Re: [PATCH 05/15] regulator: regulator framework core

From: pHilipp Zabel
Date: Thu Jul 10 2008 - 12:04:57 EST


On Thu, Jul 10, 2008 at 5:26 PM, Liam Girdwood
<lg@xxxxxxxxxxxxxxxxxxxxxxxxxxx> wrote:
>
> This adds the regulator framework core.
>
> This framework is designed to provide a generic interface to voltage
> and current regulators within the Linux kernel. It's intended to
> provide voltage and current control to client or consumer drivers and
> also provide status information to user space applications through a
> sysfs interface.
>
> The intention is to allow systems to dynamically control regulator
> output in order to save power and prolong battery life. This applies
> to both voltage regulators (where voltage output is controllable) and
> current sinks (where current output is controllable).
>
> This framework safely compiles out if not selected so that client
> drivers can still be used in systems with no software controllable
> regulators.
>
> Signed-off-by: Liam Girdwood <lg@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
> Signed-off-by: Greg Kroah-Hartman <greg@xxxxxxxxx>
> Signed-off-by: Mark Brown <broonie@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
> ---
> drivers/regulator/core.c | 1668 ++++++++++++++++++++++++++++++++++++++++++++++
> 1 files changed, 1668 insertions(+), 0 deletions(-)
> create mode 100644 drivers/regulator/core.c
>
> diff --git a/drivers/regulator/core.c b/drivers/regulator/core.c
> new file mode 100644
> index 0000000..da77b05
> --- /dev/null
> +++ b/drivers/regulator/core.c
> @@ -0,0 +1,1668 @@
> +/*
> + * core.c -- Voltage/Current Regulator framework.
> + *
> + * Copyright 2007, 2008 Wolfson Microelectronics PLC.
> + *
> + * Author: Liam Girdwood <liam.girdwood@xxxxxxxxxxxxxxxx>
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms of the GNU General Public License as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + *
> + */
> +
> +#include <linux/kernel.h>
> +#include <linux/init.h>
> +#include <linux/device.h>
> +#include <linux/err.h>
> +#include <linux/mutex.h>
> +#include <linux/regulator/consumer.h>
> +#include <linux/regulator/driver.h>
> +#include <linux/regulator/machine.h>
> +
> +#define REGULATOR_VERSION "0.4"
> +
> +static DEFINE_MUTEX(regulator_list_mutex);
> +static LIST_HEAD(regulator_list);
> +static LIST_HEAD(regulator_map_list);
> +
> +/**
> + * struct regulator_dev
> + *
> + * Voltage / Current regulator class device. One for each regulator.
> + */
> +struct regulator_dev {
> + struct regulator_desc *desc;
> + int use_count;
> +
> + /* lists we belong to */
> + struct list_head list; /* list of all regulators */
> + struct list_head slist; /* list of supplied regulators */
> +
> + /* lists we own */
> + struct list_head consumer_list; /* consumers we supply */
> + struct list_head supply_list; /* regulators we supply */
> +
> + struct blocking_notifier_head notifier;
> + struct mutex mutex; /* consumer lock */
> + struct module *owner;
> + struct device dev;
> + struct regulation_constraints *constraints;
> + struct regulator_dev *supply; /* for tree */
> +
> + void *reg_data; /* regulator_dev data */
> +};
> +
> +/**
> + * struct regulator_map
> + *
> + * Used to provide symbolic supply names to devices.
> + */
> +struct regulator_map {
> + struct list_head list;
> + struct device *dev;
> + const char *supply;
> + const char *regulator;
> +};
> +
> +static inline struct regulator_dev *to_rdev(struct device *d)
> +{
> + return container_of(d, struct regulator_dev, dev);
> +}
> +
> +/*
> + * struct regulator
> + *
> + * One for each consumer device.
> + */
> +struct regulator {
> + struct device *dev;
> + struct list_head list;
> + int uA_load;
> + int min_uV;
> + int max_uV;
> + int enabled; /* client has called enabled */
> + char *supply_name;
> + struct device_attribute dev_attr;
> + struct regulator_dev *rdev;
> +};
> +
> +static int _regulator_is_enabled(struct regulator_dev *rdev);
> +static int _regulator_disable(struct regulator_dev *rdev);
> +static int _regulator_get_voltage(struct regulator_dev *rdev);
> +static int _regulator_get_current_limit(struct regulator_dev *rdev);
> +static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
> +static void _notifier_call_chain(struct regulator_dev *rdev,
> + unsigned long event, void *data);
> +
> +/* gets the regulator for a given consumer device */
> +static struct regulator *get_device_regulator(struct device *dev)
> +{
> + struct regulator *regulator = NULL;
> + struct regulator_dev *rdev;
> +
> + mutex_lock(&regulator_list_mutex);
> + list_for_each_entry(rdev, &regulator_list, list) {
> + mutex_lock(&rdev->mutex);
> + list_for_each_entry(regulator, &rdev->consumer_list, list) {
> + if (regulator->dev == dev) {
> + mutex_unlock(&rdev->mutex);
> + mutex_unlock(&regulator_list_mutex);
> + return regulator;
> + }
> + }
> + mutex_unlock(&rdev->mutex);
> + }
> + mutex_unlock(&regulator_list_mutex);
> + return NULL;
> +}
> +
> +/* Platform voltage constraint check */
> +static int regulator_check_voltage(struct regulator_dev *rdev,
> + int *min_uV, int *max_uV)
> +{
> + BUG_ON(*min_uV > *max_uV);
> +
> + if (!rdev->constraints) {
> + printk(KERN_ERR "%s: no constraints for %s\n", __func__,
> + rdev->desc->name);
> + return -ENODEV;
> + }
> + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
> + printk(KERN_ERR "%s: operation not allowed for %s\n",
> + __func__, rdev->desc->name);
> + return -EPERM;
> + }
> +
> + if (*max_uV > rdev->constraints->max_uV)
> + *max_uV = rdev->constraints->max_uV;
> + if (*min_uV < rdev->constraints->min_uV)
> + *min_uV = rdev->constraints->min_uV;
> +
> + if (*min_uV > *max_uV)
> + return -EINVAL;
> +
> + return 0;
> +}
> +
> +/* current constraint check */
> +static int regulator_check_current_limit(struct regulator_dev *rdev,
> + int *min_uA, int *max_uA)
> +{
> + BUG_ON(*min_uA > *max_uA);
> +
> + if (!rdev->constraints) {
> + printk(KERN_ERR "%s: no constraints for %s\n", __func__,
> + rdev->desc->name);
> + return -ENODEV;
> + }
> + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
> + printk(KERN_ERR "%s: operation not allowed for %s\n",
> + __func__, rdev->desc->name);
> + return -EPERM;
> + }
> +
> + if (*max_uA > rdev->constraints->max_uA ||
> + *min_uA < rdev->constraints->min_uA) {
> + printk(KERN_ERR "%s: invalid current range %d-%duA for %s\n",
> + __func__, *min_uA, *max_uA, rdev->desc->name);
> + return -EINVAL;
> + }
> +
> + *min_uA = max(*min_uA, rdev->constraints->min_uA);
> + *max_uA = min(*max_uA, rdev->constraints->max_uA);

I don't understand this part. If max_uA > constraints->max_uA or
min_uA < constraints->min_uA, we returned with -EINVAL above. So in
this place
I'd expect min_uA to be >= constraints->min_uA and max_uA <=
constraints->max_uA, in which case the last two statements are no-ops.

