[PATCH v3 1/3] zsmalloc: promote to lib/

From: Minchan Kim
Date: Mon Oct 29 2012 - 04:51:09 EST


This patch promotes the slab-based zsmalloc memory allocator
from the staging tree to lib/

zcache/zram depends on this allocator for storing compressed RAM pages
in an efficient way under system wide memory pressure where
high-order (greater than 0) page allocation are very likely to
fail.

For more information on zsmalloc and its internals, read the
documentation at the top of the zsmalloc.c file.

Signed-off-by: Minchan Kim <minchan@xxxxxxxxxx>
---
drivers/staging/Kconfig | 2 -
drivers/staging/Makefile | 1 -
drivers/staging/zcache/zcache-main.c | 4 +-
drivers/staging/zram/zram_drv.h | 3 +-
drivers/staging/zsmalloc/Kconfig | 10 -
drivers/staging/zsmalloc/Makefile | 3 -
drivers/staging/zsmalloc/zsmalloc-main.c | 1064 ------------------------------
drivers/staging/zsmalloc/zsmalloc.h | 43 --
include/linux/zsmalloc.h | 43 ++
lib/Kconfig | 18 +
lib/Makefile | 1 +
lib/zsmalloc.c | 1064 ++++++++++++++++++++++++++++++
12 files changed, 1129 insertions(+), 1127 deletions(-)
delete mode 100644 drivers/staging/zsmalloc/Kconfig
delete mode 100644 drivers/staging/zsmalloc/Makefile
delete mode 100644 drivers/staging/zsmalloc/zsmalloc-main.c
delete mode 100644 drivers/staging/zsmalloc/zsmalloc.h
create mode 100644 include/linux/zsmalloc.h
create mode 100644 lib/zsmalloc.c

diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig
index 231a272..d3f4bed 100644
--- a/drivers/staging/Kconfig
+++ b/drivers/staging/Kconfig
@@ -76,8 +76,6 @@ source "drivers/staging/zram/Kconfig"

source "drivers/staging/zcache/Kconfig"

-source "drivers/staging/zsmalloc/Kconfig"
-
source "drivers/staging/wlags49_h2/Kconfig"

source "drivers/staging/wlags49_h25/Kconfig"
diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile
index 2b291c0..ff8133d 100644
--- a/drivers/staging/Makefile
+++ b/drivers/staging/Makefile
@@ -33,7 +33,6 @@ obj-$(CONFIG_DX_SEP) += sep/
obj-$(CONFIG_IIO) += iio/
obj-$(CONFIG_ZRAM) += zram/
obj-$(CONFIG_ZCACHE) += zcache/
-obj-$(CONFIG_ZSMALLOC) += zsmalloc/
obj-$(CONFIG_WLAGS49_H2) += wlags49_h2/
obj-$(CONFIG_WLAGS49_H25) += wlags49_h25/
obj-$(CONFIG_FB_SM7XX) += sm7xxfb/
diff --git a/drivers/staging/zcache/zcache-main.c b/drivers/staging/zcache/zcache-main.c
index 52b43b7..34b2c5c 100644
--- a/drivers/staging/zcache/zcache-main.c
+++ b/drivers/staging/zcache/zcache-main.c
@@ -32,9 +32,9 @@
#include <linux/crypto.h>
#include <linux/string.h>
#include <linux/idr.h>
-#include "tmem.h"
+#include <linux/zsmalloc.h>

-#include "../zsmalloc/zsmalloc.h"
+#include "tmem.h"

#ifdef CONFIG_CLEANCACHE
#include <linux/cleancache.h>
diff --git a/drivers/staging/zram/zram_drv.h b/drivers/staging/zram/zram_drv.h
index df2eec4..1e72965 100644
--- a/drivers/staging/zram/zram_drv.h
+++ b/drivers/staging/zram/zram_drv.h
@@ -17,8 +17,7 @@

#include <linux/spinlock.h>
#include <linux/mutex.h>
-
-#include "../zsmalloc/zsmalloc.h"
+#include <linux/zsmalloc.h>

