Re: [PATCH] arch/tile: Enable more sophisticated IRQ model for 32-bitchips.
From: Chris Metcalf
Date: Fri Jun 25 2010 - 17:32:35 EST
On 6/25/2010 5:22 PM, Thomas Gleixner wrote:
> [...]
> can you please cc me on irq related changes ? Also I'd prefer a combo
> patch of the irq code which lets me see the full story w/o going to
> pull another git tree from somewhere.
Sure, I'll cc you going forward.
What kind of combo patch did you have in mind? Do you just want copies
of the arch/tile files relevant to irqs? I've attached irq.h and irq.c
to this email; the rest (e.g. smp.c) is pretty minimal and probably best
viewed in the diff context anyway.
I figured since the first round of tile-architecture changes has been
signed off on and is in linux-next, I should treat that as a baseline
when sending additional patches to LKML going forward. Maybe I'm
confused :-)
Thanks in advance for your review and any patch-process clarification
you can offer.
--
Chris Metcalf, Tilera Corp.
http://www.tilera.com
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _ASM_TILE_IRQ_H
#define _ASM_TILE_IRQ_H
#include <linux/hardirq.h>
/* The hypervisor interface provides 32 IRQs. */
#define NR_IRQS 32
/* IRQ numbers used for linux IPIs. */
#define IRQ_RESCHEDULE 1
void ack_bad_irq(unsigned int irq);
/*
* Different ways of handling interrupts. Tile interrupts are always
* per-cpu; there is no global interrupt controller to implement
* enable/disable. Most onboard devices can send their interrupts to
* many tiles at the same time, and Tile-specific drivers know how to
* deal with this.
*
* However, generic devices (usually PCIE based, sometimes GPIO)
* expect that interrupts will fire on a single core at a time and
* that the irq can be enabled or disabled from any core at any time.
* We implement this by directing such interrupts to a single core.
*
* One added wrinkle is that PCI interrupts can be either
* hardware-cleared (legacy interrupts) or software cleared (MSI).
* Other generic device systems (GPIO) are always software-cleared.
*
* The enums below are used by drivers for onboard devices, including
* the internals of PCI root complex and GPIO. They allow the driver
* to tell the generic irq code what kind of interrupt is mapped to a
* particular IRQ number.
*/
enum {
/* per-cpu interrupt; use enable/disable_percpu_irq() to mask */
TILE_IRQ_PERCPU,
/* global interrupt, hardware responsible for clearing. */
TILE_IRQ_HW_CLEAR,
/* global interrupt, software responsible for clearing. */
TILE_IRQ_SW_CLEAR,
};
/*
* Paravirtualized drivers should call this when they dynamically
* allocate a new IRQ or discover an IRQ that was pre-allocated by the
* hypervisor for use with their particular device. This gives the
* IRQ subsystem an opportunity to do interrupt-type-specific
* initialization.
*
* ISSUE: We should modify this API so that registering anything
* except percpu interrupts also requires providing callback methods
* for enabling and disabling the interrupt. This would allow the
* generic IRQ code to proxy enable/disable_irq() calls back into the
* PCI subsystem, which in turn could enable or disable the interrupt
* at the PCI shim.
*/
void tile_irq_activate(unsigned int irq, int tile_irq_type);
/*
* For onboard, non-PCI (e.g. TILE_IRQ_PERCPU) devices, drivers know
* how to use enable/disable_percpu_irq() to manage interrupts on each
* core. We can't use the generic enable/disable_irq() because they
* use a single reference count per irq, rather than per cpu per irq.
*/
void enable_percpu_irq(unsigned int irq);
void disable_percpu_irq(unsigned int irq);
void setup_irq_regs(void);
#endif /* _ASM_TILE_IRQ_H */
/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/uaccess.h>
#include <hv/drv_pcie_rc_intf.h>
#include <arch/spr_def.h>
#include <asm/traps.h>
/* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
#define IS_HW_CLEARED 1
/*
* The set of interrupts we enable for raw_local_irq_enable().