In comparison, regulator_check_voltage silently fixes the requested
voltage range to fit into the constraints. Should
regulator_check_current_limit do the same?

> +
> + return 0;
> +}
> +
> +/* operating mode constraint check */
> +static int regulator_check_mode(struct regulator_dev *rdev, int mode)
> +{
> + if (!rdev->constraints) {
> + printk(KERN_ERR "%s: no constraints for %s\n", __func__,
> + rdev->desc->name);
> + return -ENODEV;
> + }
> + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
> + printk(KERN_ERR "%s: operation not allowed for %s\n",
> + __func__, rdev->desc->name);
> + return -EPERM;
> + }
> + if (!(rdev->constraints->valid_modes_mask & mode)) {
> + printk(KERN_ERR "%s: invalid mode %x for %s\n",
> + __func__, mode, rdev->desc->name);
> + return -EINVAL;
> + }
> + return 0;
> +}
> +
> +/* dynamic regulator mode switching constraint check */
> +static int regulator_check_drms(struct regulator_dev *rdev)
> +{
> + if (!rdev->constraints) {
> + printk(KERN_ERR "%s: no constraints for %s\n", __func__,
> + rdev->desc->name);
> + return -ENODEV;
> + }
> + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
> + printk(KERN_ERR "%s: operation not allowed for %s\n",
> + __func__, rdev->desc->name);
> + return -EPERM;
> + }
> + return 0;
> +}
> +
> +static ssize_t device_requested_uA_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator *regulator;
> +
> + regulator = get_device_regulator(dev);
> + if (regulator == NULL)
> + return 0;
> +
> + return sprintf(buf, "%d\n", regulator->uA_load);
> +}
> +
> +static ssize_t regulator_uV_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + ssize_t ret;
> +
> + mutex_lock(&rdev->mutex);
> + ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
> + mutex_unlock(&rdev->mutex);
> +
> + return ret;
> +}
> +
> +static ssize_t regulator_uA_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
> +}
> +
> +static ssize_t regulator_opmode_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + int mode = _regulator_get_mode(rdev);
> +
> + switch (mode) {
> + case REGULATOR_MODE_FAST:
> + return sprintf(buf, "fast\n");
> + case REGULATOR_MODE_NORMAL:
> + return sprintf(buf, "normal\n");
> + case REGULATOR_MODE_IDLE:
> + return sprintf(buf, "idle\n");
> + case REGULATOR_MODE_STANDBY:
> + return sprintf(buf, "standby\n");
> + }
> + return sprintf(buf, "unknown\n");
> +}
> +
> +static ssize_t regulator_state_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + int state = _regulator_is_enabled(rdev);
> +
> + if (state > 0)
> + return sprintf(buf, "enabled\n");
> + else if (state == 0)
> + return sprintf(buf, "disabled\n");
> + else
> + return sprintf(buf, "unknown\n");
> +}
> +
> +static ssize_t regulator_min_uA_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + if (!rdev->constraints)
> + return sprintf(buf, "constraint not defined\n");
> +
> + return sprintf(buf, "%d\n", rdev->constraints->min_uA);
> +}
> +
> +static ssize_t regulator_max_uA_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + if (!rdev->constraints)
> + return sprintf(buf, "constraint not defined\n");
> +
> + return sprintf(buf, "%d\n", rdev->constraints->max_uA);
> +}
> +
> +static ssize_t regulator_min_uV_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + if (!rdev->constraints)
> + return sprintf(buf, "constraint not defined\n");
> +
> + return sprintf(buf, "%d\n", rdev->constraints->min_uV);
> +}
> +
> +static ssize_t regulator_max_uV_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + if (!rdev->constraints)
> + return sprintf(buf, "constraint not defined\n");
> +
> + return sprintf(buf, "%d\n", rdev->constraints->max_uV);
> +}
> +
> +static ssize_t regulator_total_uA_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + struct regulator *regulator;
> + int uA = 0;
> +
> + mutex_lock(&rdev->mutex);
> + list_for_each_entry(regulator, &rdev->consumer_list, list)
> + uA += regulator->uA_load;
> + mutex_unlock(&rdev->mutex);
> + return sprintf(buf, "%d\n", uA);
> +}
> +
> +static ssize_t regulator_num_users_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + return sprintf(buf, "%d\n", rdev->use_count);
> +}
> +
> +static ssize_t regulator_type_show(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> +
> + switch (rdev->desc->type) {
> + case REGULATOR_VOLTAGE:
> + return sprintf(buf, "voltage\n");
> + case REGULATOR_CURRENT:
> + return sprintf(buf, "current\n");
> + }
> + return sprintf(buf, "unknown\n");
> +}
> +
> +static struct device_attribute regulator_dev_attrs[] = {
> + __ATTR(microvolts, 0444, regulator_uV_show, NULL),
> + __ATTR(microamps, 0444, regulator_uA_show, NULL),
> + __ATTR(opmode, 0444, regulator_opmode_show, NULL),
> + __ATTR(state, 0444, regulator_state_show, NULL),
> + __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
> + __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
> + __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
> + __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
> + __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
> + __ATTR(num_users, 0444, regulator_num_users_show, NULL),
> + __ATTR(type, 0444, regulator_type_show, NULL),
> + __ATTR_NULL,
> +};
> +
> +static void regulator_dev_release(struct device *dev)
> +{
> + struct regulator_dev *rdev = to_rdev(dev);
> + kfree(rdev);
> +}
> +
> +static struct class regulator_class = {
> + .name = "regulator",
> + .dev_release = regulator_dev_release,
> + .dev_attrs = regulator_dev_attrs,
> +};
> +
> +/* Calculate the new optimum regulator operating mode based on the new total
> + * consumer load. All locks held by caller */
> +static void drms_uA_update(struct regulator_dev *rdev)
> +{
> + struct regulator *sibling;
> + int current_uA = 0, output_uV, input_uV, err;
> + unsigned int mode;
> +
> + err = regulator_check_drms(rdev);
> + if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
> + !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
> + return;
> +
> + /* get output voltage */