/*
* Some arbitrary value. This is just to catch
diff --git a/drivers/staging/zsmalloc/Kconfig b/drivers/staging/zsmalloc/Kconfig
deleted file mode 100644
index 9084565..0000000
--- a/drivers/staging/zsmalloc/Kconfig
+++ /dev/null
@@ -1,10 +0,0 @@
-config ZSMALLOC
- tristate "Memory allocator for compressed pages"
- default n
- help
- zsmalloc is a slab-based memory allocator designed to store
- compressed RAM pages. zsmalloc uses virtual memory mapping
- in order to reduce fragmentation. However, this results in a
- non-standard allocator interface where a handle, not a pointer, is
- returned by an alloc(). This handle must be mapped in order to
- access the allocated space.
diff --git a/drivers/staging/zsmalloc/Makefile b/drivers/staging/zsmalloc/Makefile
deleted file mode 100644
index b134848..0000000
--- a/drivers/staging/zsmalloc/Makefile
+++ /dev/null
@@ -1,3 +0,0 @@
-zsmalloc-y := zsmalloc-main.o
-
-obj-$(CONFIG_ZSMALLOC) += zsmalloc.o
diff --git a/drivers/staging/zsmalloc/zsmalloc-main.c b/drivers/staging/zsmalloc/zsmalloc-main.c
deleted file mode 100644
index 09a9d35..0000000
--- a/drivers/staging/zsmalloc/zsmalloc-main.c
+++ /dev/null
@@ -1,1064 +0,0 @@
-/*
- * zsmalloc memory allocator
- *
- * Copyright (C) 2011 Nitin Gupta
- *
- * This code is released using a dual license strategy: BSD/GPL
- * You can choose the license that better fits your requirements.
- *
- * Released under the terms of 3-clause BSD License
- * Released under the terms of GNU General Public License Version 2.0
- */
-
-
-/*
- * This allocator is designed for use with zcache and zram. Thus, the
- * allocator is supposed to work well under low memory conditions. In
- * particular, it never attempts higher order page allocation which is
- * very likely to fail under memory pressure. On the other hand, if we
- * just use single (0-order) pages, it would suffer from very high
- * fragmentation -- any object of size PAGE_SIZE/2 or larger would occupy
- * an entire page. This was one of the major issues with its predecessor
- * (xvmalloc).
- *
- * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
- * and links them together using various 'struct page' fields. These linked
- * pages act as a single higher-order page i.e. an object can span 0-order
- * page boundaries. The code refers to these linked pages as a single entity
- * called zspage.
- *
- * Following is how we use various fields and flags of underlying
- * struct page(s) to form a zspage.
- *
- * Usage of struct page fields:
- * page->first_page: points to the first component (0-order) page
- * page->index (union with page->freelist): offset of the first object
- * starting in this page. For the first page, this is
- * always 0, so we use this field (aka freelist) to point
- * to the first free object in zspage.
- * page->lru: links together all component pages (except the first page)
- * of a zspage
- *
- * For _first_ page only:
- *
- * page->private (union with page->first_page): refers to the
- * component page after the first page
- * page->freelist: points to the first free object in zspage.
- * Free objects are linked together using in-place
- * metadata.
- * page->objects: maximum number of objects we can store in this
- * zspage (class->zspage_order * PAGE_SIZE / class->size)
- * page->lru: links together first pages of various zspages.
- * Basically forming list of zspages in a fullness group.
- * page->mapping: class index and fullness group of the zspage
- *
- * Usage of struct page flags:
- * PG_private: identifies the first component page
- * PG_private2: identifies the last component page
- *
- */
-
-#ifdef CONFIG_ZSMALLOC_DEBUG
-#define DEBUG
-#endif
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/bitops.h>
-#include <linux/errno.h>
-#include <linux/highmem.h>
-#include <linux/init.h>
-#include <linux/string.h>
-#include <linux/slab.h>
-#include <asm/tlbflush.h>
-#include <asm/pgtable.h>
-#include <linux/cpumask.h>
-#include <linux/cpu.h>
-#include <linux/vmalloc.h>
-#include <linux/hardirq.h>
-#include <linux/spinlock.h>
-#include <linux/types.h>
-
-#include "zsmalloc.h"
-
-/*
- * This must be power of 2 and greater than of equal to sizeof(link_free).
- * These two conditions ensure that any 'struct link_free' itself doesn't
- * span more than 1 page which avoids complex case of mapping 2 pages simply
- * to restore link_free pointer values.
- */
-#define ZS_ALIGN 8
-
-/*
- * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
- * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
- */
-#define ZS_MAX_ZSPAGE_ORDER 2
-#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
-
-/*
- * Object location (<PFN>, <obj_idx>) is encoded as
- * as single (void *) handle value.
- *
- * Note that object index <obj_idx> is relative to system
- * page <PFN> it is stored in, so for each sub-page belonging
- * to a zspage, obj_idx starts with 0.
- *
- * This is made more complicated by various memory models and PAE.
- */
-
-#ifndef MAX_PHYSMEM_BITS
-#ifdef CONFIG_HIGHMEM64G
-#define MAX_PHYSMEM_BITS 36
-#else /* !CONFIG_HIGHMEM64G */
-/*
- * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
- * be PAGE_SHIFT
- */
-#define MAX_PHYSMEM_BITS BITS_PER_LONG
-#endif
-#endif
-#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
-#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
-#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
-
-#define MAX(a, b) ((a) >= (b) ? (a) : (b))
-/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
-#define ZS_MIN_ALLOC_SIZE \
- MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
-#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
-
-/*
- * On systems with 4K page size, this gives 254 size classes! There is a
- * trader-off here:
- * - Large number of size classes is potentially wasteful as free page are
- * spread across these classes
- * - Small number of size classes causes large internal fragmentation
- * - Probably its better to use specific size classes (empirically
- * determined). NOTE: all those class sizes must be set as multiple of
- * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
- *
- * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
- * (reason above)
- */
-#define ZS_SIZE_CLASS_DELTA 16
-#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
- ZS_SIZE_CLASS_DELTA + 1)
-
-/*
- * We do not maintain any list for completely empty or full pages
- */
-enum fullness_group {
- ZS_ALMOST_FULL,
- ZS_ALMOST_EMPTY,
- _ZS_NR_FULLNESS_GROUPS,
-
- ZS_EMPTY,
- ZS_FULL
-};
-
-/*
- * We assign a page to ZS_ALMOST_EMPTY fullness group when:
- * n <= N / f, where
- * n = number of allocated objects
- * N = total number of objects zspage can store
- * f = 1/fullness_threshold_frac
- *
- * Similarly, we assign zspage to:
- * ZS_ALMOST_FULL when n > N / f
- * ZS_EMPTY when n == 0
- * ZS_FULL when n == N
- *
- * (see: fix_fullness_group())
- */
-static const int fullness_threshold_frac = 4;
-
-struct size_class {
- /*
- * Size of objects stored in this class. Must be multiple
- * of ZS_ALIGN.
- */
- int size;
- unsigned int index;
-
- /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
- int pages_per_zspage;
-
- spinlock_t lock;
-
- /* stats */
- u64 pages_allocated;
-
- struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
-};
-
-/*
- * Placed within free objects to form a singly linked list.
- * For every zspage, first_page->freelist gives head of this list.
- *
- * This must be power of 2 and less than or equal to ZS_ALIGN
- */
-struct link_free {
- /* Handle of next free chunk (encodes <PFN, obj_idx>) */
- void *next;
-};
-
-struct zs_pool {
- struct size_class size_class[ZS_SIZE_CLASSES];
-
- gfp_t flags; /* allocation flags used when growing pool */
- const char *name;
-};
-
-/*
- * A zspage's class index and fullness group
- * are encoded in its (first)page->mapping
- */
-#define CLASS_IDX_BITS 28
-#define FULLNESS_BITS 4
