[PATCH 09/21] amd64_edac: add DRAM address type conversion facilities
From: Borislav Petkov
Date: Thu May 07 2009 - 09:51:19 EST
From: Doug Thompson <dougthompson@xxxxxxxxxxxx>
Reviewed-by: Mauro Carvalho Chehab <mchehab@xxxxxxxxxx>
Signed-off-by: Doug Thompson <dougthompson@xxxxxxxxxxxx>
Signed-off-by: Borislav Petkov <borislav.petkov@xxxxxxx>
---
drivers/edac/amd64_edac.c | 300 +++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 300 insertions(+), 0 deletions(-)
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
index 8ef1c2e..118b838 100644
--- a/drivers/edac/amd64_edac.c
+++ b/drivers/edac/amd64_edac.c
@@ -468,4 +468,304 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+/* Return the DramAddr that the SysAddr given by sys_addr maps to. It is
+ * assumed that sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+ int rc;
+
+ /* The first part of section 3.4.4 (p. 70) shows how the DRAM Base
+ * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are
+ * used to translate a SysAddr to a DramAddr. If the DRAM Hole
+ * Address Register (DHAR) is enabled, then it is also involved in
+ * translating a SysAddr to a DramAddr. Sections 3.4.8 and 3.5.8.2
+ * describe the DHAR and how it is used for memory hoisting. These
+ * parts of the documentation are unclear. I interpret them as
+ * follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as
+ * follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the
+ * DRAM Base and DRAM Limit registers for node n. If the
+ * SysAddr is not within the range specified by the base
+ * and limit values, then node n ignores the Sysaddr
+ * (since it does not map to node n). Otherwise continue
+ * to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is
+ * clear, the DHAR is disabled so skip to step 3 below.
+ * Otherwise see if the SysAddr is within the range of
+ * relocated addresses (starting at 0x100000000) from the
+ * DRAM hole. If not, skip to step 3 below. Else get the
+ * value of the DramHoleOffset field from the DHAR. To
+ * obtain the DramAddr, subtract the offset defined by
+ * this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase
+ * field of the DRAM Base register for node n. To obtain
+ * the DramAddr, subtract the base address from the
+ * SysAddr, as shown near the start of section 3.4.4
+ * (p. 70).
+ */
+
+ dram_base = get_dram_base(mci);
+
+ rc = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!rc) {
+ if ((sys_addr >= (1ull << 32)) &&
+ (sys_addr < ((1ull << 32) + hole_size))) {
+ /* use DHAR to translate SysAddr to DramAddr */
+ dram_addr = sys_addr - hole_offset;
+ debugf2("using DHAR to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n",
+ (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+ return dram_addr;
+ }
+ }
+
+ /* Translate the SysAddr to a DramAddr as shown near the start of
+ * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
+ * only deals with 40-bit values. Therefore we discard bits 63-40 of
+ * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
+ * discard are all 1s. Otherwise the bits we discard are all 0s. See
+ * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+ * Programmer's Manual Volume 1 Application Programming.
+ */
+ dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
+
+ debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n", (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+ return dram_addr;
+}
+
+/* Parameter intlv_en is the value of the IntlvEn field from a DRAM Base
+ * register (section 3.4.4.1). Return the number of bits from a SysAddr that
+ * are used for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+ static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+ int n;
+
+ BUG_ON(intlv_en > 7);
+ n = intlv_shift_table[intlv_en];
+ return n;
+}
+
+/* Translate the DramAddr given by dram_addr to an InputAddr and return the
+ * result.
+ */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt;
+ int intlv_shift;
+ u64 input_addr;
+
+ pvt = mci->pvt_info;
+
+ /* See the start of section 3.4.4 (p. 70) in the k8 documentation
+ * concerning translating a DramAddr to an InputAddr.
+ */
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+ input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
+ (dram_addr & 0xfff);
+
+ debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+ intlv_shift,
+ (unsigned long)dram_addr, (unsigned long)input_addr);
+ return input_addr;
+}
+
+/* Translate the SysAddr represented by sys_addr to an InputAddr and return
+ * the result. It is assumed that sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 input_addr;
+
+ input_addr =
+ dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+ debugf2("%s(): SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+ __func__, (unsigned long)sys_addr, (unsigned long)input_addr);
+ return input_addr;
+}
+
+
+/* input_addr is an InputAddr associated with the node represented by mci.
+ * Translate input_addr to a DramAddr and return the result.