> + output_uV = rdev->desc->ops->get_voltage(rdev);
> + if (output_uV <= 0)
> + return;
> +
> + /* get input voltage */
> + if (rdev->supply && rdev->supply->desc->ops->get_voltage)
> + input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
> + else
> + input_uV = rdev->constraints->input_uV;
> + if (input_uV <= 0)
> + return;
> +
> + /* calc total requested load */
> + list_for_each_entry(sibling, &rdev->consumer_list, list)
> + current_uA += sibling->uA_load;
> +
> + /* now get the optimum mode for our new total regulator load */
> + mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
> + output_uV, current_uA);
> +
> + /* check the new mode is allowed */
> + err = regulator_check_mode(rdev, mode);
> + if (err == 0)
> + rdev->desc->ops->set_mode(rdev, mode);
> +}
> +
> +static void print_constraints(struct regulator_dev *rdev)
> +{
> + struct regulation_constraints *constraints = rdev->constraints;
> + char buf[80];
> + int count;
> +
> + if (rdev->desc->type == REGULATOR_VOLTAGE) {
> + if (constraints->min_uV == constraints->max_uV)
> + count = sprintf(buf, "%d mV ",
> + constraints->min_uV / 1000);
> + else
> + count = sprintf(buf, "%d <--> %d mV ",
> + constraints->min_uV / 1000,
> + constraints->max_uV / 1000);
> + } else {
> + if (constraints->min_uA == constraints->max_uA)
> + count = sprintf(buf, "%d mA ",
> + constraints->min_uA / 1000);
> + else
> + count = sprintf(buf, "%d <--> %d mA ",
> + constraints->min_uA / 1000,
> + constraints->max_uA / 1000);
> + }
> + if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
> + count += sprintf(buf + count, "fast ");
> + if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
> + count += sprintf(buf + count, "normal ");
> + if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
> + count += sprintf(buf + count, "idle ");
> + if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
> + count += sprintf(buf + count, "standby");
> +
> + printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
> +}
> +
> +#define REG_STR_SIZE 32
> +
> +static struct regulator *create_regulator(struct regulator_dev *rdev,
> + struct device *dev,
> + const char *supply_name)
> +{
> + struct regulator *regulator;
> + char buf[REG_STR_SIZE];
> + int err, size;
> +
> + regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
> + if (regulator == NULL)
> + return NULL;
> +
> + mutex_lock(&rdev->mutex);
> + regulator->rdev = rdev;
> + list_add(&regulator->list, &rdev->consumer_list);
> +
> + if (dev) {
> + /* create a 'requested_microamps_name' sysfs entry */
> + size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
> + supply_name);
> + if (size >= REG_STR_SIZE)
> + goto overflow_err;
> +
> + regulator->dev = dev;
> + regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
> + if (regulator->dev_attr.attr.name == NULL)
> + goto attr_name_err;
> +
> + regulator->dev_attr.attr.owner = THIS_MODULE;
> + regulator->dev_attr.attr.mode = 0444;
> + regulator->dev_attr.show = device_requested_uA_show;
> + err = device_create_file(dev, &regulator->dev_attr);
> + if (err < 0) {
> + printk(KERN_WARNING "%s: could not add regulator_dev"
> + " load sysfs\n", __func__);
> + goto attr_name_err;
> + }
> +
> + /* also add a link to the device sysfs entry */
> + size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
> + dev->kobj.name, supply_name);
> + if (size >= REG_STR_SIZE)
> + goto attr_err;
> +
> + regulator->supply_name = kstrdup(buf, GFP_KERNEL);
> + if (regulator->supply_name == NULL)
> + goto attr_err;
> +
> + err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
> + buf);
> + if (err) {
> + printk(KERN_WARNING
> + "%s: could not add device link %s err %d\n",
> + __func__, dev->kobj.name, err);
> + device_remove_file(dev, &regulator->dev_attr);
> + goto link_name_err;
> + }
> + }
> + mutex_unlock(&rdev->mutex);
> + return regulator;
> +link_name_err:
> + kfree(regulator->supply_name);
> +attr_err:
> + device_remove_file(regulator->dev, &regulator->dev_attr);
> +attr_name_err:
> + kfree(regulator->dev_attr.attr.name);
> +overflow_err:
> + list_del(&regulator->list);
> + kfree(regulator);
> + mutex_unlock(&rdev->mutex);
> + return NULL;
> +}
> +
> +/**
> + * regulator_get - lookup and obtain a reference to a regulator.
> + * @dev: device for regulator "consumer"
> + * @id: Supply name or regulator ID.
> + *
> + * Returns a struct regulator corresponding to the regulator producer,
> + * or IS_ERR() condition containing errno. Use of supply names
> + * configured via regulator_set_device_supply() is strongly
> + * encouraged.
> + */
> +struct regulator *regulator_get(struct device *dev, const char *id)
> +{
> + struct regulator_dev *rdev;
> + struct regulator_map *map;
> + struct regulator *regulator = ERR_PTR(-ENODEV);
> + const char *supply = id;
> +
> + if (id == NULL) {
> + printk(KERN_ERR "regulator: get() with no identifier\n");
> + return regulator;
> + }
> +
> + mutex_lock(&regulator_list_mutex);
> +
> + list_for_each_entry(map, &regulator_map_list, list) {
> + if (dev == map->dev &&
> + strcmp(map->supply, id) == 0) {
> + supply = map->regulator;
> + break;
> + }
> + }
> +
> + list_for_each_entry(rdev, &regulator_list, list) {
> + if (strcmp(supply, rdev->desc->name) == 0 &&
> + try_module_get(rdev->owner))
> + goto found;
> + }
> + printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
> + id);
> + mutex_unlock(&regulator_list_mutex);
> + return regulator;
> +
> +found:
> + regulator = create_regulator(rdev, dev, id);
> + if (regulator == NULL) {
> + regulator = ERR_PTR(-ENOMEM);
> + module_put(rdev->owner);
> + }
> +
> + mutex_unlock(&regulator_list_mutex);
> + return regulator;
> +}
> +EXPORT_SYMBOL_GPL(regulator_get);
> +
> +/**
> + * regulator_put - "free" the regulator source
> + * @regulator: regulator source
> + *
> + * Note: drivers must ensure that all regulator_enable calls made on this
> + * regulator source are balanced by regulator_disable calls prior to calling
> + * this function.
