[PATCH V3 10/17] Squashfs: cache operations

From: Phillip Lougher
Date: Mon Jan 05 2009 - 06:10:11 EST



Signed-off-by: Phillip Lougher <phillip@xxxxxxxxxxxxxxxxxxx>
---
fs/squashfs/cache.c | 412 +++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 412 insertions(+), 0 deletions(-)

diff --git a/fs/squashfs/cache.c b/fs/squashfs/cache.c
new file mode 100644
index 0000000..f29eda1
--- /dev/null
+++ b/fs/squashfs/cache.c
@@ -0,0 +1,412 @@
+/*
+ * Squashfs - a compressed read only filesystem for Linux
+ *
+ * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ * Phillip Lougher <phillip@xxxxxxxxxxxxxxxxxxx>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2,
+ * or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * cache.c
+ */
+
+/*
+ * Blocks in Squashfs are compressed. To avoid repeatedly decompressing
+ * recently accessed data Squashfs uses two small metadata and fragment caches.
+ *
+ * This file implements a generic cache implementation used for both caches,
+ * plus functions layered ontop of the generic cache implementation to
+ * access the metadata and fragment caches.
+ *
+ * To avoid out of memory and fragmentation isssues with vmalloc the cache
+ * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
+ *
+ * It should be noted that the cache is not used for file datablocks, these
+ * are decompressed and cached in the page-cache in the normal way. The
+ * cache is only used to temporarily cache fragment and metadata blocks
+ * which have been read as as a result of a metadata (i.e. inode or
+ * directory) or fragment access. Because metadata and fragments are packed
+ * together into blocks (to gain greater compression) the read of a particular
+ * piece of metadata or fragment will retrieve other metadata/fragments which
+ * have been packed with it, these because of locality-of-reference may be read
+ * in the near future. Temporarily caching them ensures they are available for
+ * near future access without requiring an additional read and decompress.
+ */
+
+#include <linux/fs.h>
+#include <linux/vfs.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/sched.h>
+#include <linux/spinlock.h>
+#include <linux/wait.h>
+#include <linux/zlib.h>
+#include <linux/pagemap.h>
+
+#include "squashfs_fs.h"
+#include "squashfs_fs_sb.h"
+#include "squashfs_fs_i.h"
+#include "squashfs.h"
+
+/*
+ * Look-up block in cache, and increment usage count. If not in cache, read
+ * and decompress it from disk.
+ */
+struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
+ struct squashfs_cache *cache, u64 block, int length)
+{
+ int i, n;
+ struct squashfs_cache_entry *entry;
+
+ spin_lock(&cache->lock);
+
+ while (1) {
+ for (i = 0; i < cache->entries; i++)
+ if (cache->entry[i].block == block)
+ break;
+
+ if (i == cache->entries) {
+ /*
+ * Block not in cache, if all cache entries are used
+ * go to sleep waiting for one to become available.
+ */
+ if (cache->unused == 0) {
+ cache->num_waiters++;
+ spin_unlock(&cache->lock);
+ wait_event(cache->wait_queue, cache->unused);
+ spin_lock(&cache->lock);
+ cache->num_waiters--;
+ continue;
+ }
+
+ /*
+ * At least one unused cache entry. A simple
+ * round-robin strategy is used to choose the entry to
+ * be evicted from the cache.
+ */
+ i = cache->next_blk;
+ for (n = 0; n < cache->entries; n++) {
+ if (cache->entry[i].refcount == 0)
+ break;
+ i = (i + 1) % cache->entries;
+ }
+
+ cache->next_blk = (i + 1) % cache->entries;
+ entry = &cache->entry[i];
+
+ /*
+ * Initialise choosen cache entry, and fill it in from
+ * disk.