-#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
-#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
-
-/*
- * By default, zsmalloc uses a copy-based object mapping method to access
- * allocations that span two pages. However, if a particular architecture
- * 1) Implements local_flush_tlb_kernel_range() and 2) Performs VM mapping
- * faster than copying, then it should be added here so that
- * USE_PGTABLE_MAPPING is defined. This causes zsmalloc to use page table
- * mapping rather than copying
- * for object mapping.
-*/
-#if defined(CONFIG_ARM)
-#define USE_PGTABLE_MAPPING
-#endif
-
-struct mapping_area {
-#ifdef USE_PGTABLE_MAPPING
- struct vm_struct *vm; /* vm area for mapping object that span pages */
-#else
- char *vm_buf; /* copy buffer for objects that span pages */
-#endif
- char *vm_addr; /* address of kmap_atomic()'ed pages */
- enum zs_mapmode vm_mm; /* mapping mode */
-};
-
-
-/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
-static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
-
-static int is_first_page(struct page *page)
-{
- return PagePrivate(page);
-}
-
-static int is_last_page(struct page *page)
-{
- return PagePrivate2(page);
-}
-
-static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
- enum fullness_group *fullness)
-{
- unsigned long m;
- BUG_ON(!is_first_page(page));
-
- m = (unsigned long)page->mapping;
- *fullness = m & FULLNESS_MASK;
- *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
-}
-
-static void set_zspage_mapping(struct page *page, unsigned int class_idx,
- enum fullness_group fullness)
-{
- unsigned long m;
- BUG_ON(!is_first_page(page));
-
- m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
- (fullness & FULLNESS_MASK);
- page->mapping = (struct address_space *)m;
-}
-
-static int get_size_class_index(int size)
-{
- int idx = 0;
-
- if (likely(size > ZS_MIN_ALLOC_SIZE))
- idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
- ZS_SIZE_CLASS_DELTA);
-
- return idx;
-}
-
-static enum fullness_group get_fullness_group(struct page *page)
-{
- int inuse, max_objects;
- enum fullness_group fg;
- BUG_ON(!is_first_page(page));
-
- inuse = page->inuse;
- max_objects = page->objects;
-
- if (inuse == 0)
- fg = ZS_EMPTY;
- else if (inuse == max_objects)
- fg = ZS_FULL;
- else if (inuse <= max_objects / fullness_threshold_frac)
- fg = ZS_ALMOST_EMPTY;
- else
- fg = ZS_ALMOST_FULL;
-
- return fg;
-}
-
-static void insert_zspage(struct page *page, struct size_class *class,
- enum fullness_group fullness)
-{
- struct page **head;
-
- BUG_ON(!is_first_page(page));
-
- if (fullness >= _ZS_NR_FULLNESS_GROUPS)
- return;
-
- head = &class->fullness_list[fullness];
- if (*head)
- list_add_tail(&page->lru, &(*head)->lru);
-
- *head = page;
-}
-
-static void remove_zspage(struct page *page, struct size_class *class,
- enum fullness_group fullness)
-{
- struct page **head;
-
- BUG_ON(!is_first_page(page));
-
- if (fullness >= _ZS_NR_FULLNESS_GROUPS)
- return;
-
- head = &class->fullness_list[fullness];
- BUG_ON(!*head);
- if (list_empty(&(*head)->lru))
- *head = NULL;
- else if (*head == page)
- *head = (struct page *)list_entry((*head)->lru.next,
- struct page, lru);
-
- list_del_init(&page->lru);
-}
-
-static enum fullness_group fix_fullness_group(struct zs_pool *pool,
- struct page *page)
-{
- int class_idx;
- struct size_class *class;
- enum fullness_group currfg, newfg;
-
- BUG_ON(!is_first_page(page));
-
- get_zspage_mapping(page, &class_idx, &currfg);
- newfg = get_fullness_group(page);
- if (newfg == currfg)
- goto out;
-
- class = &pool->size_class[class_idx];
- remove_zspage(page, class, currfg);
- insert_zspage(page, class, newfg);
- set_zspage_mapping(page, class_idx, newfg);
-
-out:
- return newfg;
-}
-
-/*
- * We have to decide on how many pages to link together
- * to form a zspage for each size class. This is important
- * to reduce wastage due to unusable space left at end of
- * each zspage which is given as:
- * wastage = Zp - Zp % size_class
- * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
- *
- * For example, for size class of 3/8 * PAGE_SIZE, we should
- * link together 3 PAGE_SIZE sized pages to form a zspage
- * since then we can perfectly fit in 8 such objects.
- */
-static int get_pages_per_zspage(int class_size)
-{
- int i, max_usedpc = 0;
- /* zspage order which gives maximum used size per KB */
- int max_usedpc_order = 1;
-
- for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
- int zspage_size;
- int waste, usedpc;
-
- zspage_size = i * PAGE_SIZE;
- waste = zspage_size % class_size;
- usedpc = (zspage_size - waste) * 100 / zspage_size;
-
- if (usedpc > max_usedpc) {
- max_usedpc = usedpc;
- max_usedpc_order = i;
- }
- }
-
- return max_usedpc_order;
-}
-
-/*
- * A single 'zspage' is composed of many system pages which are
- * linked together using fields in struct page. This function finds
- * the first/head page, given any component page of a zspage.
- */
-static struct page *get_first_page(struct page *page)
-{
- if (is_first_page(page))
- return page;
- else
- return page->first_page;
-}
-
-static struct page *get_next_page(struct page *page)
-{
- struct page *next;
-
- if (is_last_page(page))
- next = NULL;
- else if (is_first_page(page))
- next = (struct page *)page->private;
- else
- next = list_entry(page->lru.next, struct page, lru);
-
- return next;
-}
-
-/* Encode <page, obj_idx> as a single handle value */
-static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
-{
- unsigned long handle;
-
- if (!page) {
- BUG_ON(obj_idx);
- return NULL;
- }
-
- handle = page_to_pfn(page) << OBJ_INDEX_BITS;
- handle |= (obj_idx & OBJ_INDEX_MASK);
-
- return (void *)handle;
-}
-
-/* Decode <page, obj_idx> pair from the given object handle */
-static void obj_handle_to_location(unsigned long handle, struct page **page,
- unsigned long *obj_idx)
-{
- *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
- *obj_idx = handle & OBJ_INDEX_MASK;
-}
-
-static unsigned long obj_idx_to_offset(struct page *page,
- unsigned long obj_idx, int class_size)
-{
- unsigned long off = 0;
-
- if (!is_first_page(page))
- off = page->index;
-
- return off + obj_idx * class_size;
-}
-
-static void reset_page(struct page *page)
-{
- clear_bit(PG_private, &page->flags);
- clear_bit(PG_private_2, &page->flags);
- set_page_private(page, 0);
- page->mapping = NULL;
- page->freelist = NULL;
- reset_page_mapcount(page);
-}
-
-static void free_zspage(struct page *first_page)
-{
- struct page *nextp, *tmp, *head_extra;
-
- BUG_ON(!is_first_page(first_page));
- BUG_ON(first_page->inuse);
-
- head_extra = (struct page *)page_private(first_page);
-
- reset_page(first_page);
- __free_page(first_page);
-
- /* zspage with only 1 system page */
- if (!head_extra)
- return;
-
- list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
- list_del(&nextp->lru);
- reset_page(nextp);
- __free_page(nextp);
- }
- reset_page(head_extra);
- __free_page(head_extra);
-}
-
-/* Initialize a newly allocated zspage */
-static void init_zspage(struct page *first_page, struct size_class *class)
-{
- unsigned long off = 0;
- struct page *page = first_page;
-
- BUG_ON(!is_first_page(first_page));
- while (page) {
- struct page *next_page;
- struct link_free *link;
- unsigned int i, objs_on_page;
-
- /*
- * page->index stores offset of first object starting
- * in the page. For the first page, this is always 0,
- * so we use first_page->index (aka ->freelist) to store
- * head of corresponding zspage's freelist.
- */
- if (page != first_page)
- page->index = off;
-
- link = (struct link_free *)kmap_atomic(page) +
- off / sizeof(*link);
- objs_on_page = (PAGE_SIZE - off) / class->size;
-
- for (i = 1; i <= objs_on_page; i++) {
- off += class->size;
- if (off < PAGE_SIZE) {
- link->next = obj_location_to_handle(page, i);
- link += class->size / sizeof(*link);
- }
- }
-
- /*
