Re: [PATCH tip/core/rcu] classic RCU locking and memory-barrier cleanups

From: Manfred Spraul
Date: Tue Aug 19 2008 - 06:48:52 EST


Hi Paul,

You are beating me: I've just finished a my implementation, it's attached.
It boots with qemu, rcu torture enabled, both single and 8-cpu.

Two problems are open:
- right now, I don't use rcu_qsctr_inc() at all.
- qlowmark is set to 0, any other value breaks synchronize_rcu().

And I must read your implementation....

--
Manfred
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2001
*
* Authors: Dipankar Sarma <dipankar@xxxxxxxxxx>
* Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>
*
* Based on the original work by Paul McKenney <paulmck@xxxxxxxxxx>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
*
* Rewrite based on a global state machine
* (C) Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>, 2008
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/proc_fs.h>

#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
#endif

/* Definition for rcupdate control block. */
static struct rcu_global_state rcu_global_state_normal = {
.lock = __SEQLOCK_UNLOCKED(&rcu_global_state_normal.lock),
.state = RCU_STATE_DESTROY,
.start_immediately = 0,
.cpus = __RCU_CPUMASK_INIT(&rcu_global_state_normal.cpus)
};

static struct rcu_global_state rcu_global_state_bh = {
.lock = __SEQLOCK_UNLOCKED(&rcu_global_state_bh.lock),
.state = RCU_STATE_DESTROY,
.start_immediately = 0,
.cpus = __RCU_CPUMASK_INIT(&rcu_global_state_bh.cpus)
};

DEFINE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_normal) = { 0L };
DEFINE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_bh) = { 0L };
DEFINE_PER_CPU(struct rcu_cpu_dead, rcu_cpudata_dead) = { 0L };


/* FIXME: setting qlowmark to non-zero causes a hang.
* probably someone waits for a rcu completion - but
* the real rcu cycle is never started because qlowmark is not
* reached. (e.g. synchronize_rcu()).
* idea: replace with a timer based delay.
*/
int qlowmark = 0;

void rcu_cpumask_init(struct rcu_cpumask *rcm)
{
BUG_ON(!irqs_disabled());
spin_lock(&rcm->lock);
/*
* Accessing nohz_cpu_mask before incrementing rcp->cur needs a
* Barrier Otherwise it can cause tickless idle CPUs to be
* included in rcp->cpumask, which will extend graceperiods
* unnecessarily.
*/
smp_mb();
cpus_andnot(rcm->cpus, cpu_online_map, nohz_cpu_mask);

spin_unlock(&rcm->lock);
}

int rcu_cpumask_clear_and_test(struct rcu_cpumask *rcm, int cpu)
{
int ret = 0;

BUG_ON(!irqs_disabled());
spin_lock(&rcm->lock);
cpu_clear(cpu, rcm->cpus);
if (cpus_empty(rcm->cpus))
ret = 1;
spin_unlock(&rcm->lock);

return ret;
}

long rcu_batches_completed(void)
{
return rcu_global_state_normal.completed;
}

long rcu_batches_completed_bh(void)
{
return rcu_global_state_normal.completed;
}

/**
* rcu_state_startcycle - start the next rcu cycle
* @rgs: global rcu state
*
* The function starts the next rcu cycle, either immediately or
* by setting rgs->start_immediately.
*/
static void rcu_state_startcycle(struct rcu_global_state *rgs)
{
unsigned seq;
int do_real_start;

BUG_ON(!irqs_disabled());
do {
seq = read_seqbegin(&rgs->lock);
if (rgs->start_immediately == 0) {
do_real_start = 1;
} else {
do_real_start = 0;
BUG_ON(rgs->state == RCU_STATE_DESTROY);
}
} while (read_seqretry(&rgs->lock, seq));

if (do_real_start) {
write_seqlock(&rgs->lock);
switch(rgs->state) {
case RCU_STATE_DESTROY_AND_COLLECT:
case RCU_STATE_GRACE:
rgs->start_immediately = 1;
break;
case RCU_STATE_DESTROY:
rgs->state = RCU_STATE_DESTROY_AND_COLLECT;
BUG_ON(rgs->start_immediately);
rcu_cpumask_init(&rgs->cpus);
break;
default:
BUG();
}
write_sequnlock(&rgs->lock);
}
}

static void rcu_checkqlen(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, int inc)
{
BUG_ON(!irqs_disabled());
rcs->newqlen += inc;
if (unlikely(rcs->newqlen > qlowmark)) {