+ */
+static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int node_id, intlv_shift;
+ u64 bits, dram_addr;
+ u32 intlv_sel;
+
+ /* Near the start of section 3.4.4 (p. 70), the k8 documentation shows
+ * how to translate a DramAddr to an InputAddr. Here we reverse this
+ * procedure. When translating from a DramAddr to an InputAddr, the
+ * bits used for node interleaving are discarded. Here we recover
+ * these bits from the IntlvSel field of the DRAM Limit register
+ * (section 3.4.4.2) for the node that input_addr is associated with.
+ */
+
+ pvt = mci->pvt_info;
+ node_id = pvt->mc_node_id;
+ BUG_ON((node_id < 0) || (node_id > 7));
+
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+
+ if (intlv_shift == 0) {
+ debugf1(" node interleaving disabled:\n");
+ debugf1(" InputAddr 0x%lx translates "
+ "to DramAddr of same value\n",
+ (unsigned long)input_addr);
+ return input_addr;
+ }
+
+ bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
+ (input_addr & 0xfff);
+
+ intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
+ dram_addr = bits + (intlv_sel << 12);
+
+ debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
+ "(%d node interleave bits)\n", (unsigned long)input_addr,
+ (unsigned long)dram_addr, intlv_shift);
+ return dram_addr;
+}
+
+/* dram_addr is a DramAddr that maps to the node represented by mci. Convert
+ * dram_addr to a SysAddr and return the result.
+ */
+static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
+ int rc;
+
+ rc = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!rc) {
+ if ((dram_addr >= hole_base) &&
+ (dram_addr < (hole_base + hole_size))) {
+ /* use DHAR to translate DramAddr to SysAddr */
+ sys_addr = dram_addr + hole_offset;
+ debugf1("using DHAR to translate DramAddr 0x%lx to "
+ "SysAddr 0x%lx\n", (unsigned long)dram_addr,
+ (unsigned long)sys_addr);
+ return sys_addr;
+ }
+ }
+
+ amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
+ sys_addr = dram_addr + base;
+
+ /* The sys_addr we have computed up to this point is a 40-bit value
+ * because the k8 deals with 40-bit values. However, the value we are
+ * supposed to return is a full 64-bit physical address. The AMD
+ * x86-64 architecture specifies that the most significant implemented
+ * address bit through bit 63 of a physical address must be either all
+ * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
+ * 64-bit value below. See section 3.4.2 of AMD publication 24592:
+ * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
+ * Programming.
+ */
+ sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
+
+ debugf1(" Using DRAM Base reg on node %d to translate\n",
+ pvt->mc_node_id);
+ debugf1(" DramAddr 0x%lx to SysAddr 0x%lx\n",
+ (unsigned long)dram_addr, (unsigned long)sys_addr);
+ return sys_addr;
+}
+
+/* input_addr is an InputAddr associated with the node given by mci.
+ * Translate input_addr to a SysAddr and return the result.
+ */
+static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
+ u64 input_addr)
+{
+ return dram_addr_to_sys_addr(mci,
+ input_addr_to_dram_addr(mci, input_addr));
+}
+
+/*
+ * Find the minimum and maximum InputAddr values that map to the given csrow.
+ * Pass back these values in *input_addr_min and *input_addr_max.
+ */
+static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
+ u64 *input_addr_min, u64 *input_addr_max)
+{
+ struct amd64_pvt *pvt;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+ BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
+
+ base = base_from_dct_base(pvt, csrow);
+ mask = mask_from_dct_mask(pvt, csrow);
+
+ *input_addr_min = base & ~mask;
+ *input_addr_max = base | mask | pvt->dcs_mask_notused;
+}
+
+
+
+/*
+ * static u64 extract_error_address
+ * Extract error address from MCA NB Address Low (section 3.6.4.5) and
+ * MCA NB Address High (section 3.6.4.6) register values and return the
+ * result. Address is located in the info structure (nbeah and nbeal)
+ * the encoding is device specific.
+ */
+static u64 extract_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return pvt->ops->get_error_address(mci, info);
+}
+
+
+/*
+ * error_address_to_page_and_offset
+ *
+ * Map the Error address to a PAGE and PAGE OFFSET
+ */
+static inline void error_address_to_page_and_offset(u64 error_address,
+ u32 *page, u32 *offset)
+{
+ *page = (u32) (error_address >> PAGE_SHIFT);
+ *offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * sys_addr_to_csrow
+ *
+ * 'sys_addr' is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error. mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error). Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ int csrow;
+
+ csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+ if (csrow == -1)
+ amd64_mc_printk(mci, KERN_ERR,
+ "Failed to translate InputAddr to csrow for "
+ "address 0x%lx\n", (unsigned long)sys_addr);
+ return csrow;
+}
--
1.6.2.4
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/