[PATCH 17/18] bcmring nand driver
From: Leo Chen
Date: Fri Jul 03 2009 - 20:27:16 EST
add bcmring umi nand driver
with hardware ecc support
Signed-off-by: Leo Chen <leochen@xxxxxxxxxxxx>
---
drivers/mtd/nand/Kconfig | 16 +
drivers/mtd/nand/Makefile | 2 +
drivers/mtd/nand/nand_bcm_umi.c | 879 ++++++++++++++++++++++++++++++
drivers/mtd/nand/nand_calculate_ecc512.c | 254 +++++++++
drivers/mtd/nand/nand_correct_data512.c | 153 ++++++
include/linux/mtd/nand_bcm_umi.h | 235 ++++++++
include/linux/mtd/nand_ecc512.h | 26 +
7 files changed, 1565 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/nand_bcm_umi.c
create mode 100644 drivers/mtd/nand/nand_calculate_ecc512.c
create mode 100644 drivers/mtd/nand/nand_correct_data512.c
create mode 100644 include/linux/mtd/nand_bcm_umi.h
create mode 100644 include/linux/mtd/nand_ecc512.h
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index ce96c09..35a3f91 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -186,6 +186,22 @@ config MTD_NAND_S3C2410_CLKSTOP
when the is NAND chip selected or released, but will save
approximately 5mA of power when there is nothing happening.
+config MTD_NAND_BCM_UMI
+ tristate "NAND Flash support for BCM Reference Boards"
+ depends on ARCH_BCMRING && MTD_NAND
+ help
+ This enables the NAND flash controller on the BCM UMI block.
+
+ No board specfic support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_BCM_UMI_HWECC
+ bool "BCM UMI NAND Hardware ECC"
+ depends on MTD_NAND_BCM_UMI
+ help
+ Enable the use of the BCM UMI block's internal ECC generator when
+ using NAND.
+
config MTD_NAND_DISKONCHIP
tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
depends on EXPERIMENTAL
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index f3a786b..cfaaf38 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -40,5 +40,7 @@ obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
+obj-$(CONFIG_MTD_NAND_BCM_UMI) += nand_bcm_umi.o
+obj-$(CONFIG_MTD_NAND_BCM_UMI_HWECC) += nand_correct_data512.o nand_calculate_ecc512.o
nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c
new file mode 100644
index 0000000..0c75d19
--- /dev/null
+++ b/drivers/mtd/nand/nand_bcm_umi.c
@@ -0,0 +1,879 @@
+/*
+ * Copyright (c) 2005 Broadcom Corporation
+ *
+ * This driver was based on the sharpl NAND driver written by
+ * Richard Purdie. Their copyright is below.
+ * As such, this driver falls under the GPL license also below.
+ *
+ * Copyright (C) 2004 Richard Purdie
+ *
+ * Based on Sharp's NAND driver sharp_sl.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc512.h>
+#include <linux/mtd/nand_bcm_umi.h>
+
+#include <asm/io.h>
+#include <asm/mach-types.h>
+
+#include <mach/reg_nand.h>
+#include <mach/reg_umi.h>
+#include <mach/memory_settings.h>
+
+#if NAND_ECC_BCH
+#define NAND_ECC_NUM_BYTES 13
+#else
+#define NAND_ECC_NUM_BYTES 3
+#endif
+
+#include <mach/dma.h>
+#include <linux/dma-mapping.h>
+#include <linux/completion.h>
+
+static char gBanner[] __initdata = KERN_INFO "BCM UMI MTD NAND Driver: 1.00\n";
+
+/* Register offsets */
+#define REG_NAND_CMD_OFFSET (0)
+#define REG_NAND_ADDR_OFFSET (4)
+#ifndef __ARMEB__
+#define REG_NAND_DATA8_OFFSET (8)
+#else
+#define REG_NAND_DATA8_OFFSET (8 + 1)
+#endif
+
+/****************************************************************************
+*
+* nand_hw_eccoob
+*
+* New oob placement block for use with hardware ecc generation.
+*
+***************************************************************************/
+#if NAND_ECC_BCH
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ .eccbytes = 13,
+ .eccpos = {2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
+ /* Reserve 5 for BI indicator */
+ .oobfree = {
+ {.offset = 0, .length = 2}
+ }
+};
+
+/* We treat the OOB for a 2K page as if it were 4 512 byte oobs, except the BI is at byte 0. */
+
+static struct nand_ecclayout nand_hw_eccoob_2048 = {
+ .eccbytes = 52,
+ .eccpos = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 62},
+ /* Reserve 0 as BI indicator */
+ .oobfree = {
+ {.offset = 1, .length = 2},
+ {.offset = 16, .length = 3},
+ {.offset = 32, .length = 3},
+ {.offset = 48, .length = 3}
+ }
+};
+
+/* We treat the OOB for a 4K page as if it were 8 512 byte oobs, except the BI is at byte 0. */
+
+static struct nand_ecclayout nand_hw_eccoob_4096 = {
+ .eccbytes = 104,
+ .eccpos = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+#if 0
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 62,
+ 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ 111,
+#endif
+ 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
+ 127},
+ /* Reserve 0 as BI indicator */
+ .oobfree = {
+ {.offset = 1, .length = 2},
+ {.offset = 16, .length = 3},
+ {.offset = 32, .length = 3},
+ {.offset = 48, .length = 3},
+ {.offset = 64, .length = 3},
+ {.offset = 80, .length = 3},
+ {.offset = 96, .length = 3},
+ {.offset = 112, .length = 3}
+ }
+};
+#else
+/* Hamming ECC */
+
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ .eccbytes = 3,
+ .eccpos = {6, 7, 8},
+ /* Reserve 0/1 and 10/11 as BI indicators for 16-bit flash */
+ /* Reserve 5 for 8-bit BI */
+ /* 6/7/8 are for ecc so this is all that's left */
+ .oobfree = {
+ {.offset = 2, .length = 3},
+ {.offset = 9, .length = 1},
+ {.offset = 12, .length = 4}
+ }
+};
+
+/* We treat the OOB for a 2K page as if it were 4 512 byte oobs, except that the ECC offset if 8 rather than 6. */
+
+static struct nand_ecclayout nand_hw_eccoob_2048 = {
+ .eccbytes = 12,
+ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
+ /* Reserve 0/1 as BI indicators for 8/16-bit flash */
