[PATCH 5/6] add bcmring umi nand driver code and header file

From: Leo Chen
Date: Fri Jun 26 2009 - 18:47:50 EST


---
drivers/mtd/nand/nand_bcm_umi.c | 895 ++++++++++++++++++++++++++++++
drivers/mtd/nand/nand_calculate_ecc512.c | 269 +++++++++
drivers/mtd/nand/nand_correct_data512.c | 163 ++++++
include/linux/mtd/nand_bcm_umi.h | 236 ++++++++
include/linux/mtd/nand_ecc512.h | 26 +
5 files changed, 1589 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/nand_bcm_umi.c
create mode 100644 drivers/mtd/nand/nand_calculate_ecc512.c
create mode 100644 drivers/mtd/nand/nand_correct_data512.c
create mode 100644 include/linux/mtd/nand_bcm_umi.h
create mode 100644 include/linux/mtd/nand_ecc512.h

diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c
new file mode 100644
index 0000000..d0c222f
--- /dev/null
+++ b/drivers/mtd/nand/nand_bcm_umi.c
@@ -0,0 +1,895 @@
+/*
+ * Copyright (c) 2005 Broadcom Corporation
+ *
+ * This driver was based on the sharpl NAND driver written by
+ * Richard Purdie. Their copyright is below.
+ * As such, this driver falls under the GPL license also below.
+ *
+ * Copyright (C) 2004 Richard Purdie
+ *
+ * Based on Sharp's NAND driver sharp_sl.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc512.h>
+#include <linux/mtd/nand_bcm_umi.h>
+
+#include <asm/io.h>
+#include <asm/mach-types.h>
+
+#include <mach/reg_nand.h>
+#include <mach/reg_umi.h>
+#include <mach/memory_settings.h>
+
+#if NAND_ECC_BCH
+#define NAND_ECC_NUM_BYTES 13
+#else
+#define NAND_ECC_NUM_BYTES 3
+#endif
+
+#include <mach/dma.h>
+#include <linux/dma-mapping.h>
+#include <linux/completion.h>
+
+static char gBanner[] __initdata = KERN_INFO "BCM UMI MTD NAND Driver: 1.00\n";
+
+
+// Register offsets
+//
+#define REG_NAND_CMD_OFFSET ( 0 )
+#define REG_NAND_ADDR_OFFSET ( 4 )
+#ifndef __ARMEB__
+#define REG_NAND_DATA8_OFFSET ( 8 )
+#else
+#define REG_NAND_DATA8_OFFSET ( 8 + 1 )
+#endif
+
+/****************************************************************************
+*
+* nand_hw_eccoob
+*
+* New oob placement block for use with hardware ecc generation.
+*
+***************************************************************************/
+#if NAND_ECC_BCH
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ .eccbytes = 13,
+ .eccpos = { 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+ // Reserve 5 for BI indicator
+ .oobfree = {
+ { .offset = 0, .length = 2 }}
+};
+
+// We treat the OOB for a 2K page as if it were 4 512 byte oobs, except the BI is at byte 0.
+
+static struct nand_ecclayout nand_hw_eccoob_2048 = {
+ .eccbytes = 52,
+ .eccpos = { 3,4,5,6,7,8,9,10,11,12,13,14,15,
+ 19,20,21,22,23,24,25,26,27,28,29,30,31,
+ 35,36,37,38,39,40,41,42,43,44,45,46,47,
+ 51,52,53,54,55,56,57,58,59,60,61,62,62 },
+ // Reserve 0 as BI indicator
+ .oobfree = {
+ { .offset = 1, .length = 2 },
+ { .offset = 16, .length = 3 },
+ { .offset = 32, .length = 3 },
+ { .offset = 48, .length = 3 }}
+};
+
+// We treat the OOB for a 4K page as if it were 8 512 byte oobs, except the BI is at byte 0.
+
+static struct nand_ecclayout nand_hw_eccoob_4096 = {
+ .eccbytes = 104,
+ .eccpos = { 3,4,5,6,7,8,9,10,11,12,13,14,15,
+#if 0
+ 19,20,21,22,23,24,25,26,27,28,29,30,31,
+ 35,36,37,38,39,40,41,42,43,44,45,46,47,
+ 51,52,53,54,55,56,57,58,59,60,61,62,62,
+ 67,68,69,70,71,72,73,74,75,76,77,78,79,
+ 83,84,85,86,87,88,89,90,91,92,93,94,95,
+ 99,100,101,102,103,104,105,106,107,108,109,110,111,
+#endif
+ 115,116,117,118,119,120,121,122,123,124,125,126,127 },
+ // Reserve 0 as BI indicator
+ .oobfree = {
+ { .offset = 1, .length = 2 },
+ { .offset = 16, .length = 3 },
+ { .offset = 32, .length = 3 },
+ { .offset = 48, .length = 3 },
+ { .offset = 64, .length = 3 },
+ { .offset = 80, .length = 3 },
+ { .offset = 96, .length = 3 },
+ { .offset = 112, .length = 3 }}
+};
+#else
+/* Hamming ECC */
+
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ .eccbytes = 3,
+ .eccpos = {6, 7, 8 },
+ // Reserve 0/1 and 10/11 as BI indicators for 16-bit flash
+ // Reserve 5 for 8-bit BI
+ // 6/7/8 are for ecc so this is all that's left
+ .oobfree = {
+ { .offset = 2, .length = 3},
+ { .offset = 9, .length = 1},
+ { .offset = 12, .length = 4 }}
+};
+
+// We treat the OOB for a 2K page as if it were 4 512 byte oobs, except that the ECC offset if 8 rather than 6.
+
+static struct nand_ecclayout nand_hw_eccoob_2048 = {
+ .eccbytes = 12,
+ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58 },
+ // Reserve 0/1 as BI indicators for 8/16-bit flash
+ // 8/9/10 are for ecc so this is all that's left
+ .oobfree = {
+ { .offset = 2, .length = 6},
+ { .offset = 11, .length = 13 },
+ { .offset = 27, .length = 13 },
+ { .offset = 43, .length = 13 },
+ { .offset = 59, .length = 5 }}
+};
+
+// We treat the OOB for a 4K page as if it were 8 512 byte oobs, except that the ECC offset if 8 rather than 6.