- * We now come to the last (full or partial) object on this
- * page, which must point to the first object on the next
- * page (if present)
- */
- next_page = get_next_page(page);
- link->next = obj_location_to_handle(next_page, 0);
- kunmap_atomic(link);
- page = next_page;
- off = (off + class->size) % PAGE_SIZE;
- }
-}
-
-/*
- * Allocate a zspage for the given size class
- */
-static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
-{
- int i, error;
- struct page *first_page = NULL, *uninitialized_var(prev_page);
-
- /*
- * Allocate individual pages and link them together as:
- * 1. first page->private = first sub-page
- * 2. all sub-pages are linked together using page->lru
- * 3. each sub-page is linked to the first page using page->first_page
- *
- * For each size class, First/Head pages are linked together using
- * page->lru. Also, we set PG_private to identify the first page
- * (i.e. no other sub-page has this flag set) and PG_private_2 to
- * identify the last page.
- */
- error = -ENOMEM;
- for (i = 0; i < class->pages_per_zspage; i++) {
- struct page *page;
-
- page = alloc_page(flags);
- if (!page)
- goto cleanup;
-
- INIT_LIST_HEAD(&page->lru);
- if (i == 0) { /* first page */
- SetPagePrivate(page);
- set_page_private(page, 0);
- first_page = page;
- first_page->inuse = 0;
- }
- if (i == 1)
- first_page->private = (unsigned long)page;
- if (i >= 1)
- page->first_page = first_page;
- if (i >= 2)
- list_add(&page->lru, &prev_page->lru);
- if (i == class->pages_per_zspage - 1) /* last page */
- SetPagePrivate2(page);
- prev_page = page;
- }
-
- init_zspage(first_page, class);
-
- first_page->freelist = obj_location_to_handle(first_page, 0);
- /* Maximum number of objects we can store in this zspage */
- first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
-
- error = 0; /* Success */
-
-cleanup:
- if (unlikely(error) && first_page) {
- free_zspage(first_page);
- first_page = NULL;
- }
-
- return first_page;
-}
-
-static struct page *find_get_zspage(struct size_class *class)
-{
- int i;
- struct page *page;
-
- for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
- page = class->fullness_list[i];
- if (page)
- break;
- }
-
- return page;
-}
-
-#ifdef USE_PGTABLE_MAPPING
-static inline int __zs_cpu_up(struct mapping_area *area)
-{
- /*
- * Make sure we don't leak memory if a cpu UP notification
- * and zs_init() race and both call zs_cpu_up() on the same cpu
- */
- if (area->vm)
- return 0;
- area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
- if (!area->vm)
- return -ENOMEM;
- return 0;
-}
-
-static inline void __zs_cpu_down(struct mapping_area *area)
-{
- if (area->vm)
- free_vm_area(area->vm);
- area->vm = NULL;
-}
-
-static inline void *__zs_map_object(struct mapping_area *area,
- struct page *pages[2], int off, int size)
-{
- BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
- area->vm_addr = area->vm->addr;
- return area->vm_addr + off;
-}
-
-static inline void __zs_unmap_object(struct mapping_area *area,
- struct page *pages[2], int off, int size)
-{
- unsigned long addr = (unsigned long)area->vm_addr;
- unsigned long end = addr + (PAGE_SIZE * 2);
-
- flush_cache_vunmap(addr, end);
- unmap_kernel_range_noflush(addr, PAGE_SIZE * 2);
- local_flush_tlb_kernel_range(addr, end);
-}
-
-#else /* USE_PGTABLE_MAPPING */
-
-static inline int __zs_cpu_up(struct mapping_area *area)
-{
- /*
- * Make sure we don't leak memory if a cpu UP notification
- * and zs_init() race and both call zs_cpu_up() on the same cpu
- */
- if (area->vm_buf)
- return 0;
- area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
- if (!area->vm_buf)
- return -ENOMEM;
- return 0;
-}
-
-static inline void __zs_cpu_down(struct mapping_area *area)
-{
- if (area->vm_buf)
- free_page((unsigned long)area->vm_buf);
- area->vm_buf = NULL;
-}
-
-static void *__zs_map_object(struct mapping_area *area,
- struct page *pages[2], int off, int size)
-{
- int sizes[2];
- void *addr;
- char *buf = area->vm_buf;
-
- /* disable page faults to match kmap_atomic() return conditions */
- pagefault_disable();
-
- /* no read fastpath */
- if (area->vm_mm == ZS_MM_WO)
- goto out;
-
- sizes[0] = PAGE_SIZE - off;
- sizes[1] = size - sizes[0];
-
- /* copy object to per-cpu buffer */
- addr = kmap_atomic(pages[0]);
- memcpy(buf, addr + off, sizes[0]);
- kunmap_atomic(addr);
- addr = kmap_atomic(pages[1]);
- memcpy(buf + sizes[0], addr, sizes[1]);
- kunmap_atomic(addr);
-out:
- return area->vm_buf;
-}
-
-static void __zs_unmap_object(struct mapping_area *area,
- struct page *pages[2], int off, int size)
-{
- int sizes[2];
- void *addr;
- char *buf = area->vm_buf;
-
- /* no write fastpath */
- if (area->vm_mm == ZS_MM_RO)
- goto out;
-
- sizes[0] = PAGE_SIZE - off;
- sizes[1] = size - sizes[0];
-
- /* copy per-cpu buffer to object */
- addr = kmap_atomic(pages[0]);
- memcpy(addr + off, buf, sizes[0]);
- kunmap_atomic(addr);
- addr = kmap_atomic(pages[1]);
- memcpy(addr, buf + sizes[0], sizes[1]);
- kunmap_atomic(addr);
-
-out:
- /* enable page faults to match kunmap_atomic() return conditions */
- pagefault_enable();
-}
-
-#endif /* USE_PGTABLE_MAPPING */
-
-static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
- void *pcpu)
-{
- int ret, cpu = (long)pcpu;
- struct mapping_area *area;
-
- switch (action) {
- case CPU_UP_PREPARE:
- area = &per_cpu(zs_map_area, cpu);
- ret = __zs_cpu_up(area);
- if (ret)
- return notifier_from_errno(ret);
- break;
- case CPU_DEAD:
- case CPU_UP_CANCELED:
- area = &per_cpu(zs_map_area, cpu);
- __zs_cpu_down(area);
- break;
- }
-
- return NOTIFY_OK;
-}
-
-static struct notifier_block zs_cpu_nb = {
- .notifier_call = zs_cpu_notifier
-};
-
-static void zs_exit(void)
-{
- int cpu;
-
- for_each_online_cpu(cpu)
- zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
- unregister_cpu_notifier(&zs_cpu_nb);
-}
-
-static int zs_init(void)
-{
- int cpu, ret;
-
- register_cpu_notifier(&zs_cpu_nb);
- for_each_online_cpu(cpu) {
- ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
- if (notifier_to_errno(ret))
- goto fail;
- }
- return 0;
-fail:
- zs_exit();
- return notifier_to_errno(ret);
-}
-
-struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
-{
- int i, ovhd_size;
- struct zs_pool *pool;
-
- if (!name)
- return NULL;
-
- ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
- pool = kzalloc(ovhd_size, GFP_KERNEL);
- if (!pool)
- return NULL;
-
- for (i = 0; i < ZS_SIZE_CLASSES; i++) {
- int size;
- struct size_class *class;
-
- size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
- if (size > ZS_MAX_ALLOC_SIZE)
- size = ZS_MAX_ALLOC_SIZE;
-
- class = &pool->size_class[i];
- class->size = size;
- class->index = i;
- spin_lock_init(&class->lock);
- class->pages_per_zspage = get_pages_per_zspage(size);
-
- }
-
- pool->flags = flags;
- pool->name = name;
-
- return pool;
-}
-EXPORT_SYMBOL_GPL(zs_create_pool);
-
-void zs_destroy_pool(struct zs_pool *pool)
-{
- int i;
-
- for (i = 0; i < ZS_SIZE_CLASSES; i++) {
- int fg;
- struct size_class *class = &pool->size_class[i];
-
- for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
- if (class->fullness_list[fg]) {
- pr_info("Freeing non-empty class with size "
- "%db, fullness group %d\n",
- class->size, fg);
- }
- }
- }
- kfree(pool);
-}
-EXPORT_SYMBOL_GPL(zs_destroy_pool);
-
-/**
- * zs_malloc - Allocate block of given size from pool.
- * @pool: pool to allocate from
- * @size: size of block to allocate
- *
- * On success, handle to the allocated object is returned,
- * otherwise 0.
- * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
- */
-unsigned long zs_malloc(struct zs_pool *pool, size_t size)
-{
- unsigned long obj;
- struct link_free *link;
- int class_idx;
- struct size_class *class;
-
- struct page *first_page, *m_page;
- unsigned long m_objidx, m_offset;
-
- if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
- return 0;
-