/* FIXME: actually, this code only needs to run once,
* i.e. when qlen == qlowmark. But: qlowmark can be changed at runtime.
* and: doesn't work anyway, see comment near qlowmark
*/
rcu_state_startcycle(rgs);
}
}


static void __call_rcu(struct rcu_head *head, struct rcu_global_state *rgs,
struct rcu_cpu_state *rcs)
{
if (rcs->new == NULL)
rcs->newtail = &head->next;
head->next = rcs->new;
rcs->new = head;

rcu_checkqlen(rgs, rcs, 1);
}

/**
* call_rcu - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
*
* The update function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*/
void call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu))
{
unsigned long flags;

head->func = func;
local_irq_save(flags);
__call_rcu(head, &rcu_global_state_normal, &__get_cpu_var(rcu_cpudata_normal));
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(call_rcu);

/**
* call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
*
* The update function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_bh() assumes
* that the read-side critical sections end on completion of a softirq
* handler. This means that read-side critical sections in process
* context must not be interrupted by softirqs. This interface is to be
* used when most of the read-side critical sections are in softirq context.
* RCU read-side critical sections are delimited by rcu_read_lock() and
* rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
* and rcu_read_unlock_bh(), if in process context. These may be nested.
*/
void call_rcu_bh(struct rcu_head *head,
void (*func)(struct rcu_head *rcu))
{
unsigned long flags;

head->func = func;
local_irq_save(flags);
__call_rcu(head, &rcu_global_state_bh, &__get_cpu_var(rcu_cpudata_bh));
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

#ifdef CONFIG_HOTPLUG_CPU

/**
* rcu_bulk_add - bulk add new rcu objects.
* @rgs: global rcu state
* @rcs: cpu state
* @h: linked list of rcu objects.
*
* Must be called with enabled local interrupts
*/
static void rcu_bulk_add(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, struct rcu_head *h, struct rcu_head **htail, int len)
{

BUG_ON(irqs_disabled());

if (len > 0) {
local_irq_disable();
if (rcs->new) {
(*htail) = rcs->new;
rcs->new = h;
} else {
rcs->new = h;
rcs->newtail = htail;
}
rcu_checkqlen(rgs, rcs, len);
local_irq_enable();
}
}

#define RCU_BATCH_MIN 100
#define RCU_BATCH_INCFACTOR 2
#define RCU_BATCH_DECFACTOR 4

static void rcu_move_and_raise(struct rcu_cpu_state *rcs)
{
struct rcu_cpu_dead *rcd = &per_cpu(rcu_cpudata_dead, smp_processor_id());

BUG_ON(!irqs_disabled());

/* update batch limit:
* - if there are still old entries when new entries are added:
* double the batch count.
* - if there are no old entries: reduce it by 25%, but never below 100.
*/
if (rcd->deadqlen)
rcd->batchcount = rcd->batchcount*RCU_BATCH_INCFACTOR;
else
rcd->batchcount = rcd->batchcount-rcd->batchcount/RCU_BATCH_DECFACTOR;
if (rcd->batchcount < RCU_BATCH_MIN)
rcd->batchcount = RCU_BATCH_MIN;

if (rcs->oldqlen) {
(*rcs->oldtail) = rcd->dead;
rcd->dead = rcs->old;
rcd->deadqlen += rcs->oldqlen;
rcs->old = NULL;
rcs->oldtail = NULL;
rcs->oldqlen = 0;
}
BUG_ON(rcs->old);
BUG_ON(rcs->oldtail);
BUG_ON(rcs->oldqlen);
raise_softirq(RCU_SOFTIRQ);
}

static void rcu_state_machine(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, int is_quiet)
{
int inc_state;
unsigned seq;
unsigned long flags;

inc_state = 0;
do {
seq = read_seqbegin(&rgs->lock);
local_irq_save(flags);
if (rgs->state != rcs->state) {
inc_state = 0;
switch(rgs->state) {
case RCU_STATE_DESTROY:
rcs->state = rgs->state;
rcu_move_and_raise(rcs);
break;
case RCU_STATE_DESTROY_AND_COLLECT:
rcs->state = rgs->state;
rcu_move_and_raise(rcs);
rcs->old = rcs->new;
rcs->oldtail = rcs->newtail;
rcs->oldqlen = rcs->newqlen;
rcs->new = NULL;
rcs->newtail = NULL;
rcs->newqlen = 0;
if (rcu_cpumask_clear_and_test(&rgs->cpus, smp_processor_id()))
inc_state = 1;
break;
case RCU_STATE_GRACE:
if (is_quiet) {
rcs->state = rgs->state;
if (rcu_cpumask_clear_and_test(&rgs->cpus, smp_processor_id()))
inc_state = 1;
}
break;
default:
BUG();
}
}
local_irq_restore(flags);
} while (read_seqretry(&rgs->lock, seq));