+
+static struct nand_ecclayout nand_hw_eccoob_4096 = {
+ .eccbytes = 24,
+ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58, 72, 73, 74, 88, 89, 90, 104, 105, 106, 120, 121, 122 },
+ // Reserve 0/1 as BI indicators for 8/16-bit flash
+ // 8/9/10 are for ecc so this is all that's left
+ .oobfree = {
+ { .offset = 2, .length = 6},
+ { .offset = 11, .length = 13 },
+ { .offset = 27, .length = 13 },
+ { .offset = 43, .length = 13 },
+ { .offset = 59, .length = 13 },
+ { .offset = 75, .length = 13 },
+ { .offset = 91, .length = 13 },
+ { .offset = 107, .length = 13 }}
+ //{ .offset = 123, .length = 5 }} It turns out nand_ecclayout only has space for 8 entries
+};
+#endif
+
+/*
+ * MTD structure for BCM UMI
+ */
+static struct mtd_info *board_mtd = NULL;
+static void __iomem *bcm_umi_io_base;
+
+// Preallocate a buffer to avoid having to do this every dma operation.
+// This is the size of the preallocated coherent DMA buffer.
+#define DMA_MIN_BUFLEN 512
+#define DMA_MAX_BUFLEN PAGE_SIZE
+#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN ) || ((len) > DMA_MAX_BUFLEN ))
+#if defined( CONFIG_ARCH_BCMRING )
+/*
+ * TODO: The current NAND data space goes from 0x80001900 to 0x80001FFF,
+ * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
+ * size NAND flash. Need to break the DMA down to multiple 1Ks.
+ *
+ * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
+ */
+#define DMA_MAX_LEN 1024
+#endif
+static void *virtPtr;
+static dma_addr_t physPtr;
+static struct completion nand_comp;
+
+/****************************************************************************
+*
+* Handler called when the DMA finishes.
+*
+***************************************************************************/
+
+static void nand_dma_handler( DMA_Device_t dev, int reason, void *userData )
+{
+ complete(&nand_comp);
+}
+
+/****************************************************************************
+*
+* Function to perform DMA initialization
+*
+***************************************************************************/
+
+static int nand_dma_init( void )
+{
+ int rc;
+
+ if (( rc = dma_set_device_handler( DMA_DEVICE_NAND_MEM_TO_MEM, nand_dma_handler, NULL )) != 0 )
+ {
+ printk( KERN_ERR "dma_set_device_handler failed: %d\n", rc );
+ return rc;
+ }
+
+ virtPtr = dma_alloc_coherent( NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL );
+ if ( virtPtr == NULL )
+ {
+ printk("NAND - Failed to allocate memory for DMA buffer\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* Function to perform DMA termination
+*
+***************************************************************************/
+
+static void nand_dma_term( void )
+{
+ if ( virtPtr != NULL )
+ {
+ dma_free_coherent( NULL, DMA_MAX_BUFLEN, virtPtr, physPtr );
+ }
+
+}
+
+/****************************************************************************
+*
+* Performs a read via DMA
+*
+***************************************************************************/
+
+static void nand_dma_read( void *buf, int len )
+{
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if ( virtPtr == NULL )
+ {
+ panic( "nand_dma_read: virtPtr == NULL\n" );
+ }
+ if ( (void *)physPtr == NULL )
+ {
+ panic( "nand_dma_read: physPtr == NULL\n" );
+ }
+ if (( hndl = dma_request_channel( DMA_DEVICE_NAND_MEM_TO_MEM )) < 0 )
+ {
+ printk( KERN_ERR "nand_dma_read: unable to allocate dma channel: %d\n", (int)hndl );
+ panic( "\n" );
+ }
+
+ while ( len_left > 0 )
+ {
+ if ( len_left > DMA_MAX_LEN )
+ {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ }
+ else
+ {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem( hndl, REG_NAND_DATA_PADDR, physPtr + offset, tmp_len );
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel( hndl );
+
+ if ( buf != NULL )
+ {
+ memcpy(buf, virtPtr, len);
+ }
+}
+
+/****************************************************************************
+*
+* Performs a write via DMA
+*
+***************************************************************************/
+
+static void nand_dma_write( const void *buf, int len )
+{
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if ( buf == NULL )
+ {
+ panic( "nand_dma_write: buf == NULL\n" );
+ }
+ if ( virtPtr == NULL )
+ {
+ panic( "nand_dma_write: virtPtr == NULL\n" );
+ }
+ if ( (void *)physPtr == NULL )
+ {
+ panic( "nand_dma_write: physPtr == NULL\n" );
+ }
+ memcpy( virtPtr, buf, len );
+
+ if (( hndl = dma_request_channel( DMA_DEVICE_NAND_MEM_TO_MEM )) < 0 )
+ {
+ printk( KERN_ERR "nand_dma_write: unable to allocate dma channel: %d\n", (int)hndl );
+ panic( "\n" );
+ }
+
+ while ( len_left > 0 )
+ {
+ if ( len_left > DMA_MAX_LEN )
+ {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ }
+ else
+ {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem( hndl, physPtr + offset, REG_NAND_DATA_PADDR, tmp_len );
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel( hndl );
+}
+
+/****************************************************************************
+*
+* nand_dev_raedy
+*
+* Routine to check if nand is ready.
+*
+***************************************************************************/
+static int nand_dev_ready(struct mtd_info* mtd)
+{
+ return nand_bcm_umi_dev_ready();
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_inithw
+*
+* This routine does the necessary hardware (board-specific)
+* initializations. This includes setting up the timings, etc.
