk("fcache: loaded %d extents\n", ret);
+
+ /*
+ * If we don't find all the extents we require, fail.
+ */
+ if (ret != fdev->nr_extents) {
+ fcache_free_prio_tree(fdev);
+ ret = -EINVAL;
+ } else
+ ret = 0;
+ }
+
+ return ret;
+err:
+ __free_page(page);
+ if (header)
+ kunmap_atomic(header, KM_USER0);
+ return ret;
+}
+
+/*
+ * We use this range to decide when to log an io to the target device.
+ */
+static void fcache_fill_fs_size(struct fcache_dev *fdev)
+{
+ struct block_device *bdev = fdev->fs_bdev;
+
+ /*
+ * Partition or whole device?
+ */
+ if (bdev != bdev->bd_contains) {
+ struct hd_struct *p = bdev->bd_part;
+
+ fdev->fs_start_sector = p->start_sect;
+ fdev->fs_sectors = p->nr_sects;
+ } else {
+ fdev->fs_start_sector = 0;
+ fdev->fs_sectors = bdev->bd_inode->i_size >> 9;
+ }
+}
+
+static void fcache_fill_cache_size(struct fcache_dev *fdev)
+{
+ struct block_device *bdev = fdev->bdev;
+
+ /*
+ * Partition or whole device?
+ */
+ if (bdev != bdev->bd_contains) {
+ struct hd_struct *p = bdev->bd_part;
+
+ fdev->cache_start_sector = p->start_sect;
+ fdev->cache_blocks = p->nr_sects >> BLOCK_SHIFT;
+ } else {
+ fdev->cache_start_sector = 0;
+ fdev->cache_blocks = bdev->bd_inode->i_size >> PAGE_SHIFT;
+ }
+}
+
+/*
+ * This is a read request, check if we have that block. If we do, then
+ * just redirect. If not, pass it through.
+ */
+static int fcache_read_request(struct fcache_dev *fdev, request_queue_t *q,
+ struct bio *bio)
+{
+ struct fcache_extent *extents[MAX_FE];
+ struct fcache_extent *fe;
+ int i, nr;
+
+ /*
+ * Not there, redirect to original but schedule adding this extent
+ * to our list if we are priming.
+ */
+ nr = fcache_lookup_extent(fdev, bio->bi_sector, bio->bi_size, extents);
+ if (!nr) {
+ if (fdev->priming && !fcache_add_extent(fdev, bio))
+ return 0;
+
+ fdev->misses++;
+ return fdev->mfn(q, bio);
+ }
+
+ /*
+ * If range is at least as big, we use our cache. If not, cop out
+ * and just submit to real device.
+ */
+ for (i = 0; i < nr; i++) {
+ sector_t end_fe, end_bi;
+ fe = extents[i];
+
+ end_fe = fe->fs_sector + (fe->fs_size >> 9);
+ end_bi = bio->bi_sector + (bio->bi_size >> 9);
+
+ /*
+ * match!
+ */
+ if (bio->bi_sector >= fe->fs_sector && end_bi <= end_fe)
+ break;
+
+ fe = NULL;
+ }
+
+ /*
+ * Nopes, send to real device.
+ */
+ if (!fe) {
+ fdev->misses++;
+ return fdev->mfn(q, bio);
+ }
+
+ /*
+ * Perfect, adjust start offset if it isn't aligned.
+ */
+ fdev->hits++;
+ fcache_bio_align(bio, fe);
+
+ /*
+ * If we don't have to chop it up, just let generic_make_request()
+ * handle the stacking. Otherwise, return handled and pass to chopper.
+ */
+ if (fdev->chop_ios) {
+ struct fcache_endio_data *fed;
+
+ fed = mempool_alloc(fed_pool, GFP_NOIO);
+
+ fed->fdev = fdev;
+ fed->cache_sector = bio->bi_sector;
+ fed->fs_size = bio->bi_size;
+ fed->bio = bio;
+ fed->io_error = 0;
+ fcache_io_chopper(fdev, fed, fcache_chop_read_endio,
+ fcache_chop_read_done, READ);
+ return 0;
+ }
+
+ bio->bi_bdev = fdev->bdev;
+ return 1;
+}
+
+/*
+ * If we are priming the cache, always add this block. If not, then we still
+ * need to overwrite this block if it's in our cache.
+ */
+static int fcache_write_request(struct fcache_dev *fdev, request_queue_t *q,
+ struct bio *bio)
+{
+ struct fcache_extent *extents[MAX_FE];
+ struct fcache_extent *fe;
+ sector_t start = bio->bi_sector;
+ int i, nr;
+
+repeat:
+ nr = fcache_lookup_extent(fdev, bio->bi_sector, bio->bi_size, extents);
+
+ /*
+ * Find out what to overwrite, if anything.
+ */
+ for (i = 0; i < nr; i++) {
+ fe = extents[i];
+ fdev->overwrites++;
+ fcache_overwrite_extent(fdev, fe, bio);
+ }
+
+ /*
+ * If i == MAX_FE, there _may_ be more extents. Repeat lookup, start
+ * from the end of last request.
+ */
+ if (i == MAX_FE) {
+ fe = extents[i - 1];
+ start = fe->fs_sector + (fe->fs_size >> 9);
+ goto repeat;
+ }
+
+ return fdev->mfn(q, bio);
+}
+
+/*
+ * This is the only case where we resubmit an io to the device but don't
+ * want to count it as part of io we log.
+ */
+#define fcache_bio_seen(bio) ((bio)->bi_end_io == fcache_extent_endio)
+
+static int fcache_make_request(request_queue_t *q, struct bio *bio)
+{
+ struct fcache_dev *fdev = &fcache_dev;
+
+ /*
+ * If it's in the sector range we are monitoring and the device isn't
+ * being shutdown, then pass it on. Assume a bio doesn't span into
+ * the next partition, so don't bother accounting for size.
+ */
+ if ((bio->bi_sector >= fdev->fs_start_sector) &&
+ (bio->bi_sector < (fdev->fs_start_sector + fdev->fs_sectors)) &&
+ !test_bit(FDEV_F_DOWN, &fdev->flags) &&
+ !fcache_bio_seen(bio)) {
+
+ fdev->ios[bio_data_dir(bio)]++;
+
+ if (bio_data_dir(bio) == READ)
+ return fcache_read_request(fdev, q, bio);
+
+ return fcache_write_request(fdev, q, bio);