+ /* 8/9/10 are for ecc so this is all that's left */
+ .oobfree = {
+ {.offset = 2, .length = 6},
+ {.offset = 11, .length = 13},
+ {.offset = 27, .length = 13},
+ {.offset = 43, .length = 13},
+ {.offset = 59, .length = 5}
+ }
+};
+
+/* We treat the OOB for a 4K page as if it were 8 512 byte oobs, except that the ECC offset if 8 rather than 6. */
+
+static struct nand_ecclayout nand_hw_eccoob_4096 = {
+ .eccbytes = 24,
+ .eccpos =
+ {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58, 72, 73, 74, 88, 89,
+ 90, 104, 105, 106, 120, 121, 122},
+ /* Reserve 0/1 as BI indicators for 8/16-bit flash */
+ /* 8/9/10 are for ecc so this is all that's left */
+ .oobfree = {
+ {.offset = 2, .length = 6},
+ {.offset = 11, .length = 13},
+ {.offset = 27, .length = 13},
+ {.offset = 43, .length = 13},
+ {.offset = 59, .length = 13},
+ {.offset = 75, .length = 13},
+ {.offset = 91, .length = 13},
+ {.offset = 107, .length = 13}
+ }
+ /* .offset = 123, .length = 5 }} It turns out nand_ecclayout only has space for 8 entries */
+};
+#endif
+
+/*
+ * MTD structure for BCM UMI
+ */
+static struct mtd_info *board_mtd;
+static void __iomem *bcm_umi_io_base;
+
+/* Preallocate a buffer to avoid having to do this every dma operation. */
+/* This is the size of the preallocated coherent DMA buffer. */
+#define DMA_MIN_BUFLEN 512
+#define DMA_MAX_BUFLEN PAGE_SIZE
+#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || ((len) > DMA_MAX_BUFLEN))
+#if defined(CONFIG_ARCH_BCMRING)
+/*
+ * TODO: The current NAND data space goes from 0x80001900 to 0x80001FFF,
+ * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
+ * size NAND flash. Need to break the DMA down to multiple 1Ks.
+ *
+ * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
+ */
+#define DMA_MAX_LEN 1024
+#endif
+static void *virtPtr;
+static dma_addr_t physPtr;
+static struct completion nand_comp;
+
+/****************************************************************************
+*
+* Handler called when the DMA finishes.
+*
+***************************************************************************/
+
+static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
+{
+ complete(&nand_comp);
+}
+
+/****************************************************************************
+*
+* Function to perform DMA initialization
+*
+***************************************************************************/
+
+static int nand_dma_init(void)
+{
+ int rc;
+
+ rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, nand_dma_handler, NULL);
+ if (rc != 0) {
+ printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
+ return rc;
+ }
+
+ virtPtr =
+ dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
+ if (virtPtr == NULL) {
+ printk("NAND - Failed to allocate memory for DMA buffer\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* Function to perform DMA termination
+*
+***************************************************************************/
+
+static void nand_dma_term(void)
+{
+ if (virtPtr != NULL) {
+ dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
+ }
+
+}
+
+/****************************************************************************
+*
+* Performs a read via DMA
+*
+***************************************************************************/
+
+static void nand_dma_read(void *buf, int len)
+{
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if (virtPtr == NULL) {
+ panic("nand_dma_read: virtPtr == NULL\n");
+ }
+ if ((void *)physPtr == NULL) {
+ panic("nand_dma_read: physPtr == NULL\n");
+ }
+ hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
+ if (hndl < 0) {
+ printk(KERN_ERR
+ "nand_dma_read: unable to allocate dma channel: %d\n",
+ (int)hndl);
+ panic("\n");
+ }
+
+ while (len_left > 0) {
+ if (len_left > DMA_MAX_LEN) {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ } else {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
+ physPtr + offset, tmp_len);
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel(hndl);
+
+ if (buf != NULL) {
+ memcpy(buf, virtPtr, len);
+ }
+}
+
+/****************************************************************************
+*
+* Performs a write via DMA
+*
+***************************************************************************/
+
+static void nand_dma_write(const void *buf, int len)
+{
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if (buf == NULL) {
+ panic("nand_dma_write: buf == NULL\n");
+ }
+ if (virtPtr == NULL) {
+ panic("nand_dma_write: virtPtr == NULL\n");
+ }
+ if ((void *)physPtr == NULL) {
+ panic("nand_dma_write: physPtr == NULL\n");
+ }
+ memcpy(virtPtr, buf, len);
+
+ hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
+ if (hndl < 0) {
+ printk(KERN_ERR
+ "nand_dma_write: unable to allocate dma channel: %d\n",
+ (int)hndl);
+ panic("\n");
+ }
+
+ while (len_left > 0) {
+ if (len_left > DMA_MAX_LEN) {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ } else {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem(hndl, physPtr + offset,
+ REG_NAND_DATA_PADDR, tmp_len);
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel(hndl);
+}
+
+/****************************************************************************
+*
+* nand_dev_raedy
+*
+* Routine to check if nand is ready.
+*
+***************************************************************************/
+static int nand_dev_ready(struct mtd_info *mtd)
+{
+ return nand_bcm_umi_dev_ready();
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_inithw
+*
+* This routine does the necessary hardware (board-specific)
+* initializations. This includes setting up the timings, etc.