+*
+***************************************************************************/
+
+int bcm_umi_nand_inithw( void )
+{
+ // Configure nand timing parameters
+ // Configure nand timing parameters
+ REG_UMI_NAND_TCR &= ~0x7ffff;
+ REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
+
+ REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; // enable software control of CS
+ REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; // keep NAND chip select asserted
+
+ REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
+ REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; //enable writes to flash
+
+ writel( NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET );
+ nand_bcm_umi_wait_till_ready();
+
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_config_ecc( NAND_ECC_NUM_BYTES );
+#endif
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_hwcontrol
+*
+* Used to turn latch the proper register for access.
+*
+***************************************************************************/
+
+static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ /* TODO: send command to hardware */
+ struct nand_chip *chip = mtd->priv;
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_CLE) {
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
+ goto CMD;
+ }
+ if (ctrl & NAND_ALE) {
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
+ goto CMD;
+ }
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ }
+
+CMD:
+ /* Send command to chip directly */
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, chip->IO_ADDR_W);
+
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_get_hw_ecc
+*
+* Used to get the hardware ECC.
+*
+***************************************************************************/
+
+static int bcm_umi_nand_get_hw_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+#if NAND_ECC_BCH
+ uint32_t eccVal;
+
+ if (REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC)
+ {
+ /* Don't calculate the ecc - it's a waste of time on reads */
+ }
+ else
+ {
+ /* wait for ECC to be valid */
+ nand_bcm_umi_bch_poll_write_ecc_calc();
+ /*
+ ** Get the hardware ecc from the 32-bit result registers.
+ ** Read after 512 byte accesses. Format B3B2B1B0
+ ** where B3 = ecc3, etc.
+ */
+ eccVal = REG_UMI_BCH_WR_ECC_3;
+ ecc_code[ 0 ] = eccVal & 0xff; /* ECC12 */
+ eccVal = REG_UMI_BCH_WR_ECC_2;
+ ecc_code[ 1 ] = (eccVal >> 24) & 0xff; /* ECC11 */
+ ecc_code[ 2 ] = (eccVal >> 16) & 0xff; /* ECC10 */
+ ecc_code[ 3 ] = (eccVal >> 8) & 0xff; /* ECC9 */
+ ecc_code[ 4 ] = eccVal & 0xff; /* ECC8 */
+ eccVal = REG_UMI_BCH_WR_ECC_1;
+ ecc_code[ 5 ] = (eccVal >> 24) & 0xff; /* ECC7 */
+ ecc_code[ 6 ] = (eccVal >> 16) & 0xff; /* ECC6 */
+ ecc_code[ 7 ] = (eccVal >> 8) & 0xff; /* ECC5 */
+ ecc_code[ 8 ] = eccVal & 0xff; /* ECC4 */
+ eccVal = REG_UMI_BCH_WR_ECC_0;
+ ecc_code[ 9 ] = (eccVal >> 24) & 0xff; /* ECC3 */
+ ecc_code[ 10 ] = (eccVal >> 16) & 0xff; /* ECC2 */
+ ecc_code[ 11 ] = (eccVal >> 8) & 0xff; /* ECC1 */
+ ecc_code[ 12 ] = eccVal & 0xff; /* ECC0 */
+ }
+#else
+ unsigned long ecc = REG_UMI_NAND_ECC_DATA;
+ ecc_code[2] = (ecc >> 16) & 0xff;
+ ecc_code[1] = (ecc >> 8) & 0xff;
+ ecc_code[0] = (ecc >> 0) & 0xff;
+#endif
+ (void)mtd;
+ (void)dat;
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_enable_hwecc
+*
+* Used to turn on hardware ECC.
+*
+***************************************************************************/
+
+static void bcm_umi_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ (void)mtd;
+ (void)mode;
+#if NAND_ECC_BCH
+ if (mode == NAND_ECC_READ)
+ nand_bcm_umi_bch_enable_read_hwecc();
+ else if (mode == NAND_ECC_WRITE)
+ nand_bcm_umi_bch_enable_write_hwecc();
+#else
+ nand_bcm_umi_hamming_enable_hwecc();
+#endif
+}
+
+/**
+ * bcm_umi_nand_write_buf - write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+//#if NAND_ECC_BCH
+// nand_bcm_umi_bch_enable_write_hwecc();
+//#endif
+ if ( USE_DIRECT_IO( len ))
+ {
+ // Do it the old way if the buffer is small or too large. Probably quicker than starting and checking dma.
