[TIP/SCHED/DEVEL PATCH v3 3/6] sched: make double-lock-balance fair

From: Gregory Haskins
Date: Thu Sep 04 2008 - 08:58:46 EST


double_lock balance() currently favors logically lower cpus since they
often do not have to release their own lock to acquire a second lock.
The result is that logically higher cpus can get starved when there is
a lot of pressure on the RQs. This can result in higher latencies on
higher cpu-ids.

This patch makes the algorithm more fair by forcing all paths to have
to release both locks before acquiring them again. Since callsites to
double_lock_balance already consider it a potential preemption/reschedule
point, they have the proper logic to recheck for atomicity violations.

Signed-off-by: Gregory Haskins <ghaskins@xxxxxxxxxx>
---

kernel/sched.c | 52 +++++++++++++++++++++++++++++++++++++++++++++-------
1 files changed, 45 insertions(+), 7 deletions(-)

diff --git a/kernel/sched.c b/kernel/sched.c
index 35e1f21..af4c6fa 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -2782,21 +2782,43 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__release(rq2->lock);
}

+#ifdef CONFIG_PREEMPT
+
/*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations. This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below. However, it
+ * also adds more overhead and therefore may reduce throughput.
*/
-static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+ __releases(this_rq->lock)
+ __acquires(busiest->lock)
+ __acquires(this_rq->lock)
+{
+ spin_unlock(&this_rq->lock);
+ double_rq_lock(this_rq, busiest);
+
+ return 1;
+}
+
+#else
+
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry. This favors lower cpu-ids and will
+ * grant the double lock to lower cpus over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;

- if (unlikely(!irqs_disabled())) {
- /* printk() doesn't work good under rq->lock */
- spin_unlock(&this_rq->lock);
- BUG_ON(1);
- }
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
@@ -2809,6 +2831,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
return ret;
}

+#endif /* CONFIG_PREEMPT */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+ if (unlikely(!irqs_disabled())) {
+ /* printk() doesn't work good under rq->lock */
+ spin_unlock(&this_rq->lock);
+ BUG_ON(1);
+ }
+
+ return _double_lock_balance(this_rq, busiest);
+}
+
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/