if (unlikely(inc_state)) {
local_irq_save(flags);
write_seqlock(&rgs->lock);
/*
* double check for races: If e.g. a new cpu starts up it
* will call the state machine although it's not listed in the
* cpumasks. Then multiple cpu could could see the cleared bitmask
* and try to advance the state. In this case, only the first
* cpu does something, the remaining incs are ignored.
*/
if (rgs->state == rcs->state) {
/*
* advance the state machine:
* - from COLLECT to GRACE
* - from GRACE to DESTROY/COLLECT
*/
switch(rgs->state) {
case RCU_STATE_DESTROY_AND_COLLECT:
rgs->state = RCU_STATE_GRACE;
rcu_cpumask_init(&rgs->cpus);
break;
case RCU_STATE_GRACE:
rgs->completed++;
if (rgs->start_immediately) {
rgs->state = RCU_STATE_DESTROY_AND_COLLECT;
rcu_cpumask_init(&rgs->cpus);
} else {
rgs->state = RCU_STATE_DESTROY;
}
rgs->start_immediately = 0;
break;
default:
BUG();
}
}
write_sequnlock(&rgs->lock);
local_irq_restore(flags);
}
}

static void __rcu_offline_cpu(struct rcu_global_state *rgs, struct rcu_cpu_state *this_rcs,
struct rcu_cpu_state *other_rcs, int cpu)
{
/* task 1: move all entries from the new cpu into the lists of the current cpu.
* locking: The other cpu is dead, thus no locks are required.
* Thus it's more or less a bulk call_rcu().
* For the sake of simplicity, all objects are treated as "new", even the objects
* that are already in old.
*/
rcu_bulk_add(rgs, this_rcs, other_rcs->new, other_rcs->newtail, other_rcs->newqlen);
rcu_bulk_add(rgs, this_rcs, other_rcs->old, other_rcs->oldtail, other_rcs->oldqlen);


/* task 2: handle the cpu bitmask of the other cpu
* We know that the other cpu is dead, thus it's guaranteed not to be holding
* any pointers to rcu protected objects.
*/

rcu_state_machine(rgs, other_rcs, 1);
}

static void rcu_offline_cpu(int cpu)
{
struct rcu_cpu_state *this_rcs_normal = &get_cpu_var(rcu_cpudata_normal);
struct rcu_cpu_state *this_rcs_bh = &get_cpu_var(rcu_cpudata_bh);

BUG_ON(irqs_disabled());

__rcu_offline_cpu(&rcu_global_state_normal, this_rcs_normal,
&per_cpu(rcu_cpudata_normal, cpu), cpu);
__rcu_offline_cpu(&rcu_global_state_bh, this_rcs_bh,
&per_cpu(rcu_cpudata_bh, cpu), cpu);
put_cpu_var(rcu_cpudata_normal);
put_cpu_var(rcu_cpudata_bh);

BUG_ON(rcu_needs_cpu(cpu));
}

#else

static void rcu_offline_cpu(int cpu)
{
}

#endif

static int __rcu_pending(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs)
{
/* quick and dirty check for pending */
if (rgs->state != rcs->state)
return 1;
return 0;
}

/*
* Check to see if there is any immediate RCU-related work to be done
* by the current CPU, returning 1 if so. This function is part of the
* RCU implementation; it is -not- an exported member of the RCU API.
*/
int rcu_pending(int cpu)
{
return __rcu_pending(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu)) ||
__rcu_pending(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu));
}

/*
* Check to see if any future RCU-related work will need to be done
* by the current CPU, even if none need be done immediately, returning
* 1 if so. This function is part of the RCU implementation; it is -not-
* an exported member of the RCU API.
*/
int rcu_needs_cpu(int cpu)
{
struct rcu_cpu_state *rcs_normal = &per_cpu(rcu_cpudata_normal, cpu);
struct rcu_cpu_state *rcs_bh = &per_cpu(rcu_cpudata_bh, cpu);

return !!rcs_normal->new || !!rcs_normal->old ||
!!rcs_bh->new || !!rcs_bh->old ||
rcu_pending(cpu);
}