* This is initialized to have just a single interrupt that the kernel
* doesn't actually use as a sentinel. During kernel init,
* interrupts are added as the kernel gets prepared to support them.
* NOTE: we could probably initialize them all statically up front.
*/
DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
INITIAL_INTERRUPTS_ENABLED;
EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
/* Define per-tile device interrupt statistics state. */
DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
EXPORT_PER_CPU_SYMBOL(irq_stat);
/*
* Define per-tile irq disable mask; the hardware/HV only has a single
* mask that we use to implement both masking and disabling.
*/
static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
____cacheline_internodealigned_in_smp;
/*
* Per-tile IRQ nesting depth. Used to make sure we enable newly
* enabled IRQs before exiting the outermost interrupt.
*/
static DEFINE_PER_CPU(int, irq_depth);
/* State for allocating IRQs on Gx. */
#if CHIP_HAS_IPI()
static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
static DEFINE_SPINLOCK(available_irqs_lock);
#endif
#if CHIP_HAS_IPI()
/* Use SPRs to manipulate device interrupts. */
#define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_1, irq_mask)
#define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_1, irq_mask)
#define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_1, irq_mask)
#else
/* Use HV to manipulate device interrupts. */
#define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
#define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
#define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
#endif
/*
* The interrupt handling path, implemented in terms of HV interrupt
* emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
*/
void tile_dev_intr(struct pt_regs *regs, int intnum)
{
int depth = __get_cpu_var(irq_depth)++;
unsigned long original_irqs;
unsigned long remaining_irqs;
struct pt_regs *old_regs;
#if CHIP_HAS_IPI()
/*
* Pending interrupts are listed in an SPR. We might be
* nested, so be sure to only handle irqs that weren't already
* masked by a previous interrupt. Then, mask out the ones
* we're going to handle.
*/
unsigned long masked = __insn_mfspr(SPR_IPI_MASK_1);
original_irqs = __insn_mfspr(SPR_IPI_EVENT_1) & ~masked;
__insn_mtspr(SPR_IPI_MASK_SET_1, original_irqs);
#else
/*
* Hypervisor performs the equivalent of the Gx code above and
* then puts the pending interrupt mask into a system save reg
* for us to find.
*/
original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_1_3);
#endif
remaining_irqs = original_irqs;
/* Track time spent here in an interrupt context. */
old_regs = set_irq_regs(regs);
irq_enter();
#ifdef CONFIG_DEBUG_STACKOVERFLOW
/* Debugging check for stack overflow: less than 1/8th stack free? */
{
long sp = stack_pointer - (long) current_thread_info();
if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
pr_emerg("tile_dev_intr: "
"stack overflow: %ld\n",
sp - sizeof(struct thread_info));
dump_stack();
}
}
#endif
while (remaining_irqs) {
unsigned long irq = __ffs(remaining_irqs);
remaining_irqs &= ~(1UL << irq);
/* Count device irqs; Linux IPIs are counted elsewhere. */
if (irq != IRQ_RESCHEDULE)
__get_cpu_var(irq_stat).irq_dev_intr_count++;
generic_handle_irq(irq);
}
/*
* If we weren't nested, turn on all enabled interrupts,
* including any that were reenabled during interrupt
* handling.
*/
if (depth == 0)
unmask_irqs(~__get_cpu_var(irq_disable_mask));
__get_cpu_var(irq_depth)--;
/*
* Track time spent against the current process again and
* process any softirqs if they are waiting.
*/
irq_exit();
set_irq_regs(old_regs);
}
/*
* Remove an irq from the disabled mask. If we're in an interrupt
* context, defer enabling the HW interrupt until we leave.
*/
void enable_percpu_irq(unsigned int irq)
{
get_cpu_var(irq_disable_mask) &= ~(1UL << irq);
if (__get_cpu_var(irq_depth) == 0)
unmask_irqs(1UL << irq);
put_cpu_var(irq_disable_mask);
}
EXPORT_SYMBOL(enable_percpu_irq);
/*
* Add an irq to the disabled mask. We disable the HW interrupt
* immediately so that there's no possibility of it firing. If we're
* in an interrupt context, the return path is careful to avoid
* unmasking a newly disabled interrupt.
