Re: [PATCH 1/8] add lib/gcd.c
From: James Cloos
Date: Sat Jun 13 2009 - 15:55:34 EST
>>>>> "|" == James Cloos <cloos@xxxxxxxxxxx> writes:
>>>>> "Alan" == Alan Cox <alan@xxxxxxxxxxxxxxxxxxx> writes:
|> Would the binary gcd algorithm not be a better fit for the kernel?
Alan> Could well be the shift based one is better for some processors only.
|> Very likely, I suspect.
|> In any case, I do not have the hardware to do any statistically
|> significant testing;
I take that back. Just in case speed is a relevant issue, I ran a test
on my MX, which is a small xen domU running on a:
,----
| EFamily: 0 EModel: 0 Family: 6 Model: 15 Stepping: 11
| CPU Model: Core 2 Quad
| Processor name string: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
`----
I got, compiling with gcc-4.4 -march=native -O3:
binary
408.39user 0.05system 6:52.75elapsed 98%CPU
quick (the code in the kernel)
600.96user 0.16system 10:19.06elapsed 97%CPU
contfrac (the typical euclid algo)
569.19user 0.12system 9:35.50elapsed 98%CPU
extended euclid (calculates g=ia+jb=gcd(a,b))
684.53user 0.13system 11:32.77elapsed 98%CPU
I also tried on an old Alpha at freeshell; it had gcc-3.3; gcc's -S
output looks like it uses hardware div there, just like it does on
x86 and amd64. The bgcd, though, was 10-16 times faster than either
version of euclid's algo.
On my laptop's P3M, binary gcd was about twice as fast as euclid.
So, although modern processors are *much* better at int div, the
binary gcd algo is still faster.
The timings on the alpha and the laptop were of:
for (a=0xFFF; a > 0; a--)
for (b=a; b > 0; b--)
g=gcd(a,b);
For the core2 times quoted above, I started with a=0xFFFF.
And I forgot to mention: the bgcd code I posted was based on
some old notes of mine which most likely trace to TAoCP.
-JimC
--
James Cloos <cloos@xxxxxxxxxxx> OpenPGP: 1024D/ED7DAEA6
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/