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ {
+ writeb(buf[i], this->IO_ADDR_W);
+ }
+ }
+ else
+ {
+ nand_dma_write( buf, len );
+ }
+}
+
+/**
+ * nand_read_buf - read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+
+static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+#if NAND_ECC_BCH
+ if (len == 16)
+ {
+ /* We are reading the OOB */
+ int i = 0;
+ if ( mtd->writesize == 512) // writesize is the pagesize
+ {
+ /* skip CM */
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read from 2 to 4 */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+
+ /* read BI */
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read from 6 to nand_ecc_bch_total */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ /* Deduct 3 from total since 3 ECC bytes have been read already */
+ for (; i < 16; i++)
+ {
+ buf[i] = REG_NAND_DATA8;
+ }
+ }
+ else
+ {
+ /* skip BI */
+ buf[i++] = REG_NAND_DATA8;
+
+ /* skip CM */
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read ECC bytes */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ for ( ; i < 16; i++)
+ {
+ buf[i] = REG_NAND_DATA8;
+ }
+ }
+ }
+ else
+#endif
+ {
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_enable_read_hwecc();
+#endif
+ if ( USE_DIRECT_IO( len ))
+ {
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ {
+ buf[i] = readb(this->IO_ADDR_R);
+ }
+ }
+ else
+ {
+ nand_dma_read( buf, len );
+ }
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+#endif
+ }
+}
+
+/**
+ * bcm_umi_nand_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ if ( USE_DIRECT_IO( len ))
+ {
+ int i;
+ struct nand_chip *this = mtd->priv;
+ for (i=0; i<len; i++)
+ {
+ if (buf[i] != readb(this->IO_ADDR_R))
+ {
+ return -EFAULT;
+ }
+ }
+ }
+ else
+ {
+ nand_dma_read( NULL, len );
+ if ( memcmp( buf, virtPtr, len ) != 0 )
+ {
+ return -EFAULT;
+ }
+ }
+ return 0;
+}
+
+#if NAND_ECC_BCH
+static int nand_correct_bch(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ int result;
+
+ result = nand_bcm_umi_bch_correct_page( dat );
+
+ /* If the ECC is unprogrammed then we can't correct */
+ if (result != 0)
+ {
+ int i;
+
+ for (i = 0; i < NAND_ECC_NUM_BYTES; i++)
+ {
+ if (read_ecc[i] != 0xff)
+ {
+ return(result);
+ }
+ }
+ result = 0;
+ }
+ return result;
+}
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+static int bcm_umi_nand_probe(struct platform_device *pdev)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ printk( gBanner );
+
+ /* Allocate memory for MTD device structure and private data */
+ board_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
+ if (!board_mtd) {
+ printk (KERN_WARNING "Unable to allocate NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical adress */
+#ifdef CONFIG_ARCH_BCMRING
+ bcm_umi_io_base = ioremap(MM_ADDR_IO_NAND, 0x1000);
+#else
+ bcm_umi_io_base = ioremap(0x08000000, 0x1000);
+#endif
+
+ if(!bcm_umi_io_base){
+ printk("ioremap to access BCM UMI NAND chip failed\n");
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&board_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) board_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ board_mtd->priv = this;
+
+ /* Initialize the NAND hardware. */
+ if (bcm_umi_nand_inithw() < 0)
+ {
+ printk("BCM UMI NAND chip could not be initialized\n");
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+
+ /* Set command delay time, see datasheet for correct value */
+ this->chip_delay = 0;
+ /* Assign the device ready function, if available */
+ this->dev_ready = nand_dev_ready;
+ this->options = 0;
+
+ this->write_buf = bcm_umi_nand_write_buf;
+ this->read_buf = bcm_umi_nand_read_buf;
+ this->verify_buf = bcm_umi_nand_verify_buf;
+
+ this->cmd_ctrl = bcm_umi_nand_hwcontrol;
+#ifdef CONFIG_MTD_NAND_BCM_UMI_HWECC
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = NAND_ECC_NUM_BYTES;
+
+#if NAND_ECC_BCH
+ this->ecc.correct = nand_correct_bch;
+#else
+ this->ecc.correct = nand_correct_data512;
+#endif
+
+ this->ecc.calculate = bcm_umi_nand_get_hw_ecc;
+ this->ecc.hwctl = bcm_umi_nand_enable_hwecc;
+#else
+ this->ecc.mode = NAND_ECC_SOFT;
+#endif
+
+ if (( err = nand_dma_init() ) != 0 )
+ {
+ return err;
+ }
+
+ /* Figure out the size of the device that we have. We need to do this to figure out which ECC
+ * layout we'll be using. */
+
+ err = nand_scan_ident( board_mtd, 1 );
+ if (err)
+ {
+ printk( KERN_ERR "nand_scan failed: %d\n", err );
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ // Now that we know the nand size, we can setup the ECC layout
+
+#ifdef CONFIG_MTD_NAND_BCM_UMI_HWECC
+ switch ( board_mtd->writesize ) // writesize is the pagesize
+ {
+ case 4096: this->ecc.layout = &nand_hw_eccoob_4096; break;
+ case 2048: this->ecc.layout = &nand_hw_eccoob_2048; break;
+ case 512: this->ecc.layout = &nand_hw_eccoob_512; break;
+ default:
+ {
+ printk( KERN_ERR "NAND - Unrecognized pagesize: %d\n", board_mtd->writesize );
+ return -EINVAL;
+ }
+ }
+#endif
+
+ /* Now finish off the scan, now that ecc.layout has been initialized. */
+
+ err = nand_scan_tail( board_mtd );
+ if (err)
+ {
+ printk( KERN_ERR "nand_scan failed: %d\n", err );
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ /* Register the partitions */
+{
+ int nr_partitions;
+ struct mtd_partition* partition_info;
+
+ board_mtd->name = "bcm_umi-nand";
+ nr_partitions = parse_mtd_partitions(board_mtd, part_probes, &partition_info, 0);
+
+ if (nr_partitions <= 0)
+ {
+ printk("BCM UMI NAND: Too few partitions - %d\n", nr_partitions);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+ add_mtd_partitions( board_mtd, partition_info, nr_partitions );
+}
+
+ /* Return happy */
+ return 0;
+}
+
+static int bcm_umi_nand_remove(struct platform_device *pdev)
+{
+ nand_dma_term();
+
+ /* Release resources, unregister device */
+ nand_release(board_mtd);
+
+ /* unmap physical adress */
+ iounmap(bcm_umi_io_base);
+
+ /* Free the MTD device structure */
+ kfree(board_mtd);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int bcm_umi_nand_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ printk(KERN_ERR "MTD NAND suspend is being called\n");
+ return 0;
+}
+
+static int bcm_umi_nand_resume(struct platform_device *pdev)
+{
+ printk(KERN_ERR "MTD NAND resume is being called\n");
+ return 0;
+}
+#else
+#define bcm_umi_nand_suspend NULL
+#define bcm_umi_nand_resume NULL
+#endif
+
+static struct platform_driver nand_driver = {
+ .driver = {
+ .name = "bcm-nand",
+ .owner = THIS_MODULE,
+ },
+ .probe = bcm_umi_nand_probe,
+ .remove = bcm_umi_nand_remove,
+ .suspend = bcm_umi_nand_suspend,
+ .resume = bcm_umi_nand_resume,
+};
+
+static int __init nand_init(void)
+{
+ return platform_driver_register(&nand_driver);
+}
+
+static void __exit nand_exit(void)
+{
+ platform_driver_unregister(&nand_driver);
+}
+
+module_init(nand_init);
+module_exit(nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Broadcom");
+MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
diff --git a/drivers/mtd/nand/nand_calculate_ecc512.c b/drivers/mtd/nand/nand_calculate_ecc512.c
new file mode 100644
index 0000000..9beee0c
--- /dev/null
+++ b/drivers/mtd/nand/nand_calculate_ecc512.c
@@ -0,0 +1,269 @@
+/*****************************************************************************
+* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+
+
+//
+//---------------------------------------------------------------------------
+//
+// nand ecc calculation - only useful for mips cpu's that have no ECC
+// generation hardware.