+*
+***************************************************************************/
+
+int bcm_umi_nand_inithw(void)
+{
+ /* Configure nand timing parameters */
+ /* Configure nand timing parameters */
+ REG_UMI_NAND_TCR &= ~0x7ffff;
+ REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
+
+ REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; /* enable software control of CS */
+ REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; /* keep NAND chip select asserted */
+
+ REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
+ REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; /* enable writes to flash */
+
+ writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
+ nand_bcm_umi_wait_till_ready();
+
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
+#endif
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_hwcontrol
+*
+* Used to turn latch the proper register for access.
+*
+***************************************************************************/
+
+static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ /* TODO: send command to hardware */
+ struct nand_chip *chip = mtd->priv;
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_CLE) {
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
+ goto CMD;
+ }
+ if (ctrl & NAND_ALE) {
+ chip->IO_ADDR_W =
+ bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
+ goto CMD;
+ }
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ }
+
+CMD:
+ /* Send command to chip directly */
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, chip->IO_ADDR_W);
+
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_get_hw_ecc
+*
+* Used to get the hardware ECC.
+*
+***************************************************************************/
+
+static int bcm_umi_nand_get_hw_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+#if NAND_ECC_BCH
+ uint32_t eccVal;
+
+ if (REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC) {
+ /* Don't calculate the ecc - it's a waste of time on reads */
+ } else {
+ /* wait for ECC to be valid */
+ nand_bcm_umi_bch_poll_write_ecc_calc();
+ /*
+ ** Get the hardware ecc from the 32-bit result registers.
+ ** Read after 512 byte accesses. Format B3B2B1B0
+ ** where B3 = ecc3, etc.
+ */
+ eccVal = REG_UMI_BCH_WR_ECC_3;
+ ecc_code[0] = eccVal & 0xff; /* ECC12 */
+ eccVal = REG_UMI_BCH_WR_ECC_2;
+ ecc_code[1] = (eccVal >> 24) & 0xff; /* ECC11 */
+ ecc_code[2] = (eccVal >> 16) & 0xff; /* ECC10 */
+ ecc_code[3] = (eccVal >> 8) & 0xff; /* ECC9 */
+ ecc_code[4] = eccVal & 0xff; /* ECC8 */
+ eccVal = REG_UMI_BCH_WR_ECC_1;
+ ecc_code[5] = (eccVal >> 24) & 0xff; /* ECC7 */
+ ecc_code[6] = (eccVal >> 16) & 0xff; /* ECC6 */
+ ecc_code[7] = (eccVal >> 8) & 0xff; /* ECC5 */
+ ecc_code[8] = eccVal & 0xff; /* ECC4 */
+ eccVal = REG_UMI_BCH_WR_ECC_0;
+ ecc_code[9] = (eccVal >> 24) & 0xff; /* ECC3 */
+ ecc_code[10] = (eccVal >> 16) & 0xff; /* ECC2 */
+ ecc_code[11] = (eccVal >> 8) & 0xff; /* ECC1 */
+ ecc_code[12] = eccVal & 0xff; /* ECC0 */
+ }
+#else
+ unsigned long ecc = REG_UMI_NAND_ECC_DATA;
+ ecc_code[2] = (ecc >> 16) & 0xff;
+ ecc_code[1] = (ecc >> 8) & 0xff;
+ ecc_code[0] = (ecc >> 0) & 0xff;
+#endif
+ (void)mtd;
+ (void)dat;
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_enable_hwecc
+*
+* Used to turn on hardware ECC.
+*
+***************************************************************************/
+
+static void bcm_umi_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ (void)mtd;
+ (void)mode;
+#if NAND_ECC_BCH
+ if (mode == NAND_ECC_READ)
+ nand_bcm_umi_bch_enable_read_hwecc();
+ else if (mode == NAND_ECC_WRITE)
+ nand_bcm_umi_bch_enable_write_hwecc();
+#else
+ nand_bcm_umi_hamming_enable_hwecc();
+#endif
+}
+
+/**
+ * bcm_umi_nand_write_buf - write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
+ int len)
+{
+ if (USE_DIRECT_IO(len)) {
+ /* Do it the old way if the buffer is small or too large. Probably quicker than starting and checking dma. */
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i = 0; i < len; i++) {
+ writeb(buf[i], this->IO_ADDR_W);
+ }
+ } else {
+ nand_dma_write(buf, len);
+ }
+}
+
+/**
+ * nand_read_buf - read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+
+static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
+{
+#if NAND_ECC_BCH
+ if (len == 16) {
+ /* We are reading the OOB */
+ int i = 0;
+ if (mtd->writesize == 512) { /* writesize is the pagesize */
+ /* skip CM */
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read from 2 to 4 */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+
+ /* read BI */
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read from 6 to nand_ecc_bch_total */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ /* Deduct 3 from total since 3 ECC bytes have been read already */
+ for (; i < 16; i++) {
+ buf[i] = REG_NAND_DATA8;
+ }
+ } else {
+ /* skip BI */
+ buf[i++] = REG_NAND_DATA8;
+
+ /* skip CM */
+ buf[i++] = REG_NAND_DATA8;
+ buf[i++] = REG_NAND_DATA8;
+
+ /* read ECC bytes */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ for (; i < 16; i++) {
+ buf[i] = REG_NAND_DATA8;
+ }
+ }
+ } else
+#endif
+ {
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_enable_read_hwecc();