> + */
> +void regulator_put(struct regulator *regulator)
> +{
> + struct regulator_dev *rdev;
> +
> + if (regulator == NULL || IS_ERR(regulator))
> + return;
> +
> + if (regulator->enabled) {
> + printk(KERN_WARNING "Releasing supply %s while enabled\n",
> + regulator->supply_name);
> + WARN_ON(regulator->enabled);
> + regulator_disable(regulator);
> + }
> +
> + mutex_lock(&regulator_list_mutex);
> + rdev = regulator->rdev;
> +
> + /* remove any sysfs entries */
> + if (regulator->dev) {
> + sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
> + kfree(regulator->supply_name);
> + device_remove_file(regulator->dev, &regulator->dev_attr);
> + kfree(regulator->dev_attr.attr.name);
> + }
> + list_del(&regulator->list);
> + kfree(regulator);
> +
> + module_put(rdev->owner);
> + mutex_unlock(&regulator_list_mutex);
> +}
> +EXPORT_SYMBOL_GPL(regulator_put);
> +
> +/* locks held by regulator_enable() */
> +static int _regulator_enable(struct regulator_dev *rdev)
> +{
> + int ret = -EINVAL;
> +
> + if (!rdev->constraints) {
> + printk(KERN_ERR "%s: %s has no constraints\n",
> + __func__, rdev->desc->name);
> + return ret;
> + }
> +
> + /* do we need to enable the supply regulator first */
> + if (rdev->supply) {
> + ret = _regulator_enable(rdev->supply);
> + if (ret < 0) {
> + printk(KERN_ERR "%s: failed to enable %s: %d\n",
> + __func__, rdev->desc->name, ret);
> + return ret;
> + }
> + }
> +
> + /* check voltage and requested load before enabling */
> + if (rdev->desc->ops->enable) {
> +
> + if (rdev->constraints &&
> + (rdev->constraints->valid_ops_mask &
> + REGULATOR_CHANGE_DRMS))
> + drms_uA_update(rdev);
> +
> + ret = rdev->desc->ops->enable(rdev);
> + if (ret < 0) {
> + printk(KERN_ERR "%s: failed to enable %s: %d\n",
> + __func__, rdev->desc->name, ret);
> + return ret;
> + }
> + rdev->use_count++;
> + return ret;
> + }
> +
> + return ret;
> +}
> +
> +/**
> + * regulator_enable - enable regulator output
> + * @regulator: regulator source
> + *
> + * Enable the regulator output at the predefined voltage or current value.
> + * NOTE: the output value can be set by other drivers, boot loader or may be
> + * hardwired in the regulator.
> + * NOTE: calls to regulator_enable() must be balanced with calls to
> + * regulator_disable().
> + */
> +int regulator_enable(struct regulator *regulator)
> +{
> + int ret;
> +
> + if (regulator->enabled) {
> + printk(KERN_CRIT "Regulator %s already enabled\n",
> + regulator->supply_name);
> + WARN_ON(regulator->enabled);
> + return 0;
> + }
> +
> + mutex_lock(&regulator->rdev->mutex);
> + regulator->enabled = 1;
> + ret = _regulator_enable(regulator->rdev);
> + if (ret != 0)
> + regulator->enabled = 0;
> + mutex_unlock(&regulator->rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_enable);
> +
> +/* locks held by regulator_disable() */
> +static int _regulator_disable(struct regulator_dev *rdev)
> +{
> + int ret = 0;
> +
> + /* are we the last user and permitted to disable ? */
> + if (rdev->use_count == 1 && !rdev->constraints->always_on) {
> +
> + /* we are last user */
> + if (rdev->desc->ops->disable) {
> + ret = rdev->desc->ops->disable(rdev);
> + if (ret < 0) {
> + printk(KERN_ERR "%s: failed to disable %s\n",
> + __func__, rdev->desc->name);
> + return ret;
> + }
> + }
> +
> + /* decrease our supplies ref count and disable if required */
> + if (rdev->supply)
> + _regulator_disable(rdev->supply);
> +
> + rdev->use_count = 0;
> + } else if (rdev->use_count > 1) {
> +
> + if (rdev->constraints &&
> + (rdev->constraints->valid_ops_mask &
> + REGULATOR_CHANGE_DRMS))
> + drms_uA_update(rdev);
> +
> + rdev->use_count--;
> + }
> + return ret;
> +}
> +
> +/**
> + * regulator_disable - disable regulator output
> + * @regulator: regulator source
> + *
> + * Disable the regulator output voltage or current.
> + * NOTE: this will only disable the regulator output if no other consumer
> + * devices have it enabled.
> + * NOTE: calls to regulator_enable() must be balanced with calls to
> + * regulator_disable().
> + */
> +int regulator_disable(struct regulator *regulator)
> +{
> + int ret;
> +
> + if (!regulator->enabled) {
> + printk(KERN_ERR "%s: not in use by this consumer\n",
> + __func__);
> + return 0;
> + }
> +
> + mutex_lock(&regulator->rdev->mutex);
> + regulator->enabled = 0;
> + regulator->uA_load = 0;
> + ret = _regulator_disable(regulator->rdev);
> + mutex_unlock(&regulator->rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_disable);
> +
> +/* locks held by regulator_force_disable() */
> +static int _regulator_force_disable(struct regulator_dev *rdev)
> +{
> + int ret = 0;
> +
> + /* force disable */
> + if (rdev->desc->ops->disable) {
> + /* ah well, who wants to live forever... */
> + ret = rdev->desc->ops->disable(rdev);
> + if (ret < 0) {
> + printk(KERN_ERR "%s: failed to force disable %s\n",
> + __func__, rdev->desc->name);
> + return ret;
> + }
> + /* notify other consumers that power has been forced off */
> + _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
> + NULL);
> + }
> +
> + /* decrease our supplies ref count and disable if required */
> + if (rdev->supply)
> + _regulator_disable(rdev->supply);
> +
> + rdev->use_count = 0;
> + return ret;
> +}
> +
> +/**
> + * regulator_force_disable - force disable regulator output
> + * @regulator: regulator source
> + *
> + * Forcibly disable the regulator output voltage or current.