- class_idx = get_size_class_index(size);
- class = &pool->size_class[class_idx];
- BUG_ON(class_idx != class->index);
-
- spin_lock(&class->lock);
- first_page = find_get_zspage(class);
-
- if (!first_page) {
- spin_unlock(&class->lock);
- first_page = alloc_zspage(class, pool->flags);
- if (unlikely(!first_page))
- return 0;
-
- set_zspage_mapping(first_page, class->index, ZS_EMPTY);
- spin_lock(&class->lock);
- class->pages_allocated += class->pages_per_zspage;
- }
-
- obj = (unsigned long)first_page->freelist;
- obj_handle_to_location(obj, &m_page, &m_objidx);
- m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
-
- link = (struct link_free *)kmap_atomic(m_page) +
- m_offset / sizeof(*link);
- first_page->freelist = link->next;
- memset(link, POISON_INUSE, sizeof(*link));
- kunmap_atomic(link);
-
- first_page->inuse++;
- /* Now move the zspage to another fullness group, if required */
- fix_fullness_group(pool, first_page);
- spin_unlock(&class->lock);
-
- return obj;
-}
-EXPORT_SYMBOL_GPL(zs_malloc);
-
-void zs_free(struct zs_pool *pool, unsigned long obj)
-{
- struct link_free *link;
- struct page *first_page, *f_page;
- unsigned long f_objidx, f_offset;
-
- int class_idx;
- struct size_class *class;
- enum fullness_group fullness;
-
- if (unlikely(!obj))
- return;
-
- obj_handle_to_location(obj, &f_page, &f_objidx);
- first_page = get_first_page(f_page);
-
- get_zspage_mapping(first_page, &class_idx, &fullness);
- class = &pool->size_class[class_idx];
- f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
-
- spin_lock(&class->lock);
-
- /* Insert this object in containing zspage's freelist */
- link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
- + f_offset);
- link->next = first_page->freelist;
- kunmap_atomic(link);
- first_page->freelist = (void *)obj;
-
- first_page->inuse--;
- fullness = fix_fullness_group(pool, first_page);
-
- if (fullness == ZS_EMPTY)
- class->pages_allocated -= class->pages_per_zspage;
-
- spin_unlock(&class->lock);
-
- if (fullness == ZS_EMPTY)
- free_zspage(first_page);
-}
-EXPORT_SYMBOL_GPL(zs_free);
-
-/**
- * zs_map_object - get address of allocated object from handle.
- * @pool: pool from which the object was allocated
- * @handle: handle returned from zs_malloc
- *
- * Before using an object allocated from zs_malloc, it must be mapped using
- * this function. When done with the object, it must be unmapped using
- * zs_unmap_object.
- *
- * Only one object can be mapped per cpu at a time. There is no protection
- * against nested mappings.
- *
- * This function returns with preemption and page faults disabled.
-*/
-void *zs_map_object(struct zs_pool *pool, unsigned long handle,
- enum zs_mapmode mm)
-{
- struct page *page;
- unsigned long obj_idx, off;
-
- unsigned int class_idx;
- enum fullness_group fg;
- struct size_class *class;
- struct mapping_area *area;
- struct page *pages[2];
-
- BUG_ON(!handle);
-
- /*
- * Because we use per-cpu mapping areas shared among the
- * pools/users, we can't allow mapping in interrupt context
- * because it can corrupt another users mappings.
- */
- BUG_ON(in_interrupt());
-
- obj_handle_to_location(handle, &page, &obj_idx);
- get_zspage_mapping(get_first_page(page), &class_idx, &fg);
- class = &pool->size_class[class_idx];
- off = obj_idx_to_offset(page, obj_idx, class->size);
-
- area = &get_cpu_var(zs_map_area);
- area->vm_mm = mm;
- if (off + class->size <= PAGE_SIZE) {
- /* this object is contained entirely within a page */
- area->vm_addr = kmap_atomic(page);
- return area->vm_addr + off;
- }
-
- /* this object spans two pages */
- pages[0] = page;
- pages[1] = get_next_page(page);
- BUG_ON(!pages[1]);
-
- return __zs_map_object(area, pages, off, class->size);
-}
-EXPORT_SYMBOL_GPL(zs_map_object);
-
-void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
-{
- struct page *page;
- unsigned long obj_idx, off;
-
- unsigned int class_idx;
- enum fullness_group fg;
- struct size_class *class;
- struct mapping_area *area;
-
- BUG_ON(!handle);
-
- obj_handle_to_location(handle, &page, &obj_idx);
- get_zspage_mapping(get_first_page(page), &class_idx, &fg);
- class = &pool->size_class[class_idx];
- off = obj_idx_to_offset(page, obj_idx, class->size);
-
- area = &__get_cpu_var(zs_map_area);
- if (off + class->size <= PAGE_SIZE)
- kunmap_atomic(area->vm_addr);
- else {
- struct page *pages[2];
-
- pages[0] = page;
- pages[1] = get_next_page(page);
- BUG_ON(!pages[1]);
-
- __zs_unmap_object(area, pages, off, class->size);
- }
- put_cpu_var(zs_map_area);
-}
-EXPORT_SYMBOL_GPL(zs_unmap_object);
-
-u64 zs_get_total_size_bytes(struct zs_pool *pool)
-{
- int i;
- u64 npages = 0;
-
- for (i = 0; i < ZS_SIZE_CLASSES; i++)
- npages += pool->size_class[i].pages_allocated;
-
- return npages << PAGE_SHIFT;
-}
-EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
-
-module_init(zs_init);
-module_exit(zs_exit);
-
-MODULE_LICENSE("Dual BSD/GPL");
-MODULE_AUTHOR("Nitin Gupta <ngupta@xxxxxxxxxx>");
diff --git a/drivers/staging/zsmalloc/zsmalloc.h b/drivers/staging/zsmalloc/zsmalloc.h
deleted file mode 100644
index de2e8bf..0000000
--- a/drivers/staging/zsmalloc/zsmalloc.h
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- * zsmalloc memory allocator
- *
- * Copyright (C) 2011 Nitin Gupta
- *
- * This code is released using a dual license strategy: BSD/GPL
- * You can choose the license that better fits your requirements.
- *
- * Released under the terms of 3-clause BSD License
- * Released under the terms of GNU General Public License Version 2.0
- */
-
-#ifndef _ZS_MALLOC_H_
-#define _ZS_MALLOC_H_
-
-#include <linux/types.h>
-
-/*
- * zsmalloc mapping modes
- *
- * NOTE: These only make a difference when a mapped object spans pages
-*/
-enum zs_mapmode {
- ZS_MM_RW, /* normal read-write mapping */
- ZS_MM_RO, /* read-only (no copy-out at unmap time) */
- ZS_MM_WO /* write-only (no copy-in at map time) */
-};
-
-struct zs_pool;
-
-struct zs_pool *zs_create_pool(const char *name, gfp_t flags);
-void zs_destroy_pool(struct zs_pool *pool);
-
-unsigned long zs_malloc(struct zs_pool *pool, size_t size);
-void zs_free(struct zs_pool *pool, unsigned long obj);
-
-void *zs_map_object(struct zs_pool *pool, unsigned long handle,
- enum zs_mapmode mm);
-void zs_unmap_object(struct zs_pool *pool, unsigned long handle);
-
-u64 zs_get_total_size_bytes(struct zs_pool *pool);
-
-#endif
diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h
new file mode 100644
index 0000000..de2e8bf
--- /dev/null
+++ b/include/linux/zsmalloc.h
@@ -0,0 +1,43 @@
+/*
+ * zsmalloc memory allocator
+ *
+ * Copyright (C) 2011 Nitin Gupta
+ *
+ * This code is released using a dual license strategy: BSD/GPL
+ * You can choose the license that better fits your requirements.
+ *
+ * Released under the terms of 3-clause BSD License
+ * Released under the terms of GNU General Public License Version 2.0
+ */
+
+#ifndef _ZS_MALLOC_H_
+#define _ZS_MALLOC_H_
+
+#include <linux/types.h>
+
+/*
+ * zsmalloc mapping modes
+ *
+ * NOTE: These only make a difference when a mapped object spans pages
+*/
+enum zs_mapmode {
+ ZS_MM_RW, /* normal read-write mapping */
+ ZS_MM_RO, /* read-only (no copy-out at unmap time) */
+ ZS_MM_WO /* write-only (no copy-in at map time) */
+};
+
+struct zs_pool;
+
+struct zs_pool *zs_create_pool(const char *name, gfp_t flags);
+void zs_destroy_pool(struct zs_pool *pool);
+
+unsigned long zs_malloc(struct zs_pool *pool, size_t size);
+void zs_free(struct zs_pool *pool, unsigned long obj);
+
+void *zs_map_object(struct zs_pool *pool, unsigned long handle,
+ enum zs_mapmode mm);
+void zs_unmap_object(struct zs_pool *pool, unsigned long handle);
+
+u64 zs_get_total_size_bytes(struct zs_pool *pool);
+
+#endif
diff --git a/lib/Kconfig b/lib/Kconfig
index 4b31a46..9b1db85 100644
--- a/lib/Kconfig
+++ b/lib/Kconfig
@@ -216,6 +216,24 @@ config DECOMPRESS_LZO
config GENERIC_ALLOCATOR
boolean