+#endif
+ if (USE_DIRECT_IO(len)) {
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i = 0; i < len; i++) {
+ buf[i] = readb(this->IO_ADDR_R);
+ }
+ } else {
+ nand_dma_read(buf, len);
+ }
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+#endif
+ }
+}
+
+/**
+ * bcm_umi_nand_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
+ int len)
+{
+ if (USE_DIRECT_IO(len)) {
+ int i;
+ struct nand_chip *this = mtd->priv;
+ for (i = 0; i < len; i++) {
+ if (buf[i] != readb(this->IO_ADDR_R)) {
+ return -EFAULT;
+ }
+ }
+ } else {
+ nand_dma_read(NULL, len);
+ if (memcmp(buf, virtPtr, len) != 0) {
+ return -EFAULT;
+ }
+ }
+ return 0;
+}
+
+#if NAND_ECC_BCH
+static int nand_correct_bch(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ int result;
+
+ result = nand_bcm_umi_bch_correct_page(dat);
+
+ /* If the ECC is unprogrammed then we can't correct */
+ if (result != 0) {
+ int i;
+
+ for (i = 0; i < NAND_ECC_NUM_BYTES; i++) {
+ if (read_ecc[i] != 0xff) {
+ return result;
+ }
+ }
+ result = 0;
+ }
+ return result;
+}
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+static int bcm_umi_nand_probe(struct platform_device *pdev)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ printk(gBanner);
+
+ /* Allocate memory for MTD device structure and private data */
+ board_mtd =
+ kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
+ GFP_KERNEL);
+ if (!board_mtd) {
+ printk(KERN_WARNING
+ "Unable to allocate NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical adress */
+#ifdef CONFIG_ARCH_BCMRING
+ bcm_umi_io_base = ioremap(MM_ADDR_IO_NAND, 0x1000);
+#else
+ bcm_umi_io_base = ioremap(0x08000000, 0x1000);
+#endif
+
+ if (!bcm_umi_io_base) {
+ printk("ioremap to access BCM UMI NAND chip failed\n");
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *)(&board_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *)board_mtd, 0, sizeof(struct mtd_info));
+ memset((char *)this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ board_mtd->priv = this;
+
+ /* Initialize the NAND hardware. */
+ if (bcm_umi_nand_inithw() < 0) {
+ printk("BCM UMI NAND chip could not be initialized\n");
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+
+ /* Set command delay time, see datasheet for correct value */
+ this->chip_delay = 0;
+ /* Assign the device ready function, if available */
+ this->dev_ready = nand_dev_ready;
+ this->options = 0;
+
+ this->write_buf = bcm_umi_nand_write_buf;
+ this->read_buf = bcm_umi_nand_read_buf;
+ this->verify_buf = bcm_umi_nand_verify_buf;
+
+ this->cmd_ctrl = bcm_umi_nand_hwcontrol;
+#ifdef CONFIG_MTD_NAND_BCM_UMI_HWECC
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = NAND_ECC_NUM_BYTES;
+
+#if NAND_ECC_BCH
+ this->ecc.correct = nand_correct_bch;
+#else
+ this->ecc.correct = nand_correct_data512;
+#endif
+
+ this->ecc.calculate = bcm_umi_nand_get_hw_ecc;
+ this->ecc.hwctl = bcm_umi_nand_enable_hwecc;
+#else
+ this->ecc.mode = NAND_ECC_SOFT;
+#endif
+
+ err = nand_dma_init();
+ if (err != 0) {
+ return err;
+ }
+
+ /* Figure out the size of the device that we have. We need to do this to figure out which ECC
+ * layout we'll be using. */
+
+ err = nand_scan_ident(board_mtd, 1);
+ if (err) {
+ printk(KERN_ERR "nand_scan failed: %d\n", err);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ /* Now that we know the nand size, we can setup the ECC layout */
+
+#ifdef CONFIG_MTD_NAND_BCM_UMI_HWECC
+ switch (board_mtd->writesize) { /* writesize is the pagesize */
+ case 4096:
+ this->ecc.layout = &nand_hw_eccoob_4096;
+ break;
+ case 2048:
+ this->ecc.layout = &nand_hw_eccoob_2048;
+ break;
+ case 512:
+ this->ecc.layout = &nand_hw_eccoob_512;
+ break;
+ default:
+ {
+ printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
+ board_mtd->writesize);
+ return -EINVAL;
+ }
+ }
+#endif
+
+ /* Now finish off the scan, now that ecc.layout has been initialized. */
+
+ err = nand_scan_tail(board_mtd);
+ if (err) {
+ printk(KERN_ERR "nand_scan failed: %d\n", err);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ /* Register the partitions */
+ {
+ int nr_partitions;
+ struct mtd_partition *partition_info;
+
+ board_mtd->name = "bcm_umi-nand";
+ nr_partitions =
+ parse_mtd_partitions(board_mtd, part_probes,
+ &partition_info, 0);
+
+ if (nr_partitions <= 0) {
+ printk("BCM UMI NAND: Too few partitions - %d\n",
+ nr_partitions);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+ add_mtd_partitions(board_mtd, partition_info, nr_partitions);
+ }
+
+ /* Return happy */
+ return 0;
+}
+
+static int bcm_umi_nand_remove(struct platform_device *pdev)
+{
+ nand_dma_term();
+
+ /* Release resources, unregister device */
+ nand_release(board_mtd);
+
+ /* unmap physical adress */
+ iounmap(bcm_umi_io_base);
+
+ /* Free the MTD device structure */
+ kfree(board_mtd);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int bcm_umi_nand_suspend(struct platform_device *pdev,
+ pm_message_t state)
+{
+ printk(KERN_ERR "MTD NAND suspend is being called\n");
+ return 0;
+}
+
+static int bcm_umi_nand_resume(struct platform_device *pdev)
+{
+ printk(KERN_ERR "MTD NAND resume is being called\n");