> + * NOTE: this *will* disable the regulator output even if other consumer
> + * devices have it enabled. This should be used for situations when device
> + * damage will likely occur if the regulator is not disabled (e.g. over temp).
> + */
> +int regulator_force_disable(struct regulator *regulator)
> +{
> + int ret;
> +
> + mutex_lock(&regulator->rdev->mutex);
> + regulator->enabled = 0;
> + regulator->uA_load = 0;
> + ret = _regulator_force_disable(regulator->rdev);
> + mutex_unlock(&regulator->rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_force_disable);
> +
> +static int _regulator_is_enabled(struct regulator_dev *rdev)
> +{
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->is_enabled) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + ret = rdev->desc->ops->is_enabled(rdev);
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +
> +/**
> + * regulator_is_enabled - is the regulator output enabled
> + * @regulator: regulator source
> + *
> + * Returns zero for disabled otherwise return number of enable requests.
> + */
> +int regulator_is_enabled(struct regulator *regulator)
> +{
> + return _regulator_is_enabled(regulator->rdev);
> +}
> +EXPORT_SYMBOL_GPL(regulator_is_enabled);
> +
> +/**
> + * regulator_set_voltage - set regulator output voltage
> + * @regulator: regulator source
> + * @min_uV: Minimum required voltage in uV
> + * @max_uV: Maximum acceptable voltage in uV
> + *
> + * Sets a voltage regulator to the desired output voltage. This can be set
> + * during any regulator state. IOW, regulator can be disabled or enabled.
> + *
> + * If the regulator is enabled then the voltage will change to the new value
> + * immediately otherwise if the regulator is disabled the regulator will
> + * output at the new voltage when enabled.
> + *
> + * NOTE: If the regulator is shared between several devices then the lowest
> + * request voltage that meets the system constraints will be used.
> + * NOTE: Regulator system constraints must be set for this regulator before
> + * calling this function otherwise this call will fail.
> + */
> +int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
> +{
> + struct regulator_dev *rdev = regulator->rdev;
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->set_voltage) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + /* constraints check */
> + ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
> + if (ret < 0)
> + goto out;
> + regulator->min_uV = min_uV;
> + regulator->max_uV = max_uV;
> + ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
> +
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_voltage);
> +
> +static int _regulator_get_voltage(struct regulator_dev *rdev)
> +{
> + /* sanity check */
> + if (rdev->desc->ops->get_voltage)
> + return rdev->desc->ops->get_voltage(rdev);
> + else
> + return -EINVAL;
> +}
> +
> +/**
> + * regulator_get_voltage - get regulator output voltage
> + * @regulator: regulator source
> + *
> + * This returns the current regulator voltage in uV.
> + *
> + * NOTE: If the regulator is disabled it will return the voltage value. This
> + * function should not be used to determine regulator state.
> + */
> +int regulator_get_voltage(struct regulator *regulator)
> +{
> + int ret;
> +
> + mutex_lock(&regulator->rdev->mutex);
> +
> + ret = _regulator_get_voltage(regulator->rdev);
> +
> + mutex_unlock(&regulator->rdev->mutex);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_get_voltage);
> +
> +/**
> + * regulator_set_current_limit - set regulator output current limit
> + * @regulator: regulator source
> + * @min_uA: Minimuum supported current in uA
> + * @max_uA: Maximum supported current in uA
> + *
> + * Sets current sink to the desired output current. This can be set during
> + * any regulator state. IOW, regulator can be disabled or enabled.
> + *
> + * If the regulator is enabled then the current will change to the new value
> + * immediately otherwise if the regulator is disabled the regulator will
> + * output at the new current when enabled.
> + *
> + * NOTE: Regulator system constraints must be set for this regulator before
> + * calling this function otherwise this call will fail.
> + */
> +int regulator_set_current_limit(struct regulator *regulator,
> + int min_uA, int max_uA)
> +{
> + struct regulator_dev *rdev = regulator->rdev;
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->set_current_limit) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + /* constraints check */
> + ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
> + if (ret < 0)
> + goto out;
> +
> + ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_current_limit);
> +
> +static int _regulator_get_current_limit(struct regulator_dev *rdev)
> +{
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->get_current_limit) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + ret = rdev->desc->ops->get_current_limit(rdev);
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +
> +/**
> + * regulator_get_current_limit - get regulator output current
> + * @regulator: regulator source
> + *
> + * This returns the current supplied by the specified current sink in uA.
> + *
> + * NOTE: If the regulator is disabled it will return the current value. This
> + * function should not be used to determine regulator state.
> + */
> +int regulator_get_current_limit(struct regulator *regulator)
> +{
> + return _regulator_get_current_limit(regulator->rdev);
> +}
> +EXPORT_SYMBOL_GPL(regulator_get_current_limit);
> +
> +/**
> + * regulator_set_mode - set regulator operating mode
> + * @regulator: regulator source
> + * @mode: operating mode - one of the REGULATOR_MODE constants
> + *
> + * Set regulator operating mode to increase regulator efficiency or improve
> + * regulation performance.
> + *
> + * NOTE: Regulator system constraints must be set for this regulator before
> + * calling this function otherwise this call will fail.
> + */
> +int regulator_set_mode(struct regulator *regulator, unsigned int mode)
> +{
> + struct regulator_dev *rdev = regulator->rdev;
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->set_mode) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + /* constraints check */
> + ret = regulator_check_mode(rdev, mode);
> + if (ret < 0)
> + goto out;
> +
> + ret = rdev->desc->ops->set_mode(rdev, mode);
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_mode);
> +
> +static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
> +{
> + int ret;
> +
> + mutex_lock(&rdev->mutex);
> +
> + /* sanity check */
> + if (!rdev->desc->ops->get_mode) {
> + ret = -EINVAL;
> + goto out;
> + }
> +
> + ret = rdev->desc->ops->get_mode(rdev);
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +
> +/**
> + * regulator_get_mode - get regulator operating mode
> + * @regulator: regulator source
> + *
> + * Get the current regulator operating mode.
