On 01/26/2014 01:08 AM, Qiaowei Ren wrote:Ok. Thanks for your review.This patch adds the Documentation/x86/intel_mpx.txt file with some
information about Intel MPX.
Signed-off-by: Qiaowei Ren <qiaowei.ren@xxxxxxxxx>
---
Documentation/x86/intel_mpx.txt | 226 +++++++++++++++++++++++++++++++++++++++
1 files changed, 226 insertions(+), 0 deletions(-)
create mode 100644 Documentation/x86/intel_mpx.txt
diff --git a/Documentation/x86/intel_mpx.txt b/Documentation/x86/intel_mpx.txt
new file mode 100644
index 0000000..052001c
--- /dev/null
+++ b/Documentation/x86/intel_mpx.txt
@@ -0,0 +1,226 @@
+1. Intel(R) MPX Overview
+========================
+
+
+Intel(R) Memory Protection Extensions (Intel(R) MPX) is a new
+capability introduced into Intel Architecture. Intel MPX provides
+hardware features that can be used in conjunction with compiler
+changes to check memory references, for those references whose
+compile-time normal intentions are usurped at runtime due to
+buffer overflow or underflow.
+
+Two of the most important goals of Intel MPX are to provide
+this capability at very low performance overhead for newly
+compiled code, and to provide compatibility mechanisms with
+legacy software components. MPX architecture is designed
designed to
+allow a machine (i.e., the processor(s) and the OS software)
+to run both MPX enabled software and legacy software that
+is MPX unaware. In such a case, the legacy software does not
+benefit from MPX, but it also does not experience any change
+in functionality or reduction in performance.
+
+Intel(R) MPX Programming Model
+------------------------------
+
+Intel MPX introduces new registers and new instructions that
+operate on these registers. Some of the registers added are
+bounds registers which store a pointer's lower bound and upper
+bound limits. Whenever the pointer is used, the requested
+reference is checked against the pointer's associated bounds,
+thereby preventing out-of-bound memory access (such as buffer
+overflows and overruns). Out-of-bounds memory references
+initiate a #BR exception which can then be handled in an
+appropriate manner.
+
+Loading and Storing Bounds using Translation
+--------------------------------------------
+
+Intel MPX defines two instructions for load/store of the linear
+address of a pointer to a buffer, along with the bounds of the
+buffer into a paging structure of extended bounds. Specifically
+when storing extended bounds, the processor will perform address
+translation of the address where the pointer is stored to an
+address in the Bound Table (BT) to determine the store location
+of extended bounds. Loading of an extended bounds performs the
+reverse sequence.
+
+The structure in memory to load/store an extended bound is a
+4-tuple consisting of lower bound, upper bound, pointer value
+and a reserved field. Bound loads and stores access 32-bit or
+64-bit operand size according to the operation mode. Thus,
+a bound table entry is 4*32 bits in 32-bit mode and 4*64 bits
+in 64-bit mode.
+
+The linear address of a bound table is stored in a Bound
+Directory (BD) entry. And the linear address of the bound
The linear address
+directory is derived from either BNDCFGU or BNDCFGS registers.
+Bounds in memory are stored in Bound Tables (BT) as an extended
+bound, which are accessed via Bound Directory (BD) and address
+translation performed by BNDLDX/BNDSTX instructions.
+
+Bounds Directory (BD) and Bounds Tables (BT) are stored in
+application memory and are allocated by the application (in case
+of kernel use, the structures will be in kernel memory). The
+bound directory and each instance of bound table are in contiguous
+linear memory.
+
+XSAVE/XRESTOR Support of Intel MPX State
+----------------------------------------
+
+Enabling Intel MPX requires an OS to manage two bits in XCR0:
+ - BNDREGS for saving and restoring registers BND0-BND3,
+ - BNDCSR for saving and restoring the user-mode configuration
+(BNDCFGU) and the status register (BNDSTATUS).
+
+The reason for having two separate bits is that BND0-BND3 is
are
+likely to be volatile state, while BNDCFGU and BNDSTATUS are not.
+Therefore, an OS has flexibility in handling these two states
+differently in saving or restoring them.
+
+For details about the Intel MPX instructions, see "Intel(R)
+Architecture Instruction Set Extensions Programming Reference".
+
+
+2. How to get the advantage of MPX
drop trailing space above.
+==================================
+
+
+To get the advantage of MPX, changes are required in
+the OS kernel, binutils, compiler, system libraries support.
and system libraries support.
+
+MPX support in the GNU toolchain
+--------------------------------
+
+This section describes changes in GNU Binutils, GCC and Glibc
+to support MPX.
+
+The first step of MPX support is to implement support for new
+hardware features in binutils and the GCC.
+
+The second step is implementation of MPX instrumentation pass
+in the GCC compiler which is responsible for instrumenting all
+memory accesses with pointer checks. Compiler changes for runtime
+bound checks include:
+
+ * Bounds creation for statically allocated objects, objects
+ allocated on the stack and statically initialized pointers.
+
+ * MPX support in ABI: ABI extension allows passing bounds for
+ the pointers passed as function arguments and provide returned
provides
+ bounds with the pointers.
+
+ * Bounds table content management: each pointer is stored into
that is stored into
+ the memory should have its bounds stored in the corresponding
drop "the":
memory should