+ return 0;
+}
+#else
+#define bcm_umi_nand_suspend NULL
+#define bcm_umi_nand_resume NULL
+#endif
+
+static struct platform_driver nand_driver = {
+ .driver = {
+ .name = "bcm-nand",
+ .owner = THIS_MODULE,
+ },
+ .probe = bcm_umi_nand_probe,
+ .remove = bcm_umi_nand_remove,
+ .suspend = bcm_umi_nand_suspend,
+ .resume = bcm_umi_nand_resume,
+};
+
+static int __init nand_init(void)
+{
+ return platform_driver_register(&nand_driver);
+}
+
+static void __exit nand_exit(void)
+{
+ platform_driver_unregister(&nand_driver);
+}
+
+module_init(nand_init);
+module_exit(nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Broadcom");
+MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
diff --git a/drivers/mtd/nand/nand_calculate_ecc512.c b/drivers/mtd/nand/nand_calculate_ecc512.c
new file mode 100644
index 0000000..7ead689
--- /dev/null
+++ b/drivers/mtd/nand/nand_calculate_ecc512.c
@@ -0,0 +1,254 @@
+/*****************************************************************************
+* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/*---------------------------------------------------------------------------*/
+/* nand ecc calculation - only useful for mips cpu's that have no ECC */
+/* generation hardware. */
+/*---------------------------------------------------------------------------*/
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+/*****************************************************************************/
+/* */
+/* NAME */
+/* nand_calculate_ecc512 */
+/* DESCRIPTION */
+/* This function generates 3 byte ECC for 512 byte data. */
+/* (Software ECC) */
+/* PARAMETERS */
+/* pEcc the location where ECC should be stored */
+/* datapage given data */
+/* RETURN VALUES */
+/* none */
+/* */
+/*****************************************************************************/
+#define NAND_PG_SIZE 512
+
+/* For efficiency reasons, process the data as 32-bit words, 4 bytes packed. */
+/* The words are grouped into blocks which helps us calculate parity regions. */
+/* The block size is set to 8 words so that we can calculate the larger */
+/* parity regions, which starts at P256, which needs 8 words. So for a */
+/* 512 byte page, we have to loop 16 times, 8 words per block to get 128 words, */
+/* or 512 bytes. */
+#define NAND_PAGE_WORDS (NAND_PG_SIZE / 4)
+#define BYTES_PER_BLOCK 32
+#define WORDS_PER_BLOCK (BYTES_PER_BLOCK / 4)
+#define BLOCKS (NAND_PAGE_WORDS / WORDS_PER_BLOCK)
+
+/* Patterns which capture blocks of bytes */
+/* of different sizes, when layed out as */
+/* 32 bit words. This is more efficient */
+/* than calculating parity on a byte by */
+/* byte basis. */
+#define P16_PATTERN 0xffff0000
+#define P16P_PATTERN (~P16_PATTERN)
+#define P8_PATTERN 0xff00ff00
+#define P8P_PATTERN (~P8_PATTERN)
+#define P4_PATTERN 0xf0f0f0f0
+#define P4P_PATTERN (~P4_PATTERN)
+#define P2_PATTERN 0xcccccccc
+#define P2P_PATTERN (~P2_PATTERN)
+#define P1_PATTERN 0xaaaaaaaa
+#define P1P_PATTERN (~P1_PATTERN)
+
+/* These are bit positions within the largeBlockParity bitmap */
+/* for each corresponding pattern. D0 corresponds to the parity */
+/* of the first 32 byte block. D15 corresponds to the parity of */
+/* the last 32 byte block. Combinations of these bits can be */
+/* used to get the parity of each region. */
+/* 0 P256' */
+/* 1 P256 P512' */
+/* 2 P256' */
+/* 3 P256 P512 P1024' */
+/* 4 P256' */
+/* 5 P256 P512' */
+/* 6 P256' */
+/* 7 P256 P512' P1024 */
+/* ... */
+#define P256_PATTERN 0xaaaa
+#define P512_PATTERN 0xcccc
+#define P1024_PATTERN 0xf0f0
+#define P2048_PATTERN 0xff00
+#define P256P_PATTERN 0x5555
+#define P512P_PATTERN 0x3333
+#define P1024P_PATTERN 0x0f0f
+#define P2048P_PATTERN 0x00ff
+
+/* Positions in the final ECC word */
+#define P4 0x00800000
+#define P4P 0x00400000
+#define P2 0x00200000
+#define P2P 0x00100000
+#define P1 0x00080000
+#define P1P 0x00040000
+#define P2048 0x00020000
+#define P2048P 0x00010000
+#define P1024 0x00008000
+#define P1024P 0x00004000
+#define P512 0x00002000
+#define P512P 0x00001000
+#define P256 0x00000800
+#define P256P 0x00000400
+#define P128 0x00000200
+#define P128P 0x00000100
+#define P64 0x00000080
+#define P64P 0x00000040
+#define P32 0x00000020
+#define P32P 0x00000010
+#define P16 0x00000008
+#define P16P 0x00000004
+#define P8 0x00000002
+#define P8P 0x00000001
+
+struct mtd_info;
+
+const u_char parity_nibble[16] = {
+ 0, /* 0 */
+ 1, /* 1 */
+ 1, /* 2 */
+ 0, /* 3 */
+ 1, /* 4 */
+ 0, /* 5 */
+ 0, /* 6 */
+ 1, /* 7 */
+ 1, /* 8 */
+ 0, /* 9 */
+ 0, /* 0xa */
+ 1, /* 0xb */
+ 0, /* 0xc */
+ 1, /* 0xd */
+ 1, /* 0xe */
+ 0 /* 0xf */
+};
+
+typedef struct {
+ uint32_t largeBlockParities; /* bitmap of parities for blocks 0-15 */
+ uint32_t pBlock; /* parity of current block */
+ uint32_t result; /* runnning ecc result */
+ uint32_t p16ByteBlockOdd; /* 16 byte odd block parity */
+ uint32_t p8ByteBlockOdd; /* 8 byte odd block parity */
+ uint32_t p4ByteBlockOdd; /* 4 byte odd block parity */
+ uint32_t p16ByteBlockEven; /* 16 byte even block parity */
+ uint32_t p8ByteBlockEven; /* 8 byte even block parity */
+ uint32_t p4ByteBlockEven; /* 4 byte even block parity */