+ }
+
+ /*
+ * Pass through to original make_request_fn.
+ */
+ return fdev->mfn(q, bio);
+}
+
+/*
+ * Attach the cache device 'bdev' to 'fdev'.
+ */
+static int fcache_setup_dev(struct fcache_dev *fdev,
+ struct block_device *fs_bdev,
+ struct block_device *bdev,
+ int priming, int serial)
+{
+ request_queue_t *fs_q, *cache_q;
+ char b[BDEVNAME_SIZE];
+ int ret;
+
+ memset(fdev, 0, sizeof(*fdev));
+ INIT_PRIO_TREE_ROOT(&fdev->prio_root);
+ spin_lock_init(&fdev->lock);
+ INIT_LIST_HEAD(&fdev->list);
+ INIT_WORK(&fdev->work, fcache_work, fdev);
+ fdev->priming = priming;
+ fdev->fs_bdev = fs_bdev;
+ fdev->bdev = bdev;
+
+ ret = -EINVAL;
+
+ fs_q = bdev_get_queue(fs_bdev);
+ cache_q = bdev_get_queue(bdev);
+ if (!fs_q || !cache_q)
+ goto out;
+
+ /*
+ * Chop up outgoing ios, if the target is a different queue. We could
+ * look closer at limits, but it's fragile and pretty pointless.
+ */
+ if (fs_q != cache_q)
+ fdev->chop_ios = 1;
+
+ ret = bd_claim(bdev, fcache_setup_dev);
+ if (ret < 0)
+ goto out;
+
+ ret = block_size(bdev);
+ if (ret != PAGE_SIZE) {
+ fdev->old_bs = ret;
+ ret = set_blocksize(bdev, PAGE_SIZE);
+ if (ret < 0)
+ goto out_release;
+ } else
+ ret = 0;
+
+ fcache_fill_cache_size(fdev);
+ fcache_fill_fs_size(fdev);
+
+ if (priming) {
+ fdev->serial = serial;
+ ret = fcache_write_new_header(fdev);
+ } else
+ ret = fcache_load_header(fdev, serial);
+
+ if (!ret) {
+ printk("fcache: %s opened successfully (%spriming)\n",
+ bdevname(bdev, b),
+ priming ? "" : "not ");
+ return 0;
+ }
+
+out_release:
+ bd_release(fdev->bdev);
+out:
+ blkdev_put(fdev->bdev);
+ fdev->bdev = NULL;
+ return ret;
+}
+
+/*
+ * Return fdev->bdev to its original state.
+ */
+static void fcache_shutdown_dev(struct fcache_dev *fdev,
+ struct block_device *bdev)
+{
+ if (fdev->bdev) {
+ if (fdev->mfn) {
+ request_queue_t *q = bdev_get_queue(bdev);
+
+ (void) xchg(&q->make_request_fn, fdev->mfn);
+ }
+ sync_blockdev(fdev->bdev);
+ if (fdev->old_bs)
+ set_blocksize(fdev->bdev, fdev->old_bs);
+
+ bd_release(fdev->bdev);
+ blkdev_put(fdev->bdev);
+ fdev->bdev = NULL;
+ INIT_PRIO_TREE_ROOT(&fdev->prio_root);
+ }
+}
+
+/*
+ * bdev is the file system device, cache_dev is the device we want to store
+ * the cache on.
+ */
+int fcache_dev_open(struct block_device *bdev, unsigned long cache_dev,
+ int priming, int serial)
+{
+ struct block_device *fcache_bdev;
+ request_queue_t *q;
+ int ret;
+
+ if (disable)
+ return 0;
+ if (fcache_dev.bdev)
+ return -EBUSY;
+
+ fcache_bdev = open_by_devnum(cache_dev, FMODE_READ|FMODE_WRITE);
+ if (IS_ERR(fcache_bdev))
+ return PTR_ERR(fcache_bdev);
+
+ ret = fcache_setup_dev(&fcache_dev, bdev, fcache_bdev, priming, serial);
+ if (ret)
+ return ret;
+
+ q = bdev_get_queue(bdev);
+ fcache_dev.mfn = xchg(&q->make_request_fn, fcache_make_request);
+ return 0;
+}
+
+EXPORT_SYMBOL(fcache_dev_open);
+
+void fcache_dev_close(struct block_device *bdev, int serial)
+{
+ struct fcache_dev *fdev = &fcache_dev;
+
+ if (disable)
+ return;
+
+ if (!fdev->bdev)
+ return;
+
+ printk("fcache: ios r/w %u/%u, hits %u, misses %u, overwrites %u\n",
+ fdev->ios[0], fdev->ios[1], fdev->hits,
+ fdev->misses, fdev->overwrites);
+ fdev->serial = serial;
+
+ sync_blockdev(bdev);
+ set_bit(FDEV_F_DOWN, &fdev->flags);
+
+ if (fdev->priming)
+ fcache_write_extents(fdev);
+
+ fcache_write_header(fdev);
+ fcache_free_prio_tree(fdev);
+ fcache_shutdown_dev(fdev, bdev);
+}
+
+EXPORT_SYMBOL(fcache_dev_close);
+
+static int fcache_init(void)
+{
+ fcache_slab = kmem_cache_create("fcache", sizeof(struct fcache_extent),
+ 0, 0, NULL, NULL);
+ if (!fcache_slab)
+ return -ENOMEM;
+
+ fcache_fed_slab = kmem_cache_create("fcache_fed",
+ sizeof(struct fcache_endio_data), 0, 0,
+ NULL, NULL);
+ if (!fcache_fed_slab) {
+ kmem_cache_destroy(fcache_slab);
+ return -ENOMEM;
+ }
+
+ fed_pool = mempool_create_slab_pool(1, fcache_fed_slab);
+ if (!fed_pool) {
+ kmem_cache_destroy(fcache_slab);
+ kmem_cache_destroy(fcache_fed_slab);
+ return -ENOMEM;
+ }
+
+ fcache_workqueue = create_singlethread_workqueue("fcached");
+ if (!fcache_workqueue)
+ panic("fcache: failed to create fcached\n");
+
+ return 0;
+}
+
+static void fcache_exit(void)
+{
+ destroy_workqueue(fcache_workqueue);
+ kmem_cache_destroy(fcache_slab);
+ kmem_cache_destroy(fcache_fed_slab);
+ mempool_destroy(fed_pool);
+}
+
+MODULE_AUTHOR("Jens Axboe <axboe@xxxxxxx>");
+MODULE_LICENSE("GPL");
+
+module_init(fcache_init);
+module_exit(fcache_exit);
Index: linux-ck-dev/fs/ext3/super.c
===================================================================
--- linux-ck-dev.orig/fs/ext3/super.c 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/fs/ext3/super.c 2006-06-18 15:25:27.000000000 +1000
@@ -384,11 +384,43 @@ static void dump_orphan_list(struct supe
}
}