/**
* rcu_check_callback(cpu, user) - external entry point for grace checking
* @cpu: cpu id.
* @user: user space was interrupted.
*
* Top-level function driving RCU grace-period detection, normally
* invoked from the scheduler-clock interrupt. This function simply
* increments counters that are read only from softirq by this same
* CPU, so there are no memory barriers required.
*
* This function can run with disabled local interrupts, thus all
* callees must use local_irq_save()
*/
void rcu_check_callbacks(int cpu, int user)
{
if (user ||
(idle_cpu(cpu) && !in_softirq() &&
hardirq_count() <= (1 << HARDIRQ_SHIFT))) {

/*
* Get here if this CPU took its interrupt from user
* mode or from the idle loop, and if this is not a
* nested interrupt. In this case, the CPU is in
* a quiescent state, so count it.
*
*/
rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 1);
rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 1);

} else if (!in_softirq()) {

/*
* Get here if this CPU did not take its interrupt from
* softirq, in other words, if it is not interrupting
* a rcu_bh read-side critical section. This is an _bh
* critical section, so count it.
*/
rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 0);
rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 1);
} else {
/*
* We are interrupting something. Nevertheless - check if we should collect
* rcu objects. This can be done from arbitrary context.
*/
rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 0);
rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 0);
}
}

void rcu_restart_cpu(int cpu)
{
BUG_ON(per_cpu(rcu_cpudata_normal, cpu).new != NULL);
BUG_ON(per_cpu(rcu_cpudata_normal, cpu).old != NULL);
per_cpu(rcu_cpudata_normal, cpu).state = RCU_STATE_DESTROY;

BUG_ON(per_cpu(rcu_cpudata_bh, cpu).new != NULL);
BUG_ON(per_cpu(rcu_cpudata_bh, cpu).old != NULL);
per_cpu(rcu_cpudata_bh, cpu).state = RCU_STATE_DESTROY;
}

/*
* Invoke the completed RCU callbacks.
*/
static void rcu_do_batch(struct rcu_cpu_dead *rcd)
{
struct rcu_head *list;
int i, count;

if (!rcd->deadqlen)
return;

/* step 1: pull up to rcs->batchcount objects */
BUG_ON(irqs_disabled());
local_irq_disable();

if (rcd->deadqlen > rcd->batchcount) {
struct rcu_head *walk;

list = rcd->dead;
count = rcd->batchcount;

walk = rcd->dead;
for (i=0;i<count;i++)
walk = walk->next;
rcd->dead = walk;

} else {
list = rcd->dead;
count = rcd->deadqlen;

rcd->dead = NULL;
}
rcd->deadqlen -= count;
BUG_ON(rcd->deadqlen < 0);

local_irq_enable();

/* step 2: call the rcu callbacks */

for (i=0;i<count;i++) {
struct rcu_head *next;

next = list->next;
prefetch(next);
list->func(list);
list = next;
}

/* step 3: if still entries left, raise the softirq again */
if (rcd->deadqlen)
raise_softirq(RCU_SOFTIRQ);
}

static void rcu_process_callbacks(struct softirq_action *unused)
{
rcu_do_batch(&per_cpu(rcu_cpudata_dead, smp_processor_id()));
}

static void rcu_init_percpu_data(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs)
{
rcs->new = rcs->old = NULL;
rcs->newqlen = rcs->oldqlen = 0;
rcs->state = RCU_STATE_DESTROY;
}

static void __cpuinit rcu_online_cpu(int cpu)
{
rcu_init_percpu_data(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu));
rcu_init_percpu_data(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu));

per_cpu(rcu_cpudata_dead, cpu).dead = NULL;
per_cpu(rcu_cpudata_dead, cpu).deadqlen = 0;
per_cpu(rcu_cpudata_dead, cpu).batchcount = RCU_BATCH_MIN;

open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
}

static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
rcu_online_cpu(cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
rcu_offline_cpu(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata rcu_nb = {
.notifier_call = rcu_cpu_notify,
};

/*
* Initializes rcu mechanism. Assumed to be called early.
* That is before local timer(SMP) or jiffie timer (uniproc) is setup.
* Note that rcu_qsctr and friends are implicitly
* initialized due to the choice of ``0'' for RCU_CTR_INVALID.
*/
void __init __rcu_init(void)
{
rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
(void *)(long)smp_processor_id());
/* Register notifier for non-boot CPUs */
register_cpu_notifier(&rcu_nb);
}

module_param(qlowmark, int, 0);


/*
* Read-Copy Update mechanism for mutual exclusion (classic version)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2001
*
* Author: Dipankar Sarma <dipankar@xxxxxxxxxx>
*
* Based on the original work by Paul McKenney <paulmck@xxxxxxxxxx>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
*
* Rewrite based on a global state machine
* (C) Manfred Spraul <manfred@xxxxxxxxxxxxxxxx>, 2008
*/