+ uint32_t pFinal; /* parity of 512 byte packet */
+ uint32_t *wordp; /* ptr to aligned start of packet */
+} ECCINFO;
+
+/* Calculate the parity of a word (xor all bits in the word) */
+/* Returns parity 0 or 1. */
+static inline int wordParity(uint32_t word)
+{
+ uint32_t val;
+ val = (word >> 16) ^ word;
+ val = (val >> 8) ^ val;
+ val = (val >> 4) ^ val;
+ return parity_nibble[val & 0xf];
+
+}
+
+/* Calculate the parity of a word and return the bitmask */
+/* if nonzero parity or zero if zero parity. */
+static inline uint32_t calcEccBit(uint32_t word, uint32_t bitmask)
+{
+ return wordParity(word) ? bitmask : 0;
+}
+
+/* Main ecc calculation routine */
+int nand_calculate_ecc512(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ int blockidx; /* 16 blocks of 8 longwords = 512 bytes */
+ int wordidx; /* index within each block 0-7 */
+ uint32_t alignedBuf[NAND_PG_SIZE / sizeof(uint32_t)];
+ ECCINFO ecc;
+
+ memset(&ecc, 0, sizeof(ecc));
+
+ /* Make sure the data is aligned. */
+ ecc.wordp = (uint32_t *) dat;
+ if (((uint32_t) dat % 4) != 0) {
+ memcpy((char *)alignedBuf, dat, NAND_PG_SIZE);
+ ecc.wordp = alignedBuf; /* 32-bit operations more efficient */
+ }
+
+ /* The data needs to be in little-endian order for the ECC calculations */
+ /* so we have to swap it for big-endian architectures. */
+ for (blockidx = 0; blockidx < BLOCKS; blockidx++) {
+ ecc.pBlock = 0; /* Reset the parity each block */
+ for (wordidx = 0; wordidx < WORDS_PER_BLOCK; wordidx++) {
+ uint32_t word = cpu_to_le32(*ecc.wordp++);
+ ecc.pBlock ^= word; /* update the running word parity per block */
+ ecc.p16ByteBlockEven ^= !(wordidx & 4) ? word : 0; /* Every even block of 16 bytes */
+ ecc.p8ByteBlockEven ^= !(wordidx & 2) ? word : 0; /* Every even block of 8 bytes */
+ ecc.p4ByteBlockEven ^= !(wordidx & 1) ? word : 0; /* Every even block of 4 bytes */
+ ecc.p16ByteBlockOdd ^= (wordidx & 4) ? word : 0; /* Every odd block of 16 bytes */
+ ecc.p8ByteBlockOdd ^= (wordidx & 2) ? word : 0; /* Every odd block of 8 bytes */
+ ecc.p4ByteBlockOdd ^= (wordidx & 1) ? word : 0; /* Every odd block of 4 bytes */
+ }
+ /* pFinal is the total parity over all blocks and all data */
+ ecc.pFinal ^= ecc.pBlock;
+
+ /* If the word parity is set for this block, then update */
+ /* a bitmap that shows the parity over all 16 blocks. */
+ if (wordParity(ecc.pBlock)) {
+ ecc.largeBlockParities |= (1 << blockidx);
+ }
+ }
+ /* Calculate the 256/512/1024/2048 bit region parities */
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P2048_PATTERN, P2048);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P1024_PATTERN, P1024);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P512_PATTERN, P512);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P256_PATTERN, P256);
+
+ ecc.result |=
+ calcEccBit(ecc.largeBlockParities & P2048P_PATTERN, P2048P);
+ ecc.result |=
+ calcEccBit(ecc.largeBlockParities & P1024P_PATTERN, P1024P);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P512P_PATTERN, P512P);
+ ecc.result |= calcEccBit(ecc.largeBlockParities & P256P_PATTERN, P256P);
+
+ /* Using the 32/64/128 bit region parities */
+ ecc.result |= calcEccBit(ecc.p16ByteBlockOdd, P128);
+ ecc.result |= calcEccBit(ecc.p8ByteBlockOdd, P64);
+ ecc.result |= calcEccBit(ecc.p4ByteBlockOdd, P32);
+
+ ecc.result |= calcEccBit(ecc.p16ByteBlockEven, P128P);
+ ecc.result |= calcEccBit(ecc.p8ByteBlockEven, P64P);
+ ecc.result |= calcEccBit(ecc.p4ByteBlockEven, P32P);
+
+ /* Calculate the column parities */
+ ecc.result |= calcEccBit(ecc.pFinal & P16_PATTERN, P16);
+ ecc.result |= calcEccBit(ecc.pFinal & P8_PATTERN, P8);
+ ecc.result |= calcEccBit(ecc.pFinal & P4_PATTERN, P4);
+ ecc.result |= calcEccBit(ecc.pFinal & P2_PATTERN, P2);
+ ecc.result |= calcEccBit(ecc.pFinal & P1_PATTERN, P1);
+
+ ecc.result |= calcEccBit(ecc.pFinal & P16P_PATTERN, P16P);
+ ecc.result |= calcEccBit(ecc.pFinal & P8P_PATTERN, P8P);
+ ecc.result |= calcEccBit(ecc.pFinal & P4P_PATTERN, P4P);
+ ecc.result |= calcEccBit(ecc.pFinal & P2P_PATTERN, P2P);
+ ecc.result |= calcEccBit(ecc.pFinal & P1P_PATTERN, P1P);
+
+ /* Invert the result */
+ ecc.result = ~ecc.result;
+
+ /* Fill in the return codes */
+ ecc_code[0] = ecc.result & 0xff;
+ ecc_code[1] = (ecc.result >> 8) & 0xff;
+ ecc_code[2] = (ecc.result >> 16) & 0xff;
+
+ return 0;
+}
diff --git a/drivers/mtd/nand/nand_correct_data512.c b/drivers/mtd/nand/nand_correct_data512.c
new file mode 100644
index 0000000..084a83e
--- /dev/null
+++ b/drivers/mtd/nand/nand_correct_data512.c
@@ -0,0 +1,153 @@
+/*****************************************************************************
+* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/*---------------------------------------------------------------------------
+ *
+ * nand error control correction routines
+ *---------------------------------------------------------------------------*/
+#include <linux/types.h>
+#include <linux/mtd/nand_ecc512.h>
+
+typedef union {
+ unsigned long mylword;
+ unsigned short myword[2];
+ unsigned char mybyte[4]; /* MSB: byte[0] */
+ struct {
+ unsigned int bit31:1;
+ unsigned int bit30:1;
+ unsigned int bit29:1;