> + */
> +unsigned int regulator_get_mode(struct regulator *regulator)
> +{
> + return _regulator_get_mode(regulator->rdev);
> +}
> +EXPORT_SYMBOL_GPL(regulator_get_mode);
> +
> +/**
> + * regulator_set_optimum_mode - set regulator optimum operating mode
> + * @regulator: regulator source
> + * @uA_load: load current
> + *
> + * Notifies the regulator core of a new device load. This is then used by
> + * DRMS (if enabled by constraints) to set the most efficient regulator
> + * operating mode for the new regulator loading.
> + *
> + * Consumer devices notify their supply regulator of the maximum power
> + * they will require (can be taken from device datasheet in the power
> + * consumption tables) when they change operational status and hence power
> + * state. Examples of operational state changes that can affect power
> + * consumption are :-
> + *
> + * o Device is opened / closed.
> + * o Device I/O is about to begin or has just finished.
> + * o Device is idling in between work.
> + *
> + * This information is also exported via sysfs to userspace.
> + *
> + * DRMS will sum the total requested load on the regulator and change
> + * to the most efficient operating mode if platform constraints allow.
> + *
> + * Returns the new regulator mode or error.
> + */
> +int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
> +{
> + struct regulator_dev *rdev = regulator->rdev;
> + struct regulator *consumer;
> + int ret, output_uV, input_uV, total_uA_load = 0;
> + unsigned int mode;
> +
> + mutex_lock(&rdev->mutex);
> +
> + regulator->uA_load = uA_load;
> + ret = regulator_check_drms(rdev);
> + if (ret < 0)
> + goto out;
> + ret = -EINVAL;
> +
> + /* sanity check */
> + if (!rdev->desc->ops->get_optimum_mode)
> + goto out;
> +
> + /* get output voltage */
> + output_uV = rdev->desc->ops->get_voltage(rdev);
> + if (output_uV <= 0) {
> + printk(KERN_ERR "%s: invalid output voltage found for %s\n",
> + __func__, rdev->desc->name);
> + goto out;
> + }
> +
> + /* get input voltage */
> + if (rdev->supply && rdev->supply->desc->ops->get_voltage)
> + input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
> + else
> + input_uV = rdev->constraints->input_uV;
> + if (input_uV <= 0) {
> + printk(KERN_ERR "%s: invalid input voltage found for %s\n",
> + __func__, rdev->desc->name);
> + goto out;
> + }
> +
> + /* calc total requested load for this regulator */
> + list_for_each_entry(consumer, &rdev->consumer_list, list)
> + total_uA_load += consumer->uA_load;
> +
> + mode = rdev->desc->ops->get_optimum_mode(rdev,
> + input_uV, output_uV,
> + total_uA_load);
> + if (ret <= 0) {
> + printk(KERN_ERR "%s: failed to get optimum mode for %s @"
> + " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
> + total_uA_load, input_uV, output_uV);
> + goto out;
> + }
> +
> + ret = rdev->desc->ops->set_mode(rdev, mode);
> + if (ret <= 0) {
> + printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
> + __func__, mode, rdev->desc->name);
> + goto out;
> + }
> + ret = mode;
> +out:
> + mutex_unlock(&rdev->mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
> +
> +/**
> + * regulator_register_notifier - register regulator event notifier
> + * @regulator: regulator source
> + * @notifier_block: notifier block
> + *
> + * Register notifier block to receive regulator events.
> + */
> +int regulator_register_notifier(struct regulator *regulator,
> + struct notifier_block *nb)
> +{
> + return blocking_notifier_chain_register(&regulator->rdev->notifier,
> + nb);
> +}
> +EXPORT_SYMBOL_GPL(regulator_register_notifier);
> +
> +/**
> + * regulator_unregister_notifier - unregister regulator event notifier
> + * @regulator: regulator source
> + * @notifier_block: notifier block
> + *
> + * Unregister regulator event notifier block.
> + */
> +int regulator_unregister_notifier(struct regulator *regulator,
> + struct notifier_block *nb)
> +{
> + return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
> + nb);
> +}
> +EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
> +
> +/* notify regulator consumers and downstream regulator consumers */
> +static void _notifier_call_chain(struct regulator_dev *rdev,
> + unsigned long event, void *data)
> +{
> + struct regulator_dev *_rdev;
> +
> + /* call rdev chain first */
> + mutex_lock(&rdev->mutex);
> + blocking_notifier_call_chain(&rdev->notifier, event, NULL);
> + mutex_unlock(&rdev->mutex);
> +
> + /* now notify regulator we supply */
> + list_for_each_entry(_rdev, &rdev->supply_list, slist)
> + _notifier_call_chain(_rdev, event, data);
> +}
> +
> +/**
> + * regulator_bulk_get - get multiple regulator consumers
> + *
> + * @dev: Device to supply
> + * @num_consumers: Number of consumers to register
> + * @consumers: Configuration of consumers; clients are stored here.
> + *
> + * @return 0 on success, an errno on failure.
> + *
> + * This helper function allows drivers to get several regulator
> + * consumers in one operation. If any of the regulators cannot be
> + * acquired then any regulators that were allocated will be freed
> + * before returning to the caller.
> + */
> +int regulator_bulk_get(struct device *dev, int num_consumers,
> + struct regulator_bulk_data *consumers)
> +{
> + int i;
> + int ret;
> +
> + for (i = 0; i < num_consumers; i++)
> + consumers[i].consumer = NULL;
> +
> + for (i = 0; i < num_consumers; i++) {
> + consumers[i].consumer = regulator_get(dev,
> + consumers[i].supply);
> + if (IS_ERR(consumers[i].consumer)) {
> + dev_err(dev, "Failed to get supply '%s'\n",
> + consumers[i].supply);
> + ret = PTR_ERR(consumers[i].consumer);
> + consumers[i].consumer = NULL;
> + goto err;
> + }
> + }
> +
> + return 0;
> +
> +err:
> + for (i = 0; i < num_consumers && consumers[i].consumer; i++)
> + regulator_put(consumers[i].consumer);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_bulk_get);
> +
> +/**
> + * regulator_bulk_enable - enable multiple regulator consumers
> + *
> + * @num_consumers: Number of consumers
> + * @consumers: Consumer data; clients are stored here.
> + * @return 0 on success, an errno on failure
> + *
> + * This convenience API allows consumers to enable multiple regulator
> + * clients in a single API call. If any consumers cannot be enabled
> + * then any others that were enabled will be disabled again prior to
> + * return.