#ifndef __LINUX_RCUCLASSIC_H
#define __LINUX_RCUCLASSIC_H

#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/percpu.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
#include <linux/cpumask.h>

/*
* cpu bitmask:
* default implementation, flat without hierarchy, not optimized for UP.
*/

struct rcu_cpumask {
spinlock_t lock;
cpumask_t cpus;
} ____cacheline_internodealigned_in_smp;

#define __RCU_CPUMASK_INIT(ptr) { .lock = __SPIN_LOCK_UNLOCKED(&(ptr)->lock) }

/*
* global state machine:
* - each cpu regularly check the global state and compares it with it's own local state.
* - if both state do not match, then the cpus do the required work and afterwards
* - update their local state
* - clear their bit in the cpu bitmask.
* The state machine is sequence lock protected. It's only read with disabled local interupts.
* Since all cpus must do something to complete a state change, the current state cannot
* jump forward by more than one state.
*/

/* RCU_STATE_DESTROY:
* call callbacks that were registered by call_rcu for the objects in rcu_cpu_state.old
*/
#define RCU_STATE_DESTROY 1
/* RCU_STATE_DESTROY_AND_COLLECT:
* - call callbacks that were registered by call_rcu for the objects in rcu_cpu_state.old
* - move the objects from rcu_cpu_state.new to rcu_cpu_state.new
*/
#define RCU_STATE_DESTROY_AND_COLLECT 2
/* RCU_STATE_GRACE
* - wait for a quiescent state
*/
#define RCU_STATE_GRACE 3

struct rcu_global_state {
seqlock_t lock;
int state;
int start_immediately;
long completed;
struct rcu_cpumask cpus;
} ____cacheline_internodealigned_in_smp;

struct rcu_cpu_state {

int state;

/* new objects, directly from call_rcu().
* objects are added LIFO, better for cache hits.
* the list are length-based, not NULL-terminated.
*/
struct rcu_head *new; /* new objects */
struct rcu_head **newtail;
long newqlen; /* # of queued callbacks */

/* objects that are in rcu grace processing. The actual
* state depends on rgs->state.
*/
struct rcu_head *old;
struct rcu_head **oldtail;
long oldqlen;
};

struct rcu_cpu_dead {
/* objects that are scheduled for immediate call of
* ->func().
* objects are added FIFO, necessary for forward progress.
* only one structure for _bh and _normal.
*/
struct rcu_head *dead;
long deadqlen;

long batchcount;
};

DECLARE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_normal);
DECLARE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_bh);
DECLARE_PER_CPU(struct rcu_cpu_dead, rcu_cpudata_dead);

extern long rcu_batches_completed(void);
extern long rcu_batches_completed_bh(void);

extern int rcu_pending(int cpu);
extern int rcu_needs_cpu(int cpu);

#ifdef CONFIG_DEBUG_LOCK_ALLOC
extern struct lockdep_map rcu_lock_map;
# define rcu_read_acquire() \
lock_acquire(&rcu_lock_map, 0, 0, 2, 1, _THIS_IP_)
# define rcu_read_release() lock_release(&rcu_lock_map, 1, _THIS_IP_)
#else
# define rcu_read_acquire() do { } while (0)
# define rcu_read_release() do { } while (0)
#endif

#define __rcu_read_lock() \
do { \
preempt_disable(); \
__acquire(RCU); \
rcu_read_acquire(); \
} while (0)
#define __rcu_read_unlock() \
do { \
rcu_read_release(); \
__release(RCU); \
preempt_enable(); \
} while (0)
#define __rcu_read_lock_bh() \
do { \
local_bh_disable(); \
__acquire(RCU_BH); \
rcu_read_acquire(); \
} while (0)
#define __rcu_read_unlock_bh() \
do { \
rcu_read_release(); \
__release(RCU_BH); \
local_bh_enable(); \
} while (0)

#define __synchronize_sched() synchronize_rcu()

#define call_rcu_sched(head, func) call_rcu(head, func)

extern void __rcu_init(void);
#define rcu_init_sched() do { } while (0)
extern void rcu_check_callbacks(int cpu, int user);
extern void rcu_restart_cpu(int cpu);


#define rcu_enter_nohz() do { } while (0)
#define rcu_exit_nohz() do { } while (0)

#define rcu_qsctr_inc(cpu) do { } while (0)
#define rcu_bh_qsctr_inc(cpu) do { } while (0)

#endif /* __LINUX_RCUCLASSIC_H */