+//---------------------------------------------------------------------------
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+//#include <linux/broadcom/knllog.h>
+
+/*****************************************************************************/
+/* */
+/* NAME */
+/* nand_calculate_ecc512 */
+/* DESCRIPTION */
+/* This function generates 3 byte ECC for 512 byte data. */
+/* (Software ECC) */
+/* PARAMETERS */
+/* pEcc the location where ECC should be stored */
+/* datapage given data */
+/* RETURN VALUES */
+/* none */
+/* */
+/*****************************************************************************/
+#define NAND_PG_SIZE 512
+
+
+// For efficiency reasons, process the data as 32-bit words, 4 bytes packed.
+// The words are grouped into blocks which helps us calculate parity regions.
+// The block size is set to 8 words so that we can calculate the larger
+// parity regions, which starts at P256, which needs 8 words. So for a
+// 512 byte page, we have to loop 16 times, 8 words per block to get 128 words,
+// or 512 bytes.
+#define NAND_PAGE_WORDS (NAND_PG_SIZE / 4)
+#define BYTES_PER_BLOCK 32
+#define WORDS_PER_BLOCK (BYTES_PER_BLOCK / 4)
+#define BLOCKS (NAND_PAGE_WORDS / WORDS_PER_BLOCK)
+
+// Patterns which capture blocks of bytes
+// of different sizes, when layed out as
+// 32 bit words. This is more efficient
+// than calculating parity on a byte by
+// byte basis.
+#define P16_PATTERN 0xffff0000
+#define P16P_PATTERN ~P16_PATTERN
+#define P8_PATTERN 0xff00ff00
+#define P8P_PATTERN ~P8_PATTERN
+#define P4_PATTERN 0xf0f0f0f0
+#define P4P_PATTERN ~P4_PATTERN
+#define P2_PATTERN 0xcccccccc
+#define P2P_PATTERN ~P2_PATTERN
+#define P1_PATTERN 0xaaaaaaaa
+#define P1P_PATTERN ~P1_PATTERN
+
+
+// These are bit positions within the largeBlockParity bitmap
+// for each corresponding pattern. D0 corresponds to the parity
+// of the first 32 byte block. D15 corresponds to the parity of
+// the last 32 byte block. Combinations of these bits can be
+// used to get the parity of each region.
+// 0 P256'
+// 1 P256 P512'
+// 2 P256'
+// 3 P256 P512 P1024'
+// 4 P256'
+// 5 P256 P512'
+// 6 P256'
+// 7 P256 P512' P1024
+// ...
+#define P256_PATTERN 0xaaaa
+#define P512_PATTERN 0xcccc
+#define P1024_PATTERN 0xf0f0
+#define P2048_PATTERN 0xff00
+#define P256P_PATTERN 0x5555
+#define P512P_PATTERN 0x3333
+#define P1024P_PATTERN 0x0f0f
+#define P2048P_PATTERN 0x00ff
+
+
+// Positions in the final ECC word
+#define P4 0x00800000
+#define P4P 0x00400000
+#define P2 0x00200000
+#define P2P 0x00100000
+#define P1 0x00080000
+#define P1P 0x00040000
+#define P2048 0x00020000
+#define P2048P 0x00010000
+#define P1024 0x00008000
+#define P1024P 0x00004000
+#define P512 0x00002000
+#define P512P 0x00001000
+#define P256 0x00000800
+#define P256P 0x00000400
+#define P128 0x00000200
+#define P128P 0x00000100
+#define P64 0x00000080
+#define P64P 0x00000040
+#define P32 0x00000020
+#define P32P 0x00000010
+#define P16 0x00000008
+#define P16P 0x00000004
+#define P8 0x00000002
+#define P8P 0x00000001
+
+struct mtd_info;
+
+const u_char parity_nibble[16] =
+{
+ 0, // 0
+ 1, // 1
+ 1, // 2
+ 0, // 3
+ 1, // 4
+ 0, // 5
+ 0, // 6
+ 1, // 7
+ 1, // 8
+ 0, // 9
+ 0, // 0xa
+ 1, // 0xb
+ 0, // 0xc
+ 1, // 0xd
+ 1, // 0xe
+ 0 // 0xf
+
+};
+
+typedef struct
+{
+ uint32_t largeBlockParities; // bitmap of parities for blocks 0-15
+ uint32_t pBlock; // parity of current block
+ uint32_t result; // runnning ecc result
+ uint32_t p16ByteBlockOdd; // 16 byte odd block parity
+ uint32_t p8ByteBlockOdd; // 8 byte odd block parity
+ uint32_t p4ByteBlockOdd; // 4 byte odd block parity
+ uint32_t p16ByteBlockEven; // 16 byte even block parity
+ uint32_t p8ByteBlockEven; // 8 byte even block parity
+ uint32_t p4ByteBlockEven; // 4 byte even block parity
+ uint32_t pFinal; // parity of 512 byte packet
+ uint32_t *wordp; // ptr to aligned start of packet
+}
+ECCINFO;
+
+// Calculate the parity of a word (xor all bits in the word)
+// Returns parity 0 or 1.
+static inline int wordParity(uint32_t word)
+{
+ uint32_t val;
+ val = (word >> 16) ^ word;
+ val = (val >> 8) ^ val;
+ val = (val >> 4) ^ val;
+ return parity_nibble[val & 0xf];
+
+}
+// Calculate the parity of a word and return the bitmask
+// if nonzero parity or zero if zero parity.