> + */
> +int regulator_bulk_enable(int num_consumers,
> + struct regulator_bulk_data *consumers)
> +{
> + int i;
> + int ret;
> +
> + for (i = 0; i < num_consumers; i++) {
> + ret = regulator_enable(consumers[i].consumer);
> + if (ret != 0)
> + goto err;
> + }
> +
> + return 0;
> +
> +err:
> + printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
> + for (i = 0; i < num_consumers; i++)
> + regulator_disable(consumers[i].consumer);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_bulk_enable);
> +
> +/**
> + * regulator_bulk_disable - disable multiple regulator consumers
> + *
> + * @num_consumers: Number of consumers
> + * @consumers: Consumer data; clients are stored here.
> + * @return 0 on success, an errno on failure
> + *
> + * This convenience API allows consumers to disable multiple regulator
> + * clients in a single API call. If any consumers cannot be enabled
> + * then any others that were disabled will be disabled again prior to
> + * return.
> + */
> +int regulator_bulk_disable(int num_consumers,
> + struct regulator_bulk_data *consumers)
> +{
> + int i;
> + int ret;
> +
> + for (i = 0; i < num_consumers; i++) {
> + ret = regulator_disable(consumers[i].consumer);
> + if (ret != 0)
> + goto err;
> + }
> +
> + return 0;
> +
> +err:
> + printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
> + for (i = 0; i < num_consumers; i++)
> + regulator_enable(consumers[i].consumer);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_bulk_disable);
> +
> +/**
> + * regulator_bulk_free - free multiple regulator consumers
> + *
> + * @num_consumers: Number of consumers
> + * @consumers: Consumer data; clients are stored here.
> + *
> + * This convenience API allows consumers to free multiple regulator
> + * clients in a single API call.
> + */
> +void regulator_bulk_free(int num_consumers,
> + struct regulator_bulk_data *consumers)
> +{
> + int i;
> +
> + for (i = 0; i < num_consumers; i++) {
> + regulator_put(consumers[i].consumer);
> + consumers[i].consumer = NULL;
> + }
> +}
> +EXPORT_SYMBOL_GPL(regulator_bulk_free);
> +
> +/**
> + * regulator_notifier_call_chain - call regulator event notifier
> + * @regulator: regulator source
> + * @event: notifier block
> + * @data:
> + *
> + * Called by regulator drivers to notify clients a regulator event has
> + * occurred. We also notify regulator clients downstream.
> + */
> +int regulator_notifier_call_chain(struct regulator_dev *rdev,
> + unsigned long event, void *data)
> +{
> + _notifier_call_chain(rdev, event, data);
> + return NOTIFY_DONE;
> +
> +}
> +EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
> +
> +/**
> + * regulator_register - register regulator
> + * @regulator: regulator source
> + * @reg_data: private regulator data
> + *
> + * Called by regulator drivers to register a regulator.
> + * Returns 0 on success.
> + */
> +struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
> + void *reg_data)
> +{
> + static atomic_t regulator_no = ATOMIC_INIT(0);
> + struct regulator_dev *rdev;
> + int ret;
> +
> + if (regulator_desc == NULL)
> + return ERR_PTR(-EINVAL);
> +
> + if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
> + return ERR_PTR(-EINVAL);
> +
> + if (!regulator_desc->type == REGULATOR_VOLTAGE &&
> + !regulator_desc->type == REGULATOR_CURRENT)
> + return ERR_PTR(-EINVAL);
> +
> + rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
> + if (rdev == NULL)
> + return ERR_PTR(-ENOMEM);
> +
> + mutex_lock(&regulator_list_mutex);
> +
> + mutex_init(&rdev->mutex);
> + rdev->reg_data = reg_data;
> + rdev->owner = regulator_desc->owner;
> + rdev->desc = regulator_desc;
> + INIT_LIST_HEAD(&rdev->consumer_list);
> + INIT_LIST_HEAD(&rdev->supply_list);
> + INIT_LIST_HEAD(&rdev->list);
> + INIT_LIST_HEAD(&rdev->slist);
> + BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
> +
> + rdev->dev.class = &regulator_class;
> + device_initialize(&rdev->dev);
> + snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
> + "regulator_%ld_%s",
> + (unsigned long)atomic_inc_return(&regulator_no) - 1,
> + regulator_desc->name);
> +
> + ret = device_add(&rdev->dev);
> + if (ret == 0)
> + list_add(&rdev->list, &regulator_list);
> + else {
> + kfree(rdev);
> + rdev = ERR_PTR(ret);
> + }
> + mutex_unlock(&regulator_list_mutex);
> + return rdev;
> +}
> +EXPORT_SYMBOL_GPL(regulator_register);
> +
> +/**
> + * regulator_unregister - unregister regulator
> + * @regulator: regulator source
> + *
> + * Called by regulator drivers to unregister a regulator.
> + */
> +void regulator_unregister(struct regulator_dev *rdev)
> +{
> + if (rdev == NULL)
> + return;
> +
> + mutex_lock(&regulator_list_mutex);
> + list_del(&rdev->list);
> + if (rdev->supply)
> + sysfs_remove_link(&rdev->dev.kobj, "supply");
> + device_unregister(&rdev->dev);
> + mutex_unlock(&regulator_list_mutex);
> +}
> +EXPORT_SYMBOL_GPL(regulator_unregister);
> +
> +/**
> + * regulator_set_supply - set regulator supply regulator
> + * @regulator: regulator name
> + * @supply: supply regulator name
> + *
> + * Called by platform initialisation code to set the supply regulator for this
> + * regulator. This ensures that a regulators supply will also be enabled by the
> + * core if it's child is enabled.