+config ZSMALLOC
+ tristate "Memory allocator for compressed pages"
+ default n
+ help
+ zsmalloc is a slab-based memory allocator designed to store
+ compressed RAM pages. zsmalloc uses a memory pool that combines
+ single pages into higher order pages by linking them together
+ using the fields of the struct page. Allocations are then
+ mapped through copy buffers or VM mapping, in order to reduce
+ memory pool fragmentation and increase allocation success rate under
+ memory pressure.
+
+ This results in a non-standard allocator interface where
+ a handle, not a pointer, is returned by the allocation function.
+ This handle must be mapped in order to access the allocated space.
+
+ If unsure, say N.
+
#
# reed solomon support is select'ed if needed
#
diff --git a/lib/Makefile b/lib/Makefile
index e91b9df..47438f6 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -64,6 +64,7 @@ obj-$(CONFIG_CRC7) += crc7.o
obj-$(CONFIG_LIBCRC32C) += libcrc32c.o
obj-$(CONFIG_CRC8) += crc8.o
obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o
+obj-$(CONFIG_ZSMALLOC) += zsmalloc.o

obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/
obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/
diff --git a/lib/zsmalloc.c b/lib/zsmalloc.c
new file mode 100644
index 0000000..2cde21e
--- /dev/null
+++ b/lib/zsmalloc.c
@@ -0,0 +1,1064 @@
+/*
+ * zsmalloc memory allocator
+ *
+ * Copyright (C) 2011 Nitin Gupta
+ *
+ * This code is released using a dual license strategy: BSD/GPL
+ * You can choose the license that better fits your requirements.
+ *
+ * Released under the terms of 3-clause BSD License
+ * Released under the terms of GNU General Public License Version 2.0
+ */
+
+
+/*
+ * This allocator is designed for use with zcache and zram. Thus, the
+ * allocator is supposed to work well under low memory conditions. In
+ * particular, it never attempts higher order page allocation which is
+ * very likely to fail under memory pressure. On the other hand, if we
+ * just use single (0-order) pages, it would suffer from very high
+ * fragmentation -- any object of size PAGE_SIZE/2 or larger would occupy
+ * an entire page. This was one of the major issues with its predecessor
+ * (xvmalloc).
+ *
+ * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
+ * and links them together using various 'struct page' fields. These linked
+ * pages act as a single higher-order page i.e. an object can span 0-order
+ * page boundaries. The code refers to these linked pages as a single entity
+ * called zspage.
+ *
+ * Following is how we use various fields and flags of underlying
+ * struct page(s) to form a zspage.
+ *
+ * Usage of struct page fields:
+ * page->first_page: points to the first component (0-order) page
+ * page->index (union with page->freelist): offset of the first object
+ * starting in this page. For the first page, this is
+ * always 0, so we use this field (aka freelist) to point
+ * to the first free object in zspage.
+ * page->lru: links together all component pages (except the first page)
+ * of a zspage
+ *
+ * For _first_ page only:
+ *
+ * page->private (union with page->first_page): refers to the
+ * component page after the first page
+ * page->freelist: points to the first free object in zspage.
+ * Free objects are linked together using in-place
+ * metadata.
+ * page->objects: maximum number of objects we can store in this
+ * zspage (class->zspage_order * PAGE_SIZE / class->size)
+ * page->lru: links together first pages of various zspages.
+ * Basically forming list of zspages in a fullness group.
+ * page->mapping: class index and fullness group of the zspage
+ *
+ * Usage of struct page flags:
+ * PG_private: identifies the first component page
+ * PG_private2: identifies the last component page
+ *
+ */
+
+#ifdef CONFIG_ZSMALLOC_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <linux/errno.h>
+#include <linux/highmem.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <asm/tlbflush.h>
+#include <asm/pgtable.h>
+#include <linux/cpumask.h>
+#include <linux/cpu.h>
+#include <linux/vmalloc.h>
+#include <linux/hardirq.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+
+#include <linux/zsmalloc.h>
+
+/*
+ * This must be power of 2 and greater than of equal to sizeof(link_free).
+ * These two conditions ensure that any 'struct link_free' itself doesn't
+ * span more than 1 page which avoids complex case of mapping 2 pages simply
+ * to restore link_free pointer values.
+ */
+#define ZS_ALIGN 8
+
+/*
+ * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
+ * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
+ */
+#define ZS_MAX_ZSPAGE_ORDER 2
+#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
+
+/*
+ * Object location (<PFN>, <obj_idx>) is encoded as
+ * as single (void *) handle value.
+ *
+ * Note that object index <obj_idx> is relative to system
+ * page <PFN> it is stored in, so for each sub-page belonging
+ * to a zspage, obj_idx starts with 0.
+ *
+ * This is made more complicated by various memory models and PAE.
+ */
+
+#ifndef MAX_PHYSMEM_BITS
+#ifdef CONFIG_HIGHMEM64G
+#define MAX_PHYSMEM_BITS 36
+#else /* !CONFIG_HIGHMEM64G */
+/*
+ * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
+ * be PAGE_SHIFT
+ */
+#define MAX_PHYSMEM_BITS BITS_PER_LONG
+#endif
+#endif
+#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
+#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
+#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
+
+#define MAX(a, b) ((a) >= (b) ? (a) : (b))
+/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
+#define ZS_MIN_ALLOC_SIZE \
+ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
+#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
+
+/*
+ * On systems with 4K page size, this gives 254 size classes! There is a
+ * trader-off here:
+ * - Large number of size classes is potentially wasteful as free page are
+ * spread across these classes
+ * - Small number of size classes causes large internal fragmentation
+ * - Probably its better to use specific size classes (empirically
+ * determined). NOTE: all those class sizes must be set as multiple of
+ * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
+ *
+ * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
+ * (reason above)
+ */
+#define ZS_SIZE_CLASS_DELTA 16
+#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
+ ZS_SIZE_CLASS_DELTA + 1)
+
+/*
+ * We do not maintain any list for completely empty or full pages
+ */
+enum fullness_group {
+ ZS_ALMOST_FULL,
+ ZS_ALMOST_EMPTY,
+ _ZS_NR_FULLNESS_GROUPS,
+
+ ZS_EMPTY,
+ ZS_FULL
+};
+
+/*
+ * We assign a page to ZS_ALMOST_EMPTY fullness group when:
+ * n <= N / f, where
+ * n = number of allocated objects
+ * N = total number of objects zspage can store
+ * f = 1/fullness_threshold_frac
+ *
+ * Similarly, we assign zspage to:
+ * ZS_ALMOST_FULL when n > N / f
+ * ZS_EMPTY when n == 0
+ * ZS_FULL when n == N
+ *
+ * (see: fix_fullness_group())
+ */
+static const int fullness_threshold_frac = 4;
+
+struct size_class {
+ /*
+ * Size of objects stored in this class. Must be multiple
+ * of ZS_ALIGN.
+ */
+ int size;
+ unsigned int index;
+
+ /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
+ int pages_per_zspage;
+
+ spinlock_t lock;
+
+ /* stats */
+ u64 pages_allocated;
+
+ struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
+};
+
+/*
+ * Placed within free objects to form a singly linked list.
+ * For every zspage, first_page->freelist gives head of this list.
+ *
+ * This must be power of 2 and less than or equal to ZS_ALIGN
+ */
+struct link_free {
+ /* Handle of next free chunk (encodes <PFN, obj_idx>) */
+ void *next;
+};
+
+struct zs_pool {
+ struct size_class size_class[ZS_SIZE_CLASSES];
+
+ gfp_t flags; /* allocation flags used when growing pool */
+ const char *name;
+};
+
+/*
+ * A zspage's class index and fullness group
+ * are encoded in its (first)page->mapping
+ */
+#define CLASS_IDX_BITS 28
+#define FULLNESS_BITS 4
+#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
+#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
+
+/*
+ * By default, zsmalloc uses a copy-based object mapping method to access
+ * allocations that span two pages. However, if a particular architecture
+ * 1) Implements local_flush_tlb_kernel_range() and 2) Performs VM mapping
+ * faster than copying, then it should be added here so that
+ * USE_PGTABLE_MAPPING is defined. This causes zsmalloc to use page table
+ * mapping rather than copying
+ * for object mapping.
+*/
+#if defined(CONFIG_ARM)
+#define USE_PGTABLE_MAPPING
+#endif
+
+struct mapping_area {
+#ifdef USE_PGTABLE_MAPPING
+ struct vm_struct *vm; /* vm area for mapping object that span pages */
+#else
+ char *vm_buf; /* copy buffer for objects that span pages */
+#endif
+ char *vm_addr; /* address of kmap_atomic()'ed pages */
+ enum zs_mapmode vm_mm; /* mapping mode */
+};
+
+
+/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
+static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
+
+static int is_first_page(struct page *page)
+{
+ return PagePrivate(page);
+}
+
+static int is_last_page(struct page *page)
+{
+ return PagePrivate2(page);
+}
+
+static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
+ enum fullness_group *fullness)
+{
+ unsigned long m;
+ BUG_ON(!is_first_page(page));
+
+ m = (unsigned long)page->mapping;
+ *fullness = m & FULLNESS_MASK;
+ *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