+extern int fcache_dev_open(struct block_device *, unsigned long, int, int);
+extern int fcache_dev_close(struct block_device *, int);
+
+static void ext3_close_fcache(struct super_block *sb)
+{
+ struct ext3_sb_info *sbi = EXT3_SB(sb);
+ struct ext3_super_block *es = sbi->s_es;
+ int serial = le16_to_cpu(es->s_mnt_count);
+
+ fcache_dev_close(sb->s_bdev, serial);
+}
+
+static int ext3_open_fcache(struct super_block *sb, unsigned long cachedev)
+{
+ struct ext3_sb_info *sbi = EXT3_SB(sb);
+ struct ext3_super_block *es = sbi->s_es;
+ int priming = test_opt(sb, FCACHEPRIME);
+ int serial = le16_to_cpu(es->s_mnt_count);
+ int ret;
+
+ ret = fcache_dev_open(sb->s_bdev, cachedev, priming, serial);
+ if (!ret) {
+ set_opt(sbi->s_mount_opt, FCACHE);
+ return 0;
+ }
+
+ printk(KERN_ERR "ext3: failed to open fcache (err=%d)\n", ret);
+ return ret;
+}
+
static void ext3_put_super (struct super_block * sb)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
- int i;
+ int i, has_fcache;
+
+ has_fcache = test_opt(sb, FCACHE);