+static inline uint32_t calcEccBit(uint32_t word, uint32_t bitmask)
+{
+ return wordParity(word) ? bitmask : 0;
+}
+
+
+// Main ecc calculation routine
+int nand_calculate_ecc512(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ int blockidx; // 16 blocks of 8 longwords = 512 bytes
+ int wordidx; // index within each block 0-7
+ uint32_t alignedBuf[NAND_PG_SIZE/sizeof(uint32_t)];
+ ECCINFO ecc;
+
+ //KNLLOG("start\n");
+ memset(&ecc, 0, sizeof(ecc));
+
+ // Make sure the data is aligned.
+ ecc.wordp = (uint32_t *)dat;
+ if (((uint32_t)dat % 4) != 0)
+ {
+ memcpy((char *)alignedBuf, dat, NAND_PG_SIZE);
+ ecc.wordp = alignedBuf; // 32-bit operations more efficient
+ }
+
+ // The data needs to be in little-endian order for the ECC calculations
+ // so we have to swap it for big-endian architectures.
+ for (blockidx = 0; blockidx < BLOCKS; blockidx++)
+ {
+ ecc.pBlock = 0; // Reset the parity each block
+ for (wordidx = 0; wordidx < WORDS_PER_BLOCK; wordidx++)
+ {
+ uint32_t word = cpu_to_le32(*ecc.wordp++);
+ ecc.pBlock ^= word; // update the running word parity per block
+ ecc.p16ByteBlockEven ^= !(wordidx & 4) ? word : 0; // Every even block of 16 bytes
+ ecc.p8ByteBlockEven ^= !(wordidx & 2) ? word : 0; // Every even block of 8 bytes
+ ecc.p4ByteBlockEven ^= !(wordidx & 1) ? word : 0; // Every even block of 4 bytes
+ ecc.p16ByteBlockOdd ^= (wordidx & 4) ? word : 0; // Every odd block of 16 bytes
+ ecc.p8ByteBlockOdd ^= (wordidx & 2) ? word : 0; // Every odd block of 8 bytes
+ ecc.p4ByteBlockOdd ^= (wordidx & 1) ? word : 0; // Every odd block of 4 bytes
+ }
+ // pFinal is the total parity over all blocks and all data
+ ecc.pFinal ^= ecc.pBlock;
+
+ // If the word parity is set for this block, then update
+ // a bitmap that shows the parity over all 16 blocks.
+ if (wordParity(ecc.pBlock))
+ {
+ ecc.largeBlockParities |= (1<<blockidx);
+ }
+ }
+ // Calculate the 256/512/1024/2048 bit region parities
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P2048_PATTERN, P2048);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P1024_PATTERN, P1024);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P512_PATTERN, P512);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P256_PATTERN, P256);
+
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P2048P_PATTERN, P2048P);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P1024P_PATTERN, P1024P);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P512P_PATTERN, P512P);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P256P_PATTERN, P256P);
+
+ // Using the 32/64/128 bit region parities
+ ecc.result |= calcEccBit(ecc.p16ByteBlockOdd, P128);
+ ecc.result |= calcEccBit(ecc.p8ByteBlockOdd, P64);
+ ecc.result |= calcEccBit(ecc.p4ByteBlockOdd, P32);
+
+ ecc.result |= calcEccBit(ecc.p16ByteBlockEven, P128P);
+ ecc.result |= calcEccBit(ecc.p8ByteBlockEven, P64P);
+ ecc.result |= calcEccBit(ecc.p4ByteBlockEven, P32P);
+
+ // Calculate the column parities
+ ecc.result |= calcEccBit(ecc.pFinal & P16_PATTERN, P16);
+ ecc.result |= calcEccBit(ecc.pFinal & P8_PATTERN, P8);
+ ecc.result |= calcEccBit(ecc.pFinal & P4_PATTERN, P4);
+ ecc.result |= calcEccBit(ecc.pFinal & P2_PATTERN, P2);
+ ecc.result |= calcEccBit(ecc.pFinal & P1_PATTERN, P1);
+
+ ecc.result |= calcEccBit(ecc.pFinal & P16P_PATTERN, P16P);
+ ecc.result |= calcEccBit(ecc.pFinal & P8P_PATTERN, P8P);
+ ecc.result |= calcEccBit(ecc.pFinal & P4P_PATTERN, P4P);
+ ecc.result |= calcEccBit(ecc.pFinal & P2P_PATTERN, P2P);
+ ecc.result |= calcEccBit(ecc.pFinal & P1P_PATTERN, P1P);
+
+ // Invert the result
+ ecc.result = ~ecc.result;
+
+ // Fill in the return codes
+ ecc_code[0] = ecc.result & 0xff;
+ ecc_code[1] = (ecc.result >> 8) & 0xff;
+ ecc_code[2] = (ecc.result >> 16) & 0xff;
+
+ //KNLLOG("done ecc=%x\n", ecc.result & 0xffffff);
+ return 0;
+}
diff --git a/drivers/mtd/nand/nand_correct_data512.c b/drivers/mtd/nand/nand_correct_data512.c
new file mode 100644
index 0000000..69d36d1
--- /dev/null
+++ b/drivers/mtd/nand/nand_correct_data512.c
@@ -0,0 +1,163 @@
+/*****************************************************************************
+* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+
+
+//
+//---------------------------------------------------------------------------
+//
+// nand error control correction routines
+//---------------------------------------------------------------------------
+#include <linux/types.h>
+#include <linux/mtd/nand_ecc512.h>
+
+typedef union{
+ unsigned long mylword;
+ unsigned short myword[2];
+ unsigned char mybyte[4]; //MSB: byte[0]
+ struct{
+ unsigned int bit31:1;
+ unsigned int bit30:1;
+ unsigned int bit29:1;
+ unsigned int bit28:1;
+ unsigned int bit27:1;
+ unsigned int bit26:1;
+ unsigned int bit25:1;
+ unsigned int bit24:1;
+ unsigned int bit23:1;
+ unsigned int bit22:1;
+ unsigned int bit21:1;
+ unsigned int bit20:1;
+ unsigned int bit19:1;
+ unsigned int bit18:1;
+ unsigned int bit17:1;
+ unsigned int bit16:1;
+ unsigned int bit15:1;
+ unsigned int bit14:1;
+ unsigned int bit13:1;