+ unsigned int bit28:1;
+ unsigned int bit27:1;
+ unsigned int bit26:1;
+ unsigned int bit25:1;
+ unsigned int bit24:1;
+ unsigned int bit23:1;
+ unsigned int bit22:1;
+ unsigned int bit21:1;
+ unsigned int bit20:1;
+ unsigned int bit19:1;
+ unsigned int bit18:1;
+ unsigned int bit17:1;
+ unsigned int bit16:1;
+ unsigned int bit15:1;
+ unsigned int bit14:1;
+ unsigned int bit13:1;
+ unsigned int bit12:1;
+ unsigned int bit11:1;
+ unsigned int bit10:1;
+ unsigned int bit9:1;
+ unsigned int bit8:1;
+ unsigned int bit7:1;
+ unsigned int bit6:1;
+ unsigned int bit5:1;
+ unsigned int bit4:1;
+ unsigned int bit3:1;
+ unsigned int bit2:1;
+ unsigned int bit1:1;
+ unsigned int bit0:1;
+ } mybits;
+} UnionLW;
+
+typedef union {
+ unsigned char mybyte;
+ struct {
+ unsigned int bit7:1;
+ unsigned int bit6:1;
+ unsigned int bit5:1;
+ unsigned int bit4:1;
+ unsigned int bit3:1;
+ unsigned int bit2:1;
+ unsigned int bit1:1;
+ unsigned int bit0:1;
+ } mybits;
+} UnionB;
+
+/*****************************************************************************/
+/* */
+/* NAME */
+/* nand_correct_data512 */
+/* DESCRIPTION */
+/* This function compares two ECCs and indicates if there is an error. */
+/* PARAMETERS */
+/* read_ecc one ECC to be compared */
+/* calc_ecc the other ECC to be compared */
+/* dat content of data page */
+/* RETURN VALUES */
+/* Upon successful completion, compare_ecc returns 0. */
+/* Otherwise, corresponding error code is returned. */
+/* */
+/*****************************************************************************/
+int nand_correct_data512(struct mtd_info *mtd, u_char *dat, u_char *read_ecc,
+ u_char *calc_ecc)
+{
+ unsigned short i, j, row, col;
+ UnionLW mylw;
+ unsigned short bitlen = 24; /* e.g. 512 byte pages */
+
+ u_char newval;
+
+ UnionLW orgecc;
+ UnionLW newecc;
+
+ orgecc.mylword = 0;
+ newecc.mylword = 0;
+
+ /* Hardware register 00 ecc[2] ecc[1] ecc[0], MSB..LSB */
+ /* OOB form ecc[0] ecc[1] ecc[2] */
+ /* u_char form ecc[0] ecc[1] ecc[2] */
+ orgecc.mybyte[1] = read_ecc[2]; /* MSB */
+ orgecc.mybyte[2] = read_ecc[1];
+ orgecc.mybyte[3] = read_ecc[0]; /* LSB */
+
+ newecc.mybyte[1] = calc_ecc[2];
+ newecc.mybyte[2] = calc_ecc[1];
+ newecc.mybyte[3] = calc_ecc[0];
+
+ mylw.mylword = orgecc.mylword ^ newecc.mylword;
+
+ /* Quick check to avoid for loop below for normal no error case. */
+ if (mylw.mylword == 0) {
+ return 0; /* No error */
+ }
+
+ j = 0;
+ for (i = 0; i < bitlen; i++) {
+ if ((mylw.mylword >> i) & 1) {
+ j++;
+ }
+ }
+ if (j == 1) {
+ return 2; /* ECC itself in error */
+ }
+ if (j == (bitlen >> 1)) {
+ row = mylw.mybits.bit1 +
+ (mylw.mybits.bit3 << 1) +
+ (mylw.mybits.bit5 << 2) +
+ (mylw.mybits.bit7 << 3) +
+ (mylw.mybits.bit9 << 4) +
+ (mylw.mybits.bit11 << 5) +
+ (mylw.mybits.bit13 << 6) +
+ (mylw.mybits.bit15 << 7) + (mylw.mybits.bit17 << 8);
+
+ col = mylw.mybits.bit19 +
+ (mylw.mybits.bit21 << 1) + (mylw.mybits.bit23 << 2);
+
+ newval = dat[row] ^ (1 << col);
+ /* printk("ECC: Replaced at offset 0x%x old=0x%x new=0x%x\n", row, dat[row], newval); */
+ dat[row] = newval;
+
+ return 1; /* Corrected 1 error */
+ }
+ return -1; /* 2 or more errors - uncorrectible */
+}
diff --git a/include/linux/mtd/nand_bcm_umi.h b/include/linux/mtd/nand_bcm_umi.h
new file mode 100644
index 0000000..ddbbbbf
--- /dev/null
+++ b/include/linux/mtd/nand_bcm_umi.h
@@ -0,0 +1,235 @@
+/*****************************************************************************
+* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+#ifndef NAND_BCM_UMI_H
+#define NAND_BCM_UMI_H
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <mach/reg_umi.h>
+#include <cfg_global.h>
+#ifdef BOOT0_BUILD
+#include <uart.h>
+#endif
+
+/* ---- Constants and Types ---------------------------------------------- */
+#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
+#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
+#else
+#define NAND_ECC_BCH 0
+#endif
+
+/* ---- Variable Externs ------------------------------------------ */
+/* ---- Function Prototypes --------------------------------------- */
+
+static inline int nand_bcm_umi_dev_ready(void)
+{
+ return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
+}
+
+static inline void nand_bcm_umi_wait_till_ready(void)
+{
+ while (nand_bcm_umi_dev_ready() == 0) {
+ ;
+ }
+}
+
+static inline void nand_bcm_umi_hamming_enable_hwecc(void)
+{
+ REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | REG_UMI_NAND_ECC_CSR_256BYTE); /* disable and reset ECC, 512 byte page */
+ REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; /* enable ECC */
+}
+
+#if NAND_ECC_BCH
+static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
+}
+
+static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
+{
+ int nValue;
+ int tValue;
+ int kValue;
+ int numBits = numEccBytes * 8;
+#define ECC_BITS_PER_CORRECTABLE_BIT 13
+#define NAND_DATA_ACCESS_SIZE 512
+
+ /* Every correctible bit requires 13 ECC bits */
+ tValue = (int)(numBits / ECC_BITS_PER_CORRECTABLE_BIT);
+
+ /* Total data in number of bits for generating and computing BCH ECC */
+ nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
+