> + */
> +int regulator_set_supply(const char *regulator, const char *supply)
> +{
> + struct regulator_dev *rdev, *supply_rdev;
> + int err;
> +
> + if (regulator == NULL || supply == NULL)
> + return -EINVAL;
> +
> + mutex_lock(&regulator_list_mutex);
> +
> + list_for_each_entry(rdev, &regulator_list, list) {
> + if (!strcmp(rdev->desc->name, regulator))
> + goto found_regulator;
> + }
> + mutex_unlock(&regulator_list_mutex);
> + return -ENODEV;
> +
> +found_regulator:
> + list_for_each_entry(supply_rdev, &regulator_list, list) {
> + if (!strcmp(supply_rdev->desc->name, supply))
> + goto found_supply;
> + }
> + mutex_unlock(&regulator_list_mutex);
> + return -ENODEV;
> +
> +found_supply:
> + err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
> + "supply");
> + if (err) {
> + printk(KERN_ERR
> + "%s: could not add device link %s err %d\n",
> + __func__, supply_rdev->dev.kobj.name, err);
> + goto out;
> + }
> + rdev->supply = supply_rdev;
> + list_add(&rdev->slist, &supply_rdev->supply_list);
> +out:
> + mutex_unlock(&regulator_list_mutex);
> + return err;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_supply);
> +
> +/**
> + * regulator_get_supply - get regulator supply regulator
> + * @regulator: regulator name
> + *
> + * Returns the supply supply regulator name or NULL if no supply regulator
> + * exists (i.e the regulator is supplied directly from USB, Line, Battery, etc)
> + */
> +const char *regulator_get_supply(const char *regulator)
> +{
> + struct regulator_dev *rdev;
> +
> + if (regulator == NULL)
> + return NULL;
> +
> + mutex_lock(&regulator_list_mutex);
> + list_for_each_entry(rdev, &regulator_list, list) {
> + if (!strcmp(rdev->desc->name, regulator))
> + goto found;
> + }
> + mutex_unlock(&regulator_list_mutex);
> + return NULL;
> +
> +found:
> + mutex_unlock(&regulator_list_mutex);
> + if (rdev->supply)
> + return rdev->supply->desc->name;
> + else
> + return NULL;
> +}
> +EXPORT_SYMBOL_GPL(regulator_get_supply);
> +
> +/**
> + * regulator_set_machine_constraints - sets regulator constraints
> + * @regulator: regulator source
> + *
> + * Allows platform initialisation code to define and constrain
> + * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
> + * Constraints *must* be set by platform code in order for some
> + * regulator operations to proceed i.e. set_voltage, set_current_limit,
> + * set_mode.
> + */
> +int regulator_set_machine_constraints(const char *regulator_name,
> + struct regulation_constraints *constraints)
> +{
> + struct regulator_dev *rdev;
> + int ret = 0;
> +
> + if (regulator_name == NULL)
> + return -EINVAL;
> +
> + mutex_lock(&regulator_list_mutex);
> +
> + list_for_each_entry(rdev, &regulator_list, list) {
> + if (!strcmp(regulator_name, rdev->desc->name))
> + goto found;
> + }
> + ret = -ENODEV;
> + goto out;
> +
> +found:
> + mutex_lock(&rdev->mutex);
> + rdev->constraints = constraints;
> +
> + /* do we need to apply the constraint voltage */
> + if (rdev->constraints->apply_uV &&
> + rdev->constraints->min_uV == rdev->constraints->max_uV &&
> + rdev->desc->ops->set_voltage) {
> + ret = rdev->desc->ops->set_voltage(rdev,
> + rdev->constraints->min_uV, rdev->constraints->max_uV);
> + if (ret < 0) {
> + printk(KERN_ERR "%s: failed to apply %duV"
> + " constraint\n", __func__,
> + rdev->constraints->min_uV);
> + rdev->constraints = NULL;
> + goto out;
> + }
> + }
> +
> + /* are we enabled at boot time by firmware / bootloader */
> + if (rdev->constraints->boot_on)
> + rdev->use_count = 1;
> +
> + print_constraints(rdev);
> + mutex_unlock(&rdev->mutex);
> +
> +out:
> + mutex_unlock(&regulator_list_mutex);
> + return ret;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_machine_constraints);
> +
> +
> +/**
> + * regulator_set_device_supply: Bind a regulator to a symbolic supply
> + * @regulator: regulator source
> + * @dev: device the supply applies to
> + * @supply: symbolic name for supply
> + *
> + * Allows platform initialisation code to map physical regulator
> + * sources to symbolic names for supplies for use by devices. Devices
> + * should use these symbolic names to request regulators, avoiding the
> + * need to provide board-specific regulator names as platform data.
> + */
> +int regulator_set_device_supply(const char *regulator, struct device *dev,
> + const char *supply)
> +{
> + struct regulator_map *node;
> +
> + if (regulator == NULL || supply == NULL)
> + return -EINVAL;
> +
> + node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
> + if (node == NULL)
> + return -ENOMEM;
> +
> + node->regulator = regulator;
> + node->dev = dev;
> + node->supply = supply;
> +
> + mutex_lock(&regulator_list_mutex);
> + list_add(&node->list, &regulator_map_list);
> + mutex_unlock(&regulator_list_mutex);
> + return 0;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_device_supply);
> +
> +/**
> + * rdev_get_drvdata - get rdev regulator driver data
> + * @regulator: regulator
> + *
> + * Get rdev regulator driver private data. This call can be used in the
> + * regulator driver context.
> + */
> +void *rdev_get_drvdata(struct regulator_dev *rdev)
> +{
> + return rdev->reg_data;
> +}
> +EXPORT_SYMBOL_GPL(rdev_get_drvdata);
> +
> +/**
> + * regulator_get_drvdata - get regulator driver data
> + * @regulator: regulator
> + *
> + * Get regulator driver private data. This call can be used in the consumer
> + * driver context when non API regulator specific functions need to be called.
> + */
> +void *regulator_get_drvdata(struct regulator *regulator)
> +{
> + return regulator->rdev->reg_data;
> +}
> +EXPORT_SYMBOL_GPL(regulator_get_drvdata);
> +
> +/**
> + * regulator_set_drvdata - set regulator driver data
> + * @regulator: regulator
> + * @data: data
> + */
> +void regulator_set_drvdata(struct regulator *regulator, void *data)
> +{
> + regulator->rdev->reg_data = data;
> +}
> +EXPORT_SYMBOL_GPL(regulator_set_drvdata);
> +
> +/**
> + * regulator_get_id - get regulator ID
> + * @regulator: regulator
> + */
> +int rdev_get_id(struct regulator_dev *rdev)
> +{
> + return rdev->desc->id;
> +}
> +EXPORT_SYMBOL_GPL(rdev_get_id);
> +
> +static int __init regulator_init(void)
> +{
> + printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
> + return class_register(&regulator_class);
> +}
> +
> +/* init early to allow our consumers to complete system booting */
> +core_initcall(regulator_init);
> --
> 1.5.4.3
>
>
>
> --
> To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
> the body of a message to majordomo@xxxxxxxxxxxxxxx
> More majordomo info at http://vger.kernel.org/majordomo-info.html
> Please read the FAQ at http://www.tux.org/lkml/
>

regards
Philipp
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/