+}
+
+static void set_zspage_mapping(struct page *page, unsigned int class_idx,
+ enum fullness_group fullness)
+{
+ unsigned long m;
+ BUG_ON(!is_first_page(page));
+
+ m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
+ (fullness & FULLNESS_MASK);
+ page->mapping = (struct address_space *)m;
+}
+
+static int get_size_class_index(int size)
+{
+ int idx = 0;
+
+ if (likely(size > ZS_MIN_ALLOC_SIZE))
+ idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
+ ZS_SIZE_CLASS_DELTA);
+
+ return idx;
+}
+
+static enum fullness_group get_fullness_group(struct page *page)
+{
+ int inuse, max_objects;
+ enum fullness_group fg;
+ BUG_ON(!is_first_page(page));
+
+ inuse = page->inuse;
+ max_objects = page->objects;
+
+ if (inuse == 0)
+ fg = ZS_EMPTY;
+ else if (inuse == max_objects)
+ fg = ZS_FULL;
+ else if (inuse <= max_objects / fullness_threshold_frac)
+ fg = ZS_ALMOST_EMPTY;
+ else
+ fg = ZS_ALMOST_FULL;
+
+ return fg;
+}
+
+static void insert_zspage(struct page *page, struct size_class *class,
+ enum fullness_group fullness)
+{
+ struct page **head;
+
+ BUG_ON(!is_first_page(page));
+
+ if (fullness >= _ZS_NR_FULLNESS_GROUPS)
+ return;
+
+ head = &class->fullness_list[fullness];
+ if (*head)
+ list_add_tail(&page->lru, &(*head)->lru);
+
+ *head = page;
+}
+
+static void remove_zspage(struct page *page, struct size_class *class,
+ enum fullness_group fullness)
+{
+ struct page **head;
+
+ BUG_ON(!is_first_page(page));
+
+ if (fullness >= _ZS_NR_FULLNESS_GROUPS)
+ return;
+
+ head = &class->fullness_list[fullness];
+ BUG_ON(!*head);
+ if (list_empty(&(*head)->lru))
+ *head = NULL;
+ else if (*head == page)
+ *head = (struct page *)list_entry((*head)->lru.next,
+ struct page, lru);
+
+ list_del_init(&page->lru);
+}
+
+static enum fullness_group fix_fullness_group(struct zs_pool *pool,
+ struct page *page)
+{
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group currfg, newfg;
+
+ BUG_ON(!is_first_page(page));
+
+ get_zspage_mapping(page, &class_idx, &currfg);
+ newfg = get_fullness_group(page);
+ if (newfg == currfg)
+ goto out;
+
+ class = &pool->size_class[class_idx];
+ remove_zspage(page, class, currfg);
+ insert_zspage(page, class, newfg);
+ set_zspage_mapping(page, class_idx, newfg);
+
+out:
+ return newfg;
+}
+
+/*
+ * We have to decide on how many pages to link together
+ * to form a zspage for each size class. This is important
+ * to reduce wastage due to unusable space left at end of
+ * each zspage which is given as:
+ * wastage = Zp - Zp % size_class
+ * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
+ *
+ * For example, for size class of 3/8 * PAGE_SIZE, we should
+ * link together 3 PAGE_SIZE sized pages to form a zspage
+ * since then we can perfectly fit in 8 such objects.
+ */
+static int get_pages_per_zspage(int class_size)
+{
+ int i, max_usedpc = 0;
+ /* zspage order which gives maximum used size per KB */
+ int max_usedpc_order = 1;
+
+ for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
+ int zspage_size;
+ int waste, usedpc;
+
+ zspage_size = i * PAGE_SIZE;
+ waste = zspage_size % class_size;
+ usedpc = (zspage_size - waste) * 100 / zspage_size;
+
+ if (usedpc > max_usedpc) {
+ max_usedpc = usedpc;
+ max_usedpc_order = i;
+ }
+ }
+
+ return max_usedpc_order;
+}
+
+/*
+ * A single 'zspage' is composed of many system pages which are
+ * linked together using fields in struct page. This function finds
+ * the first/head page, given any component page of a zspage.
+ */
+static struct page *get_first_page(struct page *page)
+{
+ if (is_first_page(page))
+ return page;
+ else
+ return page->first_page;
+}
+
+static struct page *get_next_page(struct page *page)
+{
+ struct page *next;
+
+ if (is_last_page(page))
+ next = NULL;
+ else if (is_first_page(page))
+ next = (struct page *)page->private;
+ else
+ next = list_entry(page->lru.next, struct page, lru);
+
+ return next;
+}
+
+/* Encode <page, obj_idx> as a single handle value */
+static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
+{
+ unsigned long handle;
+
+ if (!page) {
+ BUG_ON(obj_idx);
+ return NULL;
+ }
+
+ handle = page_to_pfn(page) << OBJ_INDEX_BITS;
+ handle |= (obj_idx & OBJ_INDEX_MASK);
+
+ return (void *)handle;
+}
+
+/* Decode <page, obj_idx> pair from the given object handle */
+static void obj_handle_to_location(unsigned long handle, struct page **page,
+ unsigned long *obj_idx)
+{
+ *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
+ *obj_idx = handle & OBJ_INDEX_MASK;
+}
+
+static unsigned long obj_idx_to_offset(struct page *page,
+ unsigned long obj_idx, int class_size)
+{
+ unsigned long off = 0;
+
+ if (!is_first_page(page))
+ off = page->index;
+
+ return off + obj_idx * class_size;
+}
+
+static void reset_page(struct page *page)
+{
+ clear_bit(PG_private, &page->flags);
+ clear_bit(PG_private_2, &page->flags);
+ set_page_private(page, 0);
+ page->mapping = NULL;
+ page->freelist = NULL;
+ reset_page_mapcount(page);
+}
+
+static void free_zspage(struct page *first_page)
+{
+ struct page *nextp, *tmp, *head_extra;
+
+ BUG_ON(!is_first_page(first_page));
+ BUG_ON(first_page->inuse);
+
+ head_extra = (struct page *)page_private(first_page);
+
+ reset_page(first_page);
+ __free_page(first_page);
+
+ /* zspage with only 1 system page */
+ if (!head_extra)
+ return;
+
+ list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
+ list_del(&nextp->lru);
+ reset_page(nextp);
+ __free_page(nextp);
+ }
+ reset_page(head_extra);
+ __free_page(head_extra);
+}
+
+/* Initialize a newly allocated zspage */
+static void init_zspage(struct page *first_page, struct size_class *class)
+{
+ unsigned long off = 0;
+ struct page *page = first_page;
+
+ BUG_ON(!is_first_page(first_page));
+ while (page) {
+ struct page *next_page;
+ struct link_free *link;
+ unsigned int i, objs_on_page;
+
+ /*
+ * page->index stores offset of first object starting
+ * in the page. For the first page, this is always 0,
+ * so we use first_page->index (aka ->freelist) to store
+ * head of corresponding zspage's freelist.
+ */
+ if (page != first_page)
+ page->index = off;
+
+ link = (struct link_free *)kmap_atomic(page) +
+ off / sizeof(*link);
+ objs_on_page = (PAGE_SIZE - off) / class->size;
+
+ for (i = 1; i <= objs_on_page; i++) {
+ off += class->size;
+ if (off < PAGE_SIZE) {
+ link->next = obj_location_to_handle(page, i);
+ link += class->size / sizeof(*link);
+ }
+ }
+
+ /*
+ * We now come to the last (full or partial) object on this
+ * page, which must point to the first object on the next
+ * page (if present)
+ */
+ next_page = get_next_page(page);
+ link->next = obj_location_to_handle(next_page, 0);
+ kunmap_atomic(link);
+ page = next_page;
+ off = (off + class->size) % PAGE_SIZE;
+ }
+}
+
+/*
+ * Allocate a zspage for the given size class
+ */
+static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
+{
+ int i, error;
+ struct page *first_page = NULL, *uninitialized_var(prev_page);
+
+ /*
+ * Allocate individual pages and link them together as:
+ * 1. first page->private = first sub-page
+ * 2. all sub-pages are linked together using page->lru
+ * 3. each sub-page is linked to the first page using page->first_page
+ *
+ * For each size class, First/Head pages are linked together using
+ * page->lru. Also, we set PG_private to identify the first page
+ * (i.e. no other sub-page has this flag set) and PG_private_2 to
+ * identify the last page.
+ */
+ error = -ENOMEM;
+ for (i = 0; i < class->pages_per_zspage; i++) {
+ struct page *page;
+
+ page = alloc_page(flags);
+ if (!page)
+ goto cleanup;
+
+ INIT_LIST_HEAD(&page->lru);
+ if (i == 0) { /* first page */
+ SetPagePrivate(page);
+ set_page_private(page, 0);
+ first_page = page;
+ first_page->inuse = 0;
+ }
+ if (i == 1)
+ first_page->private = (unsigned long)page;
+ if (i >= 1)
+ page->first_page = first_page;
+ if (i >= 2)
+ list_add(&page->lru, &prev_page->lru);
+ if (i == class->pages_per_zspage - 1) /* last page */
+ SetPagePrivate2(page);
+ prev_page = page;
+ }
+
+ init_zspage(first_page, class);
+
+ first_page->freelist = obj_location_to_handle(first_page, 0);
+ /* Maximum number of objects we can store in this zspage */
+ first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
+
+ error = 0; /* Success */
+
+cleanup:
+ if (unlikely(error) && first_page) {
+ free_zspage(first_page);
+ first_page = NULL;
+ }
+
+ return first_page;
+}
+
+static struct page *find_get_zspage(struct size_class *class)
+{
+ int i;
+ struct page *page;
+
+ for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
+ page = class->fullness_list[i];
+ if (page)
+ break;
+ }
+
+ return page;
+}
+
+#ifdef USE_PGTABLE_MAPPING
+static inline int __zs_cpu_up(struct mapping_area *area)
+{
+ /*
+ * Make sure we don't leak memory if a cpu UP notification
+ * and zs_init() race and both call zs_cpu_up() on the same cpu
+ */
+ if (area->vm)
+ return 0;
+ area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
+ if (!area->vm)
+ return -ENOMEM;
+ return 0;
+}
+
+static inline void __zs_cpu_down(struct mapping_area *area)
+{
+ if (area->vm)
+ free_vm_area(area->vm);
+ area->vm = NULL;
+}
+
+static inline void *__zs_map_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
+ area->vm_addr = area->vm->addr;
+ return area->vm_addr + off;
+}
+
+static inline void __zs_unmap_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ unsigned long addr = (unsigned long)area->vm_addr;