+ /* K parameter is used internally. K = N - (T * 13) */
+ kValue = nValue - (tValue * 13);
+
+ /* Write the settings */
+ REG_UMI_BCH_N = nValue;
+ REG_UMI_BCH_T = tValue;
+ REG_UMI_BCH_K = kValue;
+
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS =
+ REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
+ REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+}
+
+static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
+{
+ REG_UMI_BCH_CTRL_STATUS =
+ REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
+ REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
+}
+
+static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
+{
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
+{
+ uint32_t regVal;
+
+ do {
+ /* wait for ECC to be valid */
+ regVal = REG_UMI_BCH_CTRL_STATUS;
+ } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
+
+ return regVal;
+}
+
+static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
+{
+ /* wait for ECC to be valid */
+ while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) == 0)
+ ;
+}
+
+/****************************************************************************
+* nand_bch_ecc_flip_bit - Routine to flip an errored bit
+*
+* PURPOSE:
+* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the
+* errored bit specified
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+* errorLocation - Location of the bit that needs to be flipped
+*
+* RETURNS:
+* None
+****************************************************************************/
+static inline void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap,
+ int errorLocation)
+{
+ int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0;
+ int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3;
+ int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5;
+
+ /* BCH uses big endian, need to change the location bits to little endian */
+ locWithinAWord = 3 - locWithinAWord;
+
+ uint8_t errorByte = 0;
+ uint8_t byteMask = 1 << locWithinAByte;
+
+ errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord];
+
+#ifdef BOOT0_BUILD
+ puthexs("\nECC Correct Offset: ",
+ locWithinAPage * sizeof(uint32_t) + locWithinAWord);
+ puthexs(" errorByte:", errorByte);
+ puthex8(" Bit: ", locWithinAByte);
+#endif
+
+ if (errorByte & byteMask) {
+ /* bit needs to be cleared */
+ errorByte &= ~byteMask;
+ } else {
+ /* bit needs to be set */
+ errorByte |= byteMask;
+ }
+
+ /* write back the value with the fixed bit */
+ datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte;
+}
+
+/****************************************************************************
+* nand_correct_page_bch - Routine to correct bit errors when reading NAND
+*
+* PURPOSE:
+* This routine reads the BCH registers to determine if there are any bit
+* errors during the read of the last 512 bytes of data + ECC bytes. If
+* errors exists, the routine fixes it.
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+*
+* RETURNS:
+* 0 or greater = Number of errors corrected (No errors are found or errors have been fixed)
+* -1 = Error(s) cannot be fixed
+****************************************************************************/
+static inline int nand_bcm_umi_bch_correct_page(uint8_t *datap)
+{
+ int numErrors;
+ int errorLocation;
+ int idx;
+ uint32_t regValue;
+
+ /* wait for read ECC to be valid */
+ regValue = nand_bcm_umi_bch_poll_read_ecc_calc();
+
+ /* read the control status register to determine if there are error'ed bits */
+ /* see if errors are correctible */
+ if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) {
+ /* errors cannot be fixed, return -1 */
+ return -1;
+ }
+
+ if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) {
+ /* no errors */
+ return 0;
+ }
+
+ /*
+ * Fix errored bits by doing the following:
+ * 1. Read the number of errors in the control and status register
+ * 2. Read the error location registers that corresponds to the number
+ * of errors reported
+ * 3. Invert the bit in the data
+ */
+ numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20;
+
+ for (idx = 0; idx < numErrors; idx++) {
+ errorLocation =
+ REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK;
+
+ /* Flip bit */
+ nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation);
+ }
+ /* Errors corrected */
+ return numErrors;
+}
+#endif
+
+#endif /* NAND_BCM_UMI_H */
diff --git a/include/linux/mtd/nand_ecc512.h b/include/linux/mtd/nand_ecc512.h
new file mode 100644
index 0000000..1b6f86c
--- /dev/null
+++ b/include/linux/mtd/nand_ecc512.h
@@ -0,0 +1,26 @@
+/*
+ * drivers/mtd/nand_ecc512.h
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This file is the header for the ECC algorithm.
+ */
+
+#ifndef __MTD_NAND_ECC512_H__
+#define __MTD_NAND_ECC512_H__
+
+struct mtd_info;
+
+/*
+ * Calculate 3 byte ECC code for 512 byte block
+ */
+int nand_calculate_ecc512(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+
+/*
+ * Detect and correct a 2 bit error for 512 byte block
+ */
+int nand_correct_data512(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC512_H__ */
--
1.6.0.6
Leo Hao Chen
Software Engineer
Broadcom Canada Inc.
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/