[PATCH 24/31] blk-throttle: implement dispatch looping
From: Tejun Heo
Date: Wed May 01 2013 - 20:43:41 EST
throtl_select_dispatch() only dispatches throtl_quantum bios on each
invocation. blk_throtl_dispatch_work_fn() in turn depends on
throtl_schedule_next_dispatch() scheduling the next dispatch window
immediately so that undue delays aren't incurred. This effectively
chains multiple dispatch work item executions back-to-back when there
are more than throtl_quantum bios to dispatch on a given tick.
There is no reason to finish the current work item just to repeat it
immediately. This patch makes throtl_schedule_next_dispatch() return
%false without doing anything if the current dispatch window is still
open and updates blk_throtl_dispatch_work_fn() repeat dispatching
after cpu_relax() on %false return.
This change will help implementing hierarchy support as dispatching
will be done from pending_timer and immediate reschedule of timer
function isn't supported and doesn't make much sense.
While this patch changes how dispatch behaves when there are more than
throtl_quantum bios to dispatch on a single tick, the behavior change
is immaterial.
Signed-off-by: Tejun Heo <tj@xxxxxxxxxx>
---
block/blk-throttle.c | 82 +++++++++++++++++++++++++++++++++++-----------------
1 file changed, 56 insertions(+), 26 deletions(-)
diff --git a/block/blk-throttle.c b/block/blk-throttle.c
index 9270663..d573cdf 100644
--- a/block/blk-throttle.c
+++ b/block/blk-throttle.c
@@ -464,24 +464,41 @@ static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
expires - jiffies, jiffies);
}
-static void throtl_schedule_next_dispatch(struct throtl_service_queue *sq)
+/**
+ * throtl_schedule_next_dispatch - schedule the next dispatch cycle
+ * @sq: the service_queue to schedule dispatch for
+ * @force: force scheduling
+ *
+ * Arm @sq->pending_timer so that the next dispatch cycle starts on the
+ * dispatch time of the first pending child. Returns %true if either timer
+ * is armed or there's no pending child left. %false if the current
+ * dispatch window is still open and the caller should continue
+ * dispatching.
+ *
+ * If @force is %true, the dispatch timer is always scheduled and this
+ * function is guaranteed to return %true. This is to be used when the
+ * caller can't dispatch itself and needs to invoke pending_timer
+ * unconditionally. Note that forced scheduling is likely to induce short
+ * delay before dispatch starts even if @sq->first_pending_disptime is not
+ * in the future and thus shouldn't be used in hot paths.
+ */
+static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
+ bool force)
{
- struct throtl_data *td = sq_to_td(sq);
-
/* any pending children left? */
if (!sq->nr_pending)
- return;
+ return true;
update_min_dispatch_time(sq);
/* is the next dispatch time in the future? */
- if (time_after(sq->first_pending_disptime, jiffies)) {
+ if (force || time_after(sq->first_pending_disptime, jiffies)) {
throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
- return;
+ return true;
}
- /* kick immediate execution */
- queue_work(kthrotld_workqueue, &td->dispatch_work);
+ /* tell the caller to continue dispatching */
+ return false;
}
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
@@ -927,39 +944,47 @@ void blk_throtl_dispatch_work_fn(struct work_struct *work)
dispatch_work);
struct throtl_service_queue *sq = &td->service_queue;
struct request_queue *q = td->queue;
- unsigned int nr_disp = 0;
struct bio_list bio_list_on_stack;
struct bio *bio;
struct blk_plug plug;
- int rw;
+ bool dispatched = false;
+ int rw, ret;
spin_lock_irq(q->queue_lock);
bio_list_init(&bio_list_on_stack);
- throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
- td->nr_queued[READ] + td->nr_queued[WRITE],
- td->nr_queued[READ], td->nr_queued[WRITE]);
+ while (true) {
+ throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
+ td->nr_queued[READ] + td->nr_queued[WRITE],
+ td->nr_queued[READ], td->nr_queued[WRITE]);
+
+ ret = throtl_select_dispatch(sq);
+ if (ret) {
+ for (rw = READ; rw <= WRITE; rw++) {
+ bio_list_merge(&bio_list_on_stack, &sq->bio_lists[rw]);
+ bio_list_init(&sq->bio_lists[rw]);
+ }
+ throtl_log(sq, "bios disp=%u", ret);
+ dispatched = true;
+ }
- nr_disp = throtl_select_dispatch(sq);
+ if (throtl_schedule_next_dispatch(sq, false))
+ break;
- if (nr_disp) {
- for (rw = READ; rw <= WRITE; rw++) {
- bio_list_merge(&bio_list_on_stack, &sq->bio_lists[rw]);
- bio_list_init(&sq->bio_lists[rw]);
- }
- throtl_log(sq, "bios disp=%u", nr_disp);
+ /* this dispatch windows is still open, relax and repeat */
+ spin_unlock_irq(q->queue_lock);
+ cpu_relax();
+ spin_lock_irq(q->queue_lock);
}
- throtl_schedule_next_dispatch(sq);
-
spin_unlock_irq(q->queue_lock);
/*
* If we dispatched some requests, unplug the queue to make sure
* immediate dispatch
*/
- if (nr_disp) {
+ if (dispatched) {
blk_start_plug(&plug);
while((bio = bio_list_pop(&bio_list_on_stack)))
generic_make_request(bio);
@@ -1075,7 +1100,7 @@ static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
if (tg->flags & THROTL_TG_PENDING) {
tg_update_disptime(tg);
- throtl_schedule_next_dispatch(sq->parent_sq);
+ throtl_schedule_next_dispatch(sq->parent_sq, true);
}
/* kick dispatch in case disptime got shortened */
@@ -1229,10 +1254,15 @@ queue_bio:
throtl_add_bio_tg(bio, tg);
throttled = true;
- /* update @tg's dispatch time if @tg was empty before @bio */
+ /*
+ * Update @tg's dispatch time and force schedule dispatch if @tg
+ * was empty before @bio. The forced scheduling isn't likely to
+ * cause undue delay as @bio is likely to be dispatched directly if
+ * its @tg's disptime is not in the future.
+ */
if (tg->flags & THROTL_TG_WAS_EMPTY) {
tg_update_disptime(tg);
- throtl_schedule_next_dispatch(tg->service_queue.parent_sq);
+ throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
}
out_unlock:
--
1.8.1.4
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/