+ unsigned int bit12:1;
+ unsigned int bit11:1;
+ unsigned int bit10:1;
+ unsigned int bit9:1;
+ unsigned int bit8:1;
+ unsigned int bit7:1;
+ unsigned int bit6:1;
+ unsigned int bit5:1;
+ unsigned int bit4:1;
+ unsigned int bit3:1;
+ unsigned int bit2:1;
+ unsigned int bit1:1;
+ unsigned int bit0:1;
+ } mybits;
+} UnionLW;
+
+typedef union{
+ unsigned char mybyte;
+ struct{
+ unsigned int bit7:1;
+ unsigned int bit6:1;
+ unsigned int bit5:1;
+ unsigned int bit4:1;
+ unsigned int bit3:1;
+ unsigned int bit2:1;
+ unsigned int bit1:1;
+ unsigned int bit0:1;
+ } mybits;
+} UnionB;
+
+/*****************************************************************************/
+/* */
+/* NAME */
+/* nand_correct_data512 */
+/* DESCRIPTION */
+/* This function compares two ECCs and indicates if there is an error. */
+/* PARAMETERS */
+/* read_ecc one ECC to be compared */
+/* calc_ecc the other ECC to be compared */
+/* dat content of data page */
+/* RETURN VALUES */
+/* Upon successful completion, compare_ecc returns 0. */
+/* Otherwise, corresponding error code is returned. */
+/* */
+/*****************************************************************************/
+int nand_correct_data512(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ unsigned short i,j,row,col;
+ UnionLW mylw;
+ unsigned short bitlen = 24; // e.g. 512 byte pages
+
+ u_char newval;
+
+ UnionLW orgecc;
+ UnionLW newecc;
+
+ orgecc.mylword = 0;
+ newecc.mylword = 0;
+
+ // Hardware register 00 ecc[2] ecc[1] ecc[0], MSB..LSB
+ // OOB form ecc[0] ecc[1] ecc[2]
+ // u_char form ecc[0] ecc[1] ecc[2]
+ orgecc.mybyte[1] = read_ecc[2]; // MSB
+ orgecc.mybyte[2] = read_ecc[1];
+ orgecc.mybyte[3] = read_ecc[0]; // LSB
+
+ newecc.mybyte[1] = calc_ecc[2];
+ newecc.mybyte[2] = calc_ecc[1];
+ newecc.mybyte[3] = calc_ecc[0];
+
+ mylw.mylword = orgecc.mylword ^ newecc.mylword;
+
+ // Quick check to avoid for loop below for normal no error case.
+ if (mylw.mylword == 0)
+ {
+ return 0; // No error
+ }
+
+ j = 0;
+ for(i = 0; i < bitlen; i ++)
+ {
+ if( (mylw.mylword >> i) & 1 )
+ {
+ j++;
+ }
+ }
+ if( j == 1 )
+ {
+ return 2; // ECC itself in error
+ }
+ if( j == (bitlen >> 1) )
+ {
+ row = mylw.mybits.bit1 +
+ (mylw.mybits.bit3 << 1) +
+ (mylw.mybits.bit5 << 2) +
+ (mylw.mybits.bit7 << 3) +
+ (mylw.mybits.bit9 << 4) +
+ (mylw.mybits.bit11 << 5) +
+ (mylw.mybits.bit13 << 6) +
+ (mylw.mybits.bit15 << 7) +
+ (mylw.mybits.bit17 << 8);
+
+ col = mylw.mybits.bit19 +
+ (mylw.mybits.bit21 << 1) +
+ (mylw.mybits.bit23 << 2);
+
+ newval = dat[row] ^ (1 << col);
+ /* printk("ECC: Replaced at offset 0x%x old=0x%x new=0x%x\n", row, dat[row], newval); */
+ dat[row] = newval;
+
+ return 1; // Corrected 1 error
+ }
+ return -1; // 2 or more errors - uncorrectible
+}
+
diff --git a/include/linux/mtd/nand_bcm_umi.h b/include/linux/mtd/nand_bcm_umi.h
new file mode 100644
index 0000000..11366a0
--- /dev/null
+++ b/include/linux/mtd/nand_bcm_umi.h
@@ -0,0 +1,236 @@
+/*****************************************************************************
+* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+#ifndef NAND_BCM_UMI_H
+#define NAND_BCM_UMI_H
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <mach/reg_umi.h>
+#include <cfg_global.h>
+#ifdef BOOT0_BUILD
+#include <uart.h>
+#endif
+
+/* ---- Constants and Types ---------------------------------------------- */
+#if ( CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING )
+#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
+#else
+#define NAND_ECC_BCH 0
+#endif
+
+/* ---- Variable Externs ------------------------------------------ */
+/* ---- Function Prototypes --------------------------------------- */
+
+static inline int nand_bcm_umi_dev_ready( void )
+{
+ return (REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY);
+}
+
+static inline void nand_bcm_umi_wait_till_ready( void )
+{
+ while ( nand_bcm_umi_dev_ready() == 0 )
+ {
+ ;
+ }
+}
+
+static inline void nand_bcm_umi_hamming_enable_hwecc(void)
+{
+ REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | REG_UMI_NAND_ECC_CSR_256BYTE); // disable and reset ECC, 512 byte page
+ REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; // enable ECC
+}
+
+#if NAND_ECC_BCH
+static inline void nand_bcm_umi_bch_enable_read_hwecc( void )
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+static inline void nand_bcm_umi_bch_enable_write_hwecc( void )
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
+}
+
+static inline void nand_bcm_umi_bch_config_ecc( uint8_t numEccBytes )
+{
+ int nValue;
+ int tValue;
+ int kValue;
+ int numBits = numEccBytes * 8;
+ #define ECC_BITS_PER_CORRECTABLE_BIT 13
+ #define NAND_DATA_ACCESS_SIZE 512
+
+ /* Every correctible bit requires 13 ECC bits */
+ tValue = (int)(numBits / ECC_BITS_PER_CORRECTABLE_BIT);
+
+ /* Total data in number of bits for generating and computing BCH ECC */
+ nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
+
+ /* K parameter is used internally. K = N - (T * 13) */
+ kValue = nValue - (tValue * 13);
+
+ /* Write the settings */