*/
void disable_percpu_irq(unsigned int irq)
{
get_cpu_var(irq_disable_mask) |= (1UL << irq);
mask_irqs(1UL << irq);
put_cpu_var(irq_disable_mask);
}
EXPORT_SYMBOL(disable_percpu_irq);
/* Mask an interrupt. */
static void tile_irq_chip_mask(unsigned int irq)
{
mask_irqs(1UL << irq);
}
/* Unmask an interrupt. */
static void tile_irq_chip_unmask(unsigned int irq)
{
unmask_irqs(1UL << irq);
}
/*
* Clear an interrupt before processing it so that any new assertions
* will trigger another irq.
*/
static void tile_irq_chip_ack(unsigned int irq)
{
if ((unsigned long)get_irq_chip_data(irq) != IS_HW_CLEARED)
clear_irqs(1UL << irq);
}
/*
* For per-cpu interrupts, we need to avoid unmasking any interrupts
* that we disabled via disable_percpu_irq().
*/
static void tile_irq_chip_eoi(unsigned int irq)
{
if (!(__get_cpu_var(irq_disable_mask) & (1UL << irq)))
unmask_irqs(1UL << irq);
}
static struct irq_chip tile_irq_chip = {
.typename = "tile_irq_chip",
.ack = tile_irq_chip_ack,
.eoi = tile_irq_chip_eoi,
.mask = tile_irq_chip_mask,
.unmask = tile_irq_chip_unmask,
};
void __init init_IRQ(void)
{
ipi_init();
}
void __cpuinit setup_irq_regs(void)
{
/* Enable interrupt delivery. */
unmask_irqs(~0UL);
#if CHIP_HAS_IPI()
raw_local_irq_unmask(INT_IPI_1);
#endif
}
void tile_irq_activate(unsigned int irq, int tile_irq_type)
{
/*
* We use handle_level_irq() by default because the pending
* interrupt vector (whether modeled by the HV on TILE64 and
* TILEPro or implemented in hardware on TILE-Gx) has
* level-style semantics for each bit. An interrupt fires
* whenever a bit is high, not just at edges.
*/
irq_flow_handler_t handle = handle_level_irq;
if (tile_irq_type == TILE_IRQ_PERCPU)
handle = handle_percpu_irq;
set_irq_chip_and_handler(irq, &tile_irq_chip, handle);
/*
* Flag interrupts that are hardware-cleared so that ack()
* won't clear them.
*/
if (tile_irq_type == TILE_IRQ_HW_CLEAR)
set_irq_chip_data(irq, (void *)IS_HW_CLEARED);
}
EXPORT_SYMBOL(tile_irq_activate);
void ack_bad_irq(unsigned int irq)
{
pr_err("unexpected IRQ trap at vector %02x\n", irq);
}
/*
* Generic, controller-independent functions:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction *action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for (j = 0; j < NR_CPUS; j++)
if (cpu_online(j))
seq_printf(p, "CPU%-8d", j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto skip;
seq_printf(p, "%3d: ", i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
#endif
seq_printf(p, " %14s", irq_desc[i].chip->typename);
seq_printf(p, " %s", action->name);
for (action = action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
skip:
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
return 0;
}
#if CHIP_HAS_IPI()
int create_irq(void)
{
unsigned long flags;
int result;
spin_lock_irqsave(&available_irqs_lock, flags);
if (available_irqs == 0)
result = -ENOMEM;
else {
result = __ffs(available_irqs);
available_irqs &= ~(1UL << result);
dynamic_irq_init(result);
}
spin_unlock_irqrestore(&available_irqs_lock, flags);
return result;
}
EXPORT_SYMBOL(create_irq);
void destroy_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&available_irqs_lock, flags);
available_irqs |= (1UL << irq);
dynamic_irq_cleanup(irq);
spin_unlock_irqrestore(&available_irqs_lock, flags);
}
EXPORT_SYMBOL(destroy_irq);
#endif