+ */
+ cache->unused--;
+ entry->block = block;
+ entry->refcount = 1;
+ entry->pending = 1;
+ entry->num_waiters = 0;
+ entry->error = 0;
+ spin_unlock(&cache->lock);
+
+ entry->length = squashfs_read_data(sb, entry->data,
+ block, length, &entry->next_index,
+ cache->block_size);
+
+ spin_lock(&cache->lock);
+
+ if (entry->length < 0)
+ entry->error = entry->length;
+
+ entry->pending = 0;
+
+ /*
+ * While filling this entry one or more other processes
+ * have looked it up in the cache, and have slept
+ * waiting for it to become available.
+ */
+ if (entry->num_waiters) {
+ spin_unlock(&cache->lock);
+ wake_up_all(&entry->wait_queue);
+ } else
+ spin_unlock(&cache->lock);
+
+ goto out;
+ }
+
+ /*
+ * Block already in cache. Increment refcount so it doesn't
+ * get reused until we're finished with it, if it was
+ * previously unused there's one less cache entry available
+ * for reuse.
+ */
+ entry = &cache->entry[i];
+ if (entry->refcount == 0)
+ cache->unused--;
+ entry->refcount++;
+
+ /*
+ * If the entry is currently being filled in by another process
+ * go to sleep waiting for it to become available.
+ */
+ if (entry->pending) {
+ entry->num_waiters++;
+ spin_unlock(&cache->lock);
+ wait_event(entry->wait_queue, !entry->pending);
+ } else
+ spin_unlock(&cache->lock);
+
+ goto out;
+ }
+
+out:
+ TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
+ cache->name, i, entry->block, entry->refcount, entry->error);
+
+ if (entry->error)
+ ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
+ block);
+ return entry;
+}
+
+
+/*
+ * Release cache entry, once usage count is zero it can be reused.
+ */
+void squashfs_cache_put(struct squashfs_cache_entry *entry)
+{
+ struct squashfs_cache *cache = entry->cache;
+
+ spin_lock(&cache->lock);
+ entry->refcount--;
+ if (entry->refcount == 0) {
+ cache->unused++;
+ /*
+ * If there's any processes waiting for a block to become
+ * available, wake one up.
+ */
+ if (cache->num_waiters) {
+ spin_unlock(&cache->lock);
+ wake_up(&cache->wait_queue);
+ return;
+ }
+ }
+ spin_unlock(&cache->lock);
+}
+
+/*
+ * Delete cache reclaiming all kmalloced buffers.
+ */
+void squashfs_cache_delete(struct squashfs_cache *cache)
+{
+ int i, j;
+
+ if (cache == NULL)
+ return;
+
+ for (i = 0; i < cache->entries; i++) {
+ if (cache->entry[i].data) {
+ for (j = 0; j < cache->pages; j++)
+ kfree(cache->entry[i].data[j]);
+ kfree(cache->entry[i].data);
+ }
+ }
+
+ kfree(cache->entry);
+ kfree(cache);
+}
+
+
+/*
+ * Initialise cache allocating the specified number of entries, each of
+ * size block_size. To avoid vmalloc fragmentation issues each entry
+ * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
+ */
+struct squashfs_cache *squashfs_cache_init(char *name, int entries,
+ int block_size)
+{
+ int i, j;
+ struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
+
+ if (cache == NULL) {
+ ERROR("Failed to allocate %s cache\n", name);
+ return NULL;
+ }
+
+ cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
+ if (cache->entry == NULL) {
+ ERROR("Failed to allocate %s cache\n", name);
+ goto cleanup;
+ }
+
+ cache->next_blk = 0;
+ cache->unused = entries;
+ cache->entries = entries;
+ cache->block_size = block_size;
+ cache->pages = block_size >> PAGE_CACHE_SHIFT;
+ cache->name = name;
+ cache->num_waiters = 0;
+ spin_lock_init(&cache->lock);
+ init_waitqueue_head(&cache->wait_queue);
+
+ for (i = 0; i < entries; i++) {
+ struct squashfs_cache_entry *entry = &cache->entry[i];
+
+ init_waitqueue_head(&cache->entry[i].wait_queue);
+ entry->cache = cache;
+ entry->block = SQUASHFS_INVALID_BLK;
+ entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
+ if (entry->data == NULL) {
+ ERROR("Failed to allocate %s cache entry\n", name);
+ goto cleanup;
+ }
+
+ for (j = 0; j < cache->pages; j++) {
+ entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
+ if (entry->data[j] == NULL) {
+ ERROR("Failed to allocate %s buffer\n", name);
+ goto cleanup;
+ }
+ }
+ }
+
+ return cache;
+
+cleanup:
+ squashfs_cache_delete(cache);
+ return NULL;
+}
+
+
+/*
+ * Copy upto length bytes from cache entry to buffer starting at offset bytes
+ * into the cache entry. If there's not length bytes then copy the number of
+ * bytes available. In all cases return the number of bytes copied.