ext3_xattr_put_super(sb);
journal_destroy(sbi->s_journal);
@@ -431,6 +463,8 @@ static void ext3_put_super (struct super
invalidate_bdev(sbi->journal_bdev, 0);
ext3_blkdev_remove(sbi);
}
+ if (has_fcache)
+ ext3_close_fcache(sb);
sb->s_fs_info = NULL;
kfree(sbi);
return;
@@ -635,7 +669,7 @@ enum {
Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota,
- Opt_grpquota
+ Opt_grpquota, Opt_fcache_dev, Opt_fcache_prime,
};

static match_table_t tokens = {
@@ -684,6 +718,8 @@ static match_table_t tokens = {
{Opt_quota, "quota"},
{Opt_usrquota, "usrquota"},
{Opt_barrier, "barrier=%u"},
+ {Opt_fcache_dev, "fcache_dev=%s"},
+ {Opt_fcache_prime, "fcache_prime=%u"},
{Opt_err, NULL},
{Opt_resize, "resize"},
};
@@ -710,6 +746,7 @@ static unsigned long get_sb_block(void *

static int parse_options (char *options, struct super_block *sb,
unsigned long *inum, unsigned long *journal_devnum,
+ unsigned long *fcache_devnum,
unsigned long *n_blocks_count, int is_remount)
{
struct ext3_sb_info *sbi = EXT3_SB(sb);
@@ -1012,6 +1049,29 @@ clear_qf_name:
case Opt_nobh:
set_opt(sbi->s_mount_opt, NOBH);
break;
+ case Opt_fcache_dev: {
+ int maj, min;
+ char *p, *pm;
+
+ if (!fcache_devnum)
+ break;
+ p = match_strdup(&args[0]);
+ if (!p)
+ return 0;
+ maj = simple_strtol(p, &pm, 10);
+ min = simple_strtol(pm + 1, NULL, 10);
+ *fcache_devnum = maj << MINORBITS | min;
+ kfree(p);
+ break;
+ }
+ case Opt_fcache_prime:
+ if (match_int(&args[0], &option))
+ return 0;
+ if (option)
+ set_opt(sbi->s_mount_opt, FCACHEPRIME);
+ else
+ clear_opt(sbi->s_mount_opt, FCACHEPRIME);
+ break;
default:
printk (KERN_ERR
"EXT3-fs: Unrecognized mount option \"%s\" "
@@ -1346,6 +1406,7 @@ static int ext3_fill_super (struct super
unsigned long offset = 0;
unsigned long journal_inum = 0;
unsigned long journal_devnum = 0;
+ unsigned long fcache_devnum = 0;
unsigned long def_mount_opts;
struct inode *root;
int blocksize;
@@ -1353,6 +1414,7 @@ static int ext3_fill_super (struct super
int db_count;
int i;
int needs_recovery;
+ int fcache = 0;
__le32 features;

sbi = kmalloc(sizeof(*sbi), GFP_KERNEL);
@@ -1427,7 +1489,7 @@ static int ext3_fill_super (struct super
set_opt(sbi->s_mount_opt, RESERVATION);

if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum,
- NULL, 0))
+ &fcache_devnum, NULL, 0))
goto failed_mount;

sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
@@ -1651,6 +1713,9 @@ static int ext3_fill_super (struct super
goto failed_mount2;
}

