Re: [patch v2] slab: add memory hotplug support

From: Pekka Enberg
Date: Tue Mar 30 2010 - 05:01:49 EST


On Sun, Mar 28, 2010 at 5:40 AM, David Rientjes <rientjes@xxxxxxxxxx> wrote:
> Slab lacks any memory hotplug support for nodes that are hotplugged
> without cpus being hotplugged.  This is possible at least on x86
> CONFIG_MEMORY_HOTPLUG_SPARSE kernels where SRAT entries are marked
> ACPI_SRAT_MEM_HOT_PLUGGABLE and the regions of RAM represent a seperate
> node.  It can also be done manually by writing the start address to
> /sys/devices/system/memory/probe for kernels that have
> CONFIG_ARCH_MEMORY_PROBE set, which is how this patch was tested, and
> then onlining the new memory region.
>
> When a node is hotadded, a nodelist for that node is allocated and
> initialized for each slab cache.  If this isn't completed due to a lack
> of memory, the hotadd is aborted: we have a reasonable expectation that
> kmalloc_node(nid) will work for all caches if nid is online and memory is
> available.
>
> Since nodelists must be allocated and initialized prior to the new node's
> memory actually being online, the struct kmem_list3 is allocated off-node
> due to kmalloc_node()'s fallback.
>
> When an entire node would be offlined, its nodelists are subsequently
> drained.  If slab objects still exist and cannot be freed, the offline is
> aborted.  It is possible that objects will be allocated between this
> drain and page isolation, so it's still possible that the offline will
> still fail, however.
>
> Signed-off-by: David Rientjes <rientjes@xxxxxxxxxx>

Nick, Christoph, lets make a a deal: you ACK, I merge. How does that
sound to you?