+ */
+int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
+ int offset, int length)
+{
+ int remaining = length;
+
+ if (length == 0)
+ return 0;
+ else if (buffer == NULL)
+ return min(length, entry->length - offset);
+
+ while (offset < entry->length) {
+ void *buff = entry->data[offset / PAGE_CACHE_SIZE]
+ + (offset % PAGE_CACHE_SIZE);
+ int bytes = min_t(int, entry->length - offset,
+ PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
+
+ if (bytes >= remaining) {
+ memcpy(buffer, buff, remaining);
+ remaining = 0;
+ break;
+ }
+
+ memcpy(buffer, buff, bytes);
+ buffer += bytes;
+ remaining -= bytes;
+ offset += bytes;
+ }
+
+ return length - remaining;
+}
+
+
+/*
+ * Read length bytes from metadata position <block, offset> (block is the
+ * start of the compressed block on disk, and offset is the offset into
+ * the block once decompressed). Data is packed into consecutive blocks,
+ * and length bytes may require reading more than one block.
+ */
+int squashfs_read_metadata(struct super_block *sb, void *buffer,
+ u64 *block, int *offset, int length)
+{
+ struct squashfs_sb_info *msblk = sb->s_fs_info;
+ int bytes, copied = length;
+ struct squashfs_cache_entry *entry;
+
+ TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
+
+ while (length) {
+ entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
+ if (entry->error)
+ return entry->error;
+ else if (*offset >= entry->length)
+ return -EIO;
+
+ bytes = squashfs_copy_data(buffer, entry, *offset, length);
+ if (buffer)
+ buffer += bytes;
+ length -= bytes;
+ *offset += bytes;
+
+ if (*offset == entry->length) {
+ *block = entry->next_index;
+ *offset = 0;
+ }
+
+ squashfs_cache_put(entry);
+ }
+
+ return copied;
+}
+
+
+/*
+ * Look-up in the fragmment cache the fragment located at <start_block> in the
+ * filesystem. If necessary read and decompress it from disk.
+ */
+struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
+ u64 start_block, int length)
+{
+ struct squashfs_sb_info *msblk = sb->s_fs_info;
+
+ return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
+ length);
+}
+
+
+/*
+ * Read and decompress the datablock located at <start_block> in the
+ * filesystem. The cache is used here to avoid duplicating locking and
+ * read/decompress code.
+ */
+struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
+ u64 start_block, int length)
+{
+ struct squashfs_sb_info *msblk = sb->s_fs_info;
+
+ return squashfs_cache_get(sb, msblk->read_page, start_block, length);
+}
+
+
+/*
+ * Read a filesystem table (uncompressed sequence of bytes) from disk
+ */
+int squashfs_read_table(struct super_block *sb, void *buffer, u64 block,
+ int length)
+{
+ int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ int i, res;
+ void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
+ if (data == NULL)
+ return -ENOMEM;
+
+ for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
+ data[i] = buffer;
+ res = squashfs_read_data(sb, data, block, length |
+ SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length);
+ kfree(data);
+ return res;
+}
--
1.5.6.3

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/