+ REG_UMI_BCH_N = nValue;
+ REG_UMI_BCH_T = tValue;
+ REG_UMI_BCH_K = kValue;
+
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+}
+
+static inline void nand_bcm_umi_bch_pause_read_ecc_calc( void )
+{
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
+}
+
+static inline void nand_bcm_umi_bch_resume_read_ecc_calc( void )
+{
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc( void )
+{
+ uint32_t regVal;
+
+ do
+ {
+ /* wait for ECC to be valid */
+ regVal = REG_UMI_BCH_CTRL_STATUS;
+ }
+ while ( (regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0 );
+
+ return (regVal);
+}
+
+static inline void nand_bcm_umi_bch_poll_write_ecc_calc( void )
+{
+ /* wait for ECC to be valid */
+ while ( (REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) == 0 );
+}
+
+/****************************************************************************
+* nand_bch_ecc_flip_bit - Routine to flip an errored bit
+*
+* PURPOSE:
+* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the
+* errored bit specified
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+* errorLocation - Location of the bit that needs to be flipped
+*
+* RETURNS:
+* None
+****************************************************************************/
+static inline void nand_bcm_umi_bch_ecc_flip_bit( uint8_t *datap, int errorLocation )
+{
+ int locWithinAByte = ( errorLocation & REG_UMI_BCH_ERR_LOC_BYTE ) >> 0;
+ int locWithinAWord = ( errorLocation & REG_UMI_BCH_ERR_LOC_WORD ) >> 3;
+ int locWithinAPage = ( errorLocation & REG_UMI_BCH_ERR_LOC_PAGE ) >> 5;
+
+ /* BCH uses big endian, need to change the location bits to little endian */
+ locWithinAWord = 3 - locWithinAWord;
+
+ uint8_t errorByte = 0;
+ uint8_t byteMask = 1 << locWithinAByte;
+
+ errorByte = datap[ locWithinAPage*sizeof(uint32_t) + locWithinAWord ];
+
+#ifdef BOOT0_BUILD
+ puthexs("\nECC Correct Offset: ", locWithinAPage*sizeof(uint32_t) + locWithinAWord );
+ puthexs( " errorByte:", errorByte );
+ puthex8( " Bit: ", locWithinAByte );
+#endif
+
+ if (errorByte & byteMask)
+ {
+ /* bit needs to be cleared */
+ errorByte &= ~byteMask;
+ }
+ else
+ {
+ /* bit needs to be set */
+ errorByte |= byteMask;
+ }
+
+ /* write back the value with the fixed bit */
+ datap[ locWithinAPage*sizeof(uint32_t) + locWithinAWord ] = errorByte;
+}
+
+/****************************************************************************
+* nand_correct_page_bch - Routine to correct bit errors when reading NAND
+*
+* PURPOSE:
+* This routine reads the BCH registers to determine if there are any bit
+* errors during the read of the last 512 bytes of data + ECC bytes. If
+* errors exists, the routine fixes it.
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+*
+* RETURNS:
+* 0 or greater = Number of errors corrected (No errors are found or errors have been fixed)
+* -1 = Error(s) cannot be fixed
+****************************************************************************/
+static inline int nand_bcm_umi_bch_correct_page( uint8_t *datap )
+{
+ int numErrors;
+ int errorLocation;
+ int idx;
+ uint32_t regValue;
+
+ /* wait for read ECC to be valid */
+ regValue = nand_bcm_umi_bch_poll_read_ecc_calc();
+
+ /* read the control status register to determine if there are error'ed bits */
+ /* see if errors are correctible */
+ if ( ( regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR ) > 0 )
+ {
+ /* errors cannot be fixed, return -1 */
+ return -1;
+ }
+
+ if ( ( regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR ) == 0 )
+ {
+ /* no errors */
+ return 0;
+ }
+
+ /*
+ * Fix errored bits by doing the following:
+ * 1. Read the number of errors in the control and status register
+ * 2. Read the error location registers that corresponds to the number
+ * of errors reported
+ * 3. Invert the bit in the data
+ */
+ numErrors = ( regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR ) >> 20;
+
+ for ( idx = 0; idx < numErrors; idx++ )
+ {
+ errorLocation = REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK;
+
+ /* Flip bit */
+ nand_bcm_umi_bch_ecc_flip_bit( datap, errorLocation );
+ }
+ /* Errors corrected */
+ return numErrors;
+}
+#endif
+
+#endif /* NAND_BCM_UMI_H */
diff --git a/include/linux/mtd/nand_ecc512.h b/include/linux/mtd/nand_ecc512.h
new file mode 100644
index 0000000..1b6f86c
--- /dev/null
+++ b/include/linux/mtd/nand_ecc512.h
@@ -0,0 +1,26 @@
+/*
+ * drivers/mtd/nand_ecc512.h
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This file is the header for the ECC algorithm.
+ */
+
+#ifndef __MTD_NAND_ECC512_H__
+#define __MTD_NAND_ECC512_H__
+
+struct mtd_info;
+
+/*
+ * Calculate 3 byte ECC code for 512 byte block
+ */
+int nand_calculate_ecc512(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+
+/*
+ * Detect and correct a 2 bit error for 512 byte block
+ */
+int nand_correct_data512(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC512_H__ */
--
1.6.0.6



Leo Hao Chen
Software Engineer
Broadcom Canada Inc.


--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/