> ---
>  mm/slab.c |  157 ++++++++++++++++++++++++++++++++++++++++++++++++------------
>  1 files changed, 125 insertions(+), 32 deletions(-)
>
> diff --git a/mm/slab.c b/mm/slab.c
> --- a/mm/slab.c
> +++ b/mm/slab.c
> @@ -115,6 +115,7 @@
>  #include       <linux/reciprocal_div.h>
>  #include       <linux/debugobjects.h>
>  #include       <linux/kmemcheck.h>
> +#include       <linux/memory.h>
>
>  #include       <asm/cacheflush.h>
>  #include       <asm/tlbflush.h>
> @@ -1102,6 +1103,52 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
>  }
>  #endif
>
> +/*
> + * Allocates and initializes nodelists for a node on each slab cache, used for
> + * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
> + * will be allocated off-node since memory is not yet online for the new node.
> + * When hotplugging memory or a cpu, existing nodelists are not replaced if
> + * already in use.
> + *
> + * Must hold cache_chain_mutex.
> + */
> +static int init_cache_nodelists_node(int node)
> +{
> +       struct kmem_cache *cachep;
> +       struct kmem_list3 *l3;
> +       const int memsize = sizeof(struct kmem_list3);
> +
> +       list_for_each_entry(cachep, &cache_chain, next) {
> +               /*
> +                * Set up the size64 kmemlist for cpu before we can
> +                * begin anything. Make sure some other cpu on this
> +                * node has not already allocated this
> +                */
> +               if (!cachep->nodelists[node]) {
> +                       l3 = kmalloc_node(memsize, GFP_KERNEL, node);
> +                       if (!l3)
> +                               return -ENOMEM;
> +                       kmem_list3_init(l3);
> +                       l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
> +                           ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
> +
> +                       /*
> +                        * The l3s don't come and go as CPUs come and
> +                        * go.  cache_chain_mutex is sufficient
> +                        * protection here.
> +                        */
> +                       cachep->nodelists[node] = l3;
> +               }
> +
> +               spin_lock_irq(&cachep->nodelists[node]->list_lock);
> +               cachep->nodelists[node]->free_limit =
> +                       (1 + nr_cpus_node(node)) *
> +                       cachep->batchcount + cachep->num;
> +               spin_unlock_irq(&cachep->nodelists[node]->list_lock);
> +       }
> +       return 0;
> +}
> +
>  static void __cpuinit cpuup_canceled(long cpu)
>  {
>        struct kmem_cache *cachep;
> @@ -1172,7 +1219,7 @@ static int __cpuinit cpuup_prepare(long cpu)
>        struct kmem_cache *cachep;
>        struct kmem_list3 *l3 = NULL;
>        int node = cpu_to_node(cpu);
> -       const int memsize = sizeof(struct kmem_list3);
> +       int err;
>
>        /*
>         * We need to do this right in the beginning since
> @@ -1180,35 +1227,9 @@ static int __cpuinit cpuup_prepare(long cpu)
>         * kmalloc_node allows us to add the slab to the right
>         * kmem_list3 and not this cpu's kmem_list3
>         */
> -
> -       list_for_each_entry(cachep, &cache_chain, next) {
> -               /*
> -                * Set up the size64 kmemlist for cpu before we can
> -                * begin anything. Make sure some other cpu on this
> -                * node has not already allocated this
> -                */
> -               if (!cachep->nodelists[node]) {
> -                       l3 = kmalloc_node(memsize, GFP_KERNEL, node);
> -                       if (!l3)
> -                               goto bad;
> -                       kmem_list3_init(l3);
> -                       l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
> -                           ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
> -
> -                       /*
> -                        * The l3s don't come and go as CPUs come and
> -                        * go.  cache_chain_mutex is sufficient
> -                        * protection here.
> -                        */
> -                       cachep->nodelists[node] = l3;
> -               }
> -
> -               spin_lock_irq(&cachep->nodelists[node]->list_lock);
> -               cachep->nodelists[node]->free_limit =
> -                       (1 + nr_cpus_node(node)) *
> -                       cachep->batchcount + cachep->num;
> -               spin_unlock_irq(&cachep->nodelists[node]->list_lock);
> -       }
> +       err = init_cache_nodelists_node(node);
> +       if (err < 0)
> +               goto bad;
>
>        /*
>         * Now we can go ahead with allocating the shared arrays and
> @@ -1331,11 +1352,75 @@ static struct notifier_block __cpuinitdata cpucache_notifier = {
>        &cpuup_callback, NULL, 0
>  };
>
> +#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
> +/*
> + * Drains freelist for a node on each slab cache, used for memory hot-remove.
> + * Returns -EBUSY if all objects cannot be drained so that the node is not
> + * removed.
> + *
> + * Must hold cache_chain_mutex.
> + */
> +static int __meminit drain_cache_nodelists_node(int node)
> +{
> +       struct kmem_cache *cachep;
> +       int ret = 0;
> +
> +       list_for_each_entry(cachep, &cache_chain, next) {
> +               struct kmem_list3 *l3;
> +
> +               l3 = cachep->nodelists[node];
> +               if (!l3)
> +                       continue;
> +
> +               drain_freelist(cachep, l3, l3->free_objects);
> +
> +               if (!list_empty(&l3->slabs_full) ||
> +                   !list_empty(&l3->slabs_partial)) {
> +                       ret = -EBUSY;
> +                       break;
> +               }
> +       }
> +       return ret;
> +}
> +
> +static int __meminit slab_memory_callback(struct notifier_block *self,
> +                                       unsigned long action, void *arg)
> +{
> +       struct memory_notify *mnb = arg;
> +       int ret = 0;
> +       int nid;
> +
> +       nid = mnb->status_change_nid;
> +       if (nid < 0)
> +               goto out;
> +
> +       switch (action) {
> +       case MEM_GOING_ONLINE:
> +               mutex_lock(&cache_chain_mutex);
> +               ret = init_cache_nodelists_node(nid);
> +               mutex_unlock(&cache_chain_mutex);
> +               break;
> +       case MEM_GOING_OFFLINE:
> +               mutex_lock(&cache_chain_mutex);
> +               ret = drain_cache_nodelists_node(nid);
> +               mutex_unlock(&cache_chain_mutex);
> +               break;
> +       case MEM_ONLINE:
> +       case MEM_OFFLINE:
> +       case MEM_CANCEL_ONLINE:
> +       case MEM_CANCEL_OFFLINE:
> +               break;
> +       }
> +out:
> +       return ret ? notifier_from_errno(ret) : NOTIFY_OK;
> +}
> +#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
> +
>  /*
>  * swap the static kmem_list3 with kmalloced memory
>  */
> -static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
> -                       int nodeid)
> +static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
> +                               int nodeid)
>  {
>        struct kmem_list3 *ptr;
>
> @@ -1580,6 +1665,14 @@ void __init kmem_cache_init_late(void)
>         */
>        register_cpu_notifier(&cpucache_notifier);
>
> +#ifdef CONFIG_NUMA
> +       /*
> +        * Register a memory hotplug callback that initializes and frees
> +        * nodelists.
> +        */
> +       hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
> +#endif
> +
>        /*
>         * The reap timers are started later, with a module init call: That part
>         * of the kernel is not yet operational.
> --
> To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
> the body of a message to majordomo@xxxxxxxxxxxxxxx
> More majordomo info at  http://vger.kernel.org/majordomo-info.html
> Please read the FAQ at  http://www.tux.org/lkml/
>
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/