On Wednesday 11 April 2012, Minchan Kim wrote:On Tue, Apr 10, 2012 at 08:32:51AM +0000, Arnd Bergmann wrote:
I should have written more general term. I means write amplication but
WAF(Write Amplication Factor) is more popular. :(
D'oh. Thanks for the clarification. Note that the entire idea of increasing the
swap cluster size to the erase block size is to *reduce* write amplification:
If we pick arbitrary swap clusters that are part of an erase block (or worse,
span two partial erase blocks), sending a discard for one cluster does not
allow the device to actually discard an entire erase block. Consider the best
possible scenario where we have a 1MB cluster and 2MB erase blocks, all
naturally aligned. After we have written the entire swap device once, all
blocks are marked as used in the device, but some are available for reuse
in the kernel. The swap code picks a cluster that is currently unused and
sends a discard to the device, then fills the cluster with new pages.
After that, we pick another swap cluster elsewhere. The erase block now
contains 50% new and 50% old data and has to be garbage collected, so the
device writes 2MB of data to anther erase block. So, in order to write 1MB,
the device has written 3MB and the write amplification factor is 3. Using
8MB erase blocks, it would be 9.
If we do the active compaction and increase the cluster size to the erase
block size, there is no write amplification inside of the device (and no
stalls from the garbage collection, which are the other concern), and
we only need to write a few blocks again that are still valid in a cluster
at the time we want to reuse it. On an ideal device, the write amplification
for active compaction should be exactly the same as what we get when we
write a cluster while some of the data in it is still valid and we skip
those pages, while some devices might now like having to gc themselves.
Doing the compaction in software means we have to spend CPU cycles on it,
but we get to choose when it happens and don't have to block on the device
during GC.
Thanks for detail explanation.
At least, we need active compaction to avoid GC completely when we can't find
empty cluster and there are lots of hole.
Indirection layer we discussed last LSF/MM could help slot change by
compaction easily.
I think way to find empty cluster should be changed because current linear scan
is not proper for bigger cluster size.
I am looking forward to your works!
P.S) I'm afraid this work might raise endless war, again which host can do well VS
device can do well. If we can work out, we don't need costly eMMC FTL, just need
dumb bare nand, controller and simple firmware.
IMHO, we should only distinguish between dumb and smart devices, defined as follows:
1. smart devices behave like all but the extremely cheap SSDs. They are optimized
for 4KB random I/O, and the erase block size is not visible because there is
a write cache and a flexible controller between the block device abstraction
and the raw flash.
2. dumb devices have very visible effects that stem from a simplistic remapping
layer that translates logical erase block numbers into physical erase blocks,
and only a fixed number of those can be written at the same time before forcing
GC. Writes smaller than page size are strongly discouraged here. There is no
RAM to cache writes in the controller, but we still expect these devices to
have a reasonable wear levelling policy. This covers almost all of today's
eMMC, SD, USB and CF as well as some cheap ATA SSD.
A third category is of course spinning rust, but I think with the distinction
for solid state media above, we have a pretty good grip on all existing
media. As eMMC and UFS evolve over time, we might want to stick them into the
first category, but I don't think we need more categories.
Arnd
--
To unsubscribe from this list: send the line "unsubscribe linux-mmc" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html