+ unsigned long end = addr + (PAGE_SIZE * 2);
+
+ flush_cache_vunmap(addr, end);
+ unmap_kernel_range_noflush(addr, PAGE_SIZE * 2);
+ local_flush_tlb_kernel_range(addr, end);
+}
+
+#else /* USE_PGTABLE_MAPPING */
+
+static inline int __zs_cpu_up(struct mapping_area *area)
+{
+ /*
+ * Make sure we don't leak memory if a cpu UP notification
+ * and zs_init() race and both call zs_cpu_up() on the same cpu
+ */
+ if (area->vm_buf)
+ return 0;
+ area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
+ if (!area->vm_buf)
+ return -ENOMEM;
+ return 0;
+}
+
+static inline void __zs_cpu_down(struct mapping_area *area)
+{
+ if (area->vm_buf)
+ free_page((unsigned long)area->vm_buf);
+ area->vm_buf = NULL;
+}
+
+static void *__zs_map_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ int sizes[2];
+ void *addr;
+ char *buf = area->vm_buf;
+
+ /* disable page faults to match kmap_atomic() return conditions */
+ pagefault_disable();
+
+ /* no read fastpath */
+ if (area->vm_mm == ZS_MM_WO)
+ goto out;
+
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = size - sizes[0];
+
+ /* copy object to per-cpu buffer */
+ addr = kmap_atomic(pages[0]);
+ memcpy(buf, addr + off, sizes[0]);
+ kunmap_atomic(addr);
+ addr = kmap_atomic(pages[1]);
+ memcpy(buf + sizes[0], addr, sizes[1]);
+ kunmap_atomic(addr);
+out:
+ return area->vm_buf;
+}
+
+static void __zs_unmap_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ int sizes[2];
+ void *addr;
+ char *buf = area->vm_buf;
+
+ /* no write fastpath */
+ if (area->vm_mm == ZS_MM_RO)
+ goto out;
+
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = size - sizes[0];
+
+ /* copy per-cpu buffer to object */
+ addr = kmap_atomic(pages[0]);
+ memcpy(addr + off, buf, sizes[0]);
+ kunmap_atomic(addr);
+ addr = kmap_atomic(pages[1]);
+ memcpy(addr, buf + sizes[0], sizes[1]);
+ kunmap_atomic(addr);
+
+out:
+ /* enable page faults to match kunmap_atomic() return conditions */
+ pagefault_enable();
+}
+
+#endif /* USE_PGTABLE_MAPPING */
+
+static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
+ void *pcpu)
+{
+ int ret, cpu = (long)pcpu;
+ struct mapping_area *area;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ area = &per_cpu(zs_map_area, cpu);
+ ret = __zs_cpu_up(area);
+ if (ret)
+ return notifier_from_errno(ret);
+ break;
+ case CPU_DEAD:
+ case CPU_UP_CANCELED:
+ area = &per_cpu(zs_map_area, cpu);
+ __zs_cpu_down(area);
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block zs_cpu_nb = {
+ .notifier_call = zs_cpu_notifier
+};
+
+static void zs_exit(void)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
+ unregister_cpu_notifier(&zs_cpu_nb);
+}
+
+static int zs_init(void)
+{
+ int cpu, ret;
+
+ register_cpu_notifier(&zs_cpu_nb);
+ for_each_online_cpu(cpu) {
+ ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
+ if (notifier_to_errno(ret))
+ goto fail;
+ }
+ return 0;
+fail:
+ zs_exit();
+ return notifier_to_errno(ret);
+}
+
+struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
+{
+ int i, ovhd_size;
+ struct zs_pool *pool;
+
+ if (!name)
+ return NULL;
+
+ ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
+ pool = kzalloc(ovhd_size, GFP_KERNEL);
+ if (!pool)
+ return NULL;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ int size;
+ struct size_class *class;
+
+ size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
+ if (size > ZS_MAX_ALLOC_SIZE)
+ size = ZS_MAX_ALLOC_SIZE;
+
+ class = &pool->size_class[i];
+ class->size = size;
+ class->index = i;
+ spin_lock_init(&class->lock);
+ class->pages_per_zspage = get_pages_per_zspage(size);
+
+ }
+
+ pool->flags = flags;
+ pool->name = name;
+
+ return pool;
+}
+EXPORT_SYMBOL_GPL(zs_create_pool);
+
+void zs_destroy_pool(struct zs_pool *pool)
+{
+ int i;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ int fg;
+ struct size_class *class = &pool->size_class[i];
+
+ for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
+ if (class->fullness_list[fg]) {
+ pr_info("Freeing non-empty class with size "
+ "%db, fullness group %d\n",
+ class->size, fg);
+ }
+ }
+ }
+ kfree(pool);
+}
+EXPORT_SYMBOL_GPL(zs_destroy_pool);
+
+/**
+ * zs_malloc - Allocate block of given size from pool.
+ * @pool: pool to allocate from
+ * @size: size of block to allocate
+ *
+ * On success, handle to the allocated object is returned,
+ * otherwise 0.
+ * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
+ */
+unsigned long zs_malloc(struct zs_pool *pool, size_t size)
+{
+ unsigned long obj;
+ struct link_free *link;
+ int class_idx;
+ struct size_class *class;
+
+ struct page *first_page, *m_page;
+ unsigned long m_objidx, m_offset;
+
+ if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
+ return 0;
+
+ class_idx = get_size_class_index(size);
+ class = &pool->size_class[class_idx];
+ BUG_ON(class_idx != class->index);
+
+ spin_lock(&class->lock);
+ first_page = find_get_zspage(class);
+
+ if (!first_page) {
+ spin_unlock(&class->lock);
+ first_page = alloc_zspage(class, pool->flags);
+ if (unlikely(!first_page))
+ return 0;
+
+ set_zspage_mapping(first_page, class->index, ZS_EMPTY);
+ spin_lock(&class->lock);
+ class->pages_allocated += class->pages_per_zspage;
+ }
+
+ obj = (unsigned long)first_page->freelist;
+ obj_handle_to_location(obj, &m_page, &m_objidx);
+ m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
+
+ link = (struct link_free *)kmap_atomic(m_page) +
+ m_offset / sizeof(*link);
+ first_page->freelist = link->next;
+ memset(link, POISON_INUSE, sizeof(*link));
+ kunmap_atomic(link);
+
+ first_page->inuse++;
+ /* Now move the zspage to another fullness group, if required */
+ fix_fullness_group(pool, first_page);
+ spin_unlock(&class->lock);
+
+ return obj;
+}
+EXPORT_SYMBOL_GPL(zs_malloc);
+
+void zs_free(struct zs_pool *pool, unsigned long obj)
+{
+ struct link_free *link;
+ struct page *first_page, *f_page;
+ unsigned long f_objidx, f_offset;
+
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group fullness;
+
+ if (unlikely(!obj))
+ return;
+
+ obj_handle_to_location(obj, &f_page, &f_objidx);
+ first_page = get_first_page(f_page);
+
+ get_zspage_mapping(first_page, &class_idx, &fullness);
+ class = &pool->size_class[class_idx];
+ f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
+
+ spin_lock(&class->lock);
+
+ /* Insert this object in containing zspage's freelist */
+ link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
+ + f_offset);
+ link->next = first_page->freelist;
+ kunmap_atomic(link);
+ first_page->freelist = (void *)obj;
+
+ first_page->inuse--;
+ fullness = fix_fullness_group(pool, first_page);
+
+ if (fullness == ZS_EMPTY)
+ class->pages_allocated -= class->pages_per_zspage;
+
+ spin_unlock(&class->lock);
+
+ if (fullness == ZS_EMPTY)
+ free_zspage(first_page);
+}
+EXPORT_SYMBOL_GPL(zs_free);
+
+/**
+ * zs_map_object - get address of allocated object from handle.
+ * @pool: pool from which the object was allocated
+ * @handle: handle returned from zs_malloc
+ *
+ * Before using an object allocated from zs_malloc, it must be mapped using
+ * this function. When done with the object, it must be unmapped using
+ * zs_unmap_object.
+ *
+ * Only one object can be mapped per cpu at a time. There is no protection
+ * against nested mappings.
+ *
+ * This function returns with preemption and page faults disabled.
+*/
+void *zs_map_object(struct zs_pool *pool, unsigned long handle,
+ enum zs_mapmode mm)
+{
+ struct page *page;
+ unsigned long obj_idx, off;
+
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
+ struct page *pages[2];
+
+ BUG_ON(!handle);
+
+ /*
+ * Because we use per-cpu mapping areas shared among the
+ * pools/users, we can't allow mapping in interrupt context
+ * because it can corrupt another users mappings.
+ */
+ BUG_ON(in_interrupt());
+
+ obj_handle_to_location(handle, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = &pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = &get_cpu_var(zs_map_area);
+ area->vm_mm = mm;
+ if (off + class->size <= PAGE_SIZE) {
+ /* this object is contained entirely within a page */
+ area->vm_addr = kmap_atomic(page);
+ return area->vm_addr + off;
+ }
+
+ /* this object spans two pages */
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
+
+ return __zs_map_object(area, pages, off, class->size);
+}
+EXPORT_SYMBOL_GPL(zs_map_object);
+
+void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
+{
+ struct page *page;
+ unsigned long obj_idx, off;
+
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
+
+ BUG_ON(!handle);
+
+ obj_handle_to_location(handle, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = &pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = &__get_cpu_var(zs_map_area);
+ if (off + class->size <= PAGE_SIZE)
+ kunmap_atomic(area->vm_addr);
+ else {
+ struct page *pages[2];
+
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
+
+ __zs_unmap_object(area, pages, off, class->size);
+ }
+ put_cpu_var(zs_map_area);
+}
+EXPORT_SYMBOL_GPL(zs_unmap_object);
+
+u64 zs_get_total_size_bytes(struct zs_pool *pool)
+{
+ int i;
+ u64 npages = 0;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++)
+ npages += pool->size_class[i].pages_allocated;
+
+ return npages << PAGE_SHIFT;
+}
+EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
+
+module_init(zs_init);
+module_exit(zs_exit);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_AUTHOR("Nitin Gupta <ngupta@xxxxxxxxxx>");
--
1.7.9.5

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/