+ if (fcache_devnum)
+ fcache = ext3_open_fcache(sb, fcache_devnum);
+
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
@@ -1740,6 +1805,8 @@ cantfind_ext3:
goto failed_mount;

failed_mount3:
+ if (!fcache)
+ ext3_close_fcache(sb);
journal_destroy(sbi->s_journal);
failed_mount2:
for (i = 0; i < db_count; i++)
@@ -2205,6 +2272,7 @@ static int ext3_remount (struct super_bl
struct ext3_sb_info *sbi = EXT3_SB(sb);
unsigned long n_blocks_count = 0;
unsigned long old_sb_flags;
+ unsigned long fcache_devnum = 0;
struct ext3_mount_options old_opts;
int err;
#ifdef CONFIG_QUOTA
@@ -2226,7 +2294,7 @@ static int ext3_remount (struct super_bl
/*
* Allow the "check" option to be passed as a remount option.
*/
- if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) {
+ if (!parse_options(data, sb, NULL, NULL, &fcache_devnum, &n_blocks_count, 1)) {
err = -EINVAL;
goto restore_opts;
}
@@ -2241,6 +2309,11 @@ static int ext3_remount (struct super_bl

ext3_init_journal_params(sb, sbi->s_journal);

+ if (fcache_devnum) {
+ ext3_close_fcache(sb);
+ ext3_open_fcache(sb, fcache_devnum);
+ }
+
if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
n_blocks_count > le32_to_cpu(es->s_blocks_count)) {
if (sbi->s_mount_opt & EXT3_MOUNT_ABORT) {
Index: linux-ck-dev/include/linux/bio.h
===================================================================
--- linux-ck-dev.orig/include/linux/bio.h 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/include/linux/bio.h 2006-06-18 15:25:27.000000000 +1000
@@ -124,6 +124,7 @@ struct bio {
#define BIO_BOUNCED 5 /* bio is a bounce bio */
#define BIO_USER_MAPPED 6 /* contains user pages */
#define BIO_EOPNOTSUPP 7 /* not supported */
+#define BIO_NOMERGE 8 /* bio not mergeable */
#define bio_flagged(bio, flag) ((bio)->bi_flags & (1 << (flag)))

/*
@@ -179,6 +180,14 @@ struct bio {
#define bio_failfast(bio) ((bio)->bi_rw & (1 << BIO_RW_FAILFAST))
#define bio_rw_ahead(bio) ((bio)->bi_rw & (1 << BIO_RW_AHEAD))

+static inline int bio_mergeable(struct bio *bio)
+{
+ if (!bio_barrier(bio) && !bio->bi_idx && !bio_flagged(bio, BIO_NOMERGE))
+ return 1;
+
+ return 0;
+}
+
/*
* will die
*/
Index: linux-ck-dev/include/linux/ext3_fs.h
===================================================================
--- linux-ck-dev.orig/include/linux/ext3_fs.h 2006-06-18 15:20:10.000000000 +1000
+++ linux-ck-dev/include/linux/ext3_fs.h 2006-06-18 15:25:27.000000000 +1000
@@ -376,6 +376,8 @@ struct ext3_inode {
#define EXT3_MOUNT_QUOTA 0x80000 /* Some quota option set */
#define EXT3_MOUNT_USRQUOTA 0x100000 /* "old" user quota */
#define EXT3_MOUNT_GRPQUOTA 0x200000 /* "old" group quota */
+#define EXT3_MOUNT_FCACHE 0x400000 /* using fcache */
+#define EXT3_MOUNT_FCACHEPRIME 0x800000 /* priming fcache */

/* Compatibility, for having both ext2_fs.h and ext3_fs.h included at once */
#ifndef _LINUX_EXT2_FS_H
@@ -847,6 +849,18 @@ extern struct inode_operations ext3_spec
extern struct inode_operations ext3_symlink_inode_operations;
extern struct inode_operations ext3_fast_symlink_inode_operations;

+#ifndef CONFIG_BLK_FCACHE
+static inline int fcache_dev_open(struct block_device *bdev,
+ unsigned long cache_dev, int priming, int serial)
+{
+ return -ENODEV;
+}
+
+static inline int fcache_dev_close(struct block_device *bdev, int serial)
+{
+ return 0;
+}
+#endif /* CONFIG_BLK_FCACHE */

#endif /* __KERNEL__ */


--
-ck
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/