Re: [PATCH v6 0/7] vfs: Non-blockling buffered fs read (page cache only)

From: Andrew Morton
Date: Tue Nov 25 2014 - 18:00:50 EST


On Mon, 10 Nov 2014 11:40:23 -0500 Milosz Tanski <milosz@xxxxxxxxx> wrote:

> This patcheset introduces an ability to perform a non-blocking read from
> regular files in buffered IO mode. This works by only for those filesystems
> that have data in the page cache.
>
> It does this by introducing new syscalls new syscalls preadv2/pwritev2. These
> new syscalls behave like the network sendmsg, recvmsg syscalls that accept an
> extra flag argument (RWF_NONBLOCK).
>
> It's a very common patern today (samba, libuv, etc..) use a large threadpool to
> perform buffered IO operations. They submit the work form another thread
> that performs network IO and epoll or other threads that perform CPU work. This
> leads to increased latency for processing, esp. in the case of data that's
> already cached in the page cache.

It would be extremely useful if we could get input from the developers
of "samba, libuv, etc.." about this. Do they think it will be useful,
will they actually use it, can they identify any shortcomings, etc.

Because it would be terrible if we were to merge this then discover
that major applications either don't use it, or require
userspace-visible changes.

Ideally, someone would whip up pread2() support into those apps and
report on the result.

> With the new interface the applications will now be able to fetch the data in
> their network / cpu bound thread(s) and only defer to a threadpool if it's not
> there. In our own application (VLDB) we've observed a decrease in latency for
> "fast" request by avoiding unnecessary queuing and having to swap out current
> tasks in IO bound work threads.

I haven't read the patches yet, but I'm scratching my head over
pwritev2(). There's much talk and testing results here about
preadv2(), but nothing about how pwritev() works, what its semantics
are, testing results, etc.

> Version 6 highlight:
> - Compat syscall flag checks, per. Jeff.
> - Minor stylistic suggestions.
>
> Version 5 highlight:
> - XFS support for RWF_NONBLOCK. from Christoph.
> - RWF_DSYNC flag and support for pwritev2, from Christoph.
> - Implemented compat syscalls, per. Jeff.
> - Missing nfs, ceph changes from older patchset.
>
> Version 4 highlight:
> - Updated for 3.18-rc1.
> - Performance data from our application.
> - First stab at man page with Jeff's help. Patch is in-reply to.

I can't find that manpage. It is important. Please include it in the
patch series.

I'm particularly interested in details regarding

- behaviour and userspace return values when data is not found in pagecache

- how it handles partially uptodate pages (blocksize < pagesize).
For both reads and writes. This sort of thing gets intricate so
let's spell the design out with great specificity.

- behaviour at EOF.

- details regarding handling of file holes.

> RFC Version 3 highlights:
> - Down to 2 syscalls from 4; can user fp or argument position.
> - RWF_NONBLOCK value flag is not the same O_NONBLOCK, per Jeff.
>
> RFC Version 2 highlights:
> - Put the flags argument into kiocb (less noise), per. Al Viro
> - O_DIRECT checking early in the process, per. Jeff Moyer
> - Resolved duplicate (c&p) code in syscall code, per. Jeff
> - Included perf data in thread cover letter, per. Jeff
> - Created a new flag (not O_NONBLOCK) for readv2, perf Jeff
>
>
> Some perf data generated using fio comparing the posix aio engine to a version
> of the posix AIO engine that attempts to performs "fast" reads before
> submitting the operations to the queue. This workflow is on ext4 partition on
> raid0 (test / build-rig.) Simulating our database access patern workload using
> 16kb read accesses. Our database uses a home-spun posix aio like queue (samba
> does the same thing.)
>
> f1: ~73% rand read over mostly cached data (zipf med-size dataset)
> f2: ~18% rand read over mostly un-cached data (uniform large-dataset)
> f3: ~9% seq-read over large dataset
>
> before:
>
> f1:
> bw (KB /s): min= 11, max= 9088, per=0.56%, avg=969.54, stdev=827.99
> lat (msec) : 50=0.01%, 100=1.06%, 250=5.88%, 500=4.08%, 750=12.48%
> lat (msec) : 1000=17.27%, 2000=49.86%, >=2000=9.42%
> f2:
> bw (KB /s): min= 2, max= 1882, per=0.16%, avg=273.28, stdev=220.26
> lat (msec) : 250=5.65%, 500=3.31%, 750=15.64%, 1000=24.59%, 2000=46.56%
> lat (msec) : >=2000=4.33%
> f3:
> bw (KB /s): min= 0, max=265568, per=99.95%, avg=174575.10,
> stdev=34526.89
> lat (usec) : 2=0.01%, 4=0.01%, 10=0.02%, 20=0.27%, 50=10.82%
> lat (usec) : 100=50.34%, 250=5.05%, 500=7.12%, 750=6.60%, 1000=4.55%
> lat (msec) : 2=8.73%, 4=3.49%, 10=1.83%, 20=0.89%, 50=0.22%
> lat (msec) : 100=0.05%, 250=0.02%, 500=0.01%
> total:
> READ: io=102365MB, aggrb=174669KB/s, minb=240KB/s, maxb=173599KB/s,
> mint=600001msec, maxt=600113msec
>
> after (with fast read using preadv2 before submit):
>
> f1:
> bw (KB /s): min= 3, max=14897, per=1.28%, avg=2276.69, stdev=2930.39
> lat (usec) : 2=70.63%, 4=0.01%
> lat (msec) : 250=0.20%, 500=2.26%, 750=1.18%, 2000=0.22%, >=2000=25.53%
> f2:
> bw (KB /s): min= 2, max= 2362, per=0.14%, avg=249.83, stdev=222.00
> lat (msec) : 250=6.35%, 500=1.78%, 750=9.29%, 1000=20.49%, 2000=52.18%
> lat (msec) : >=2000=9.99%
> f3:
> bw (KB /s): min= 1, max=245448, per=100.00%, avg=177366.50,
> stdev=35995.60
> lat (usec) : 2=64.04%, 4=0.01%, 10=0.01%, 20=0.06%, 50=0.43%
> lat (usec) : 100=0.20%, 250=1.27%, 500=2.93%, 750=3.93%, 1000=7.35%
> lat (msec) : 2=14.27%, 4=2.88%, 10=1.54%, 20=0.81%, 50=0.22%
> lat (msec) : 100=0.05%, 250=0.02%
> total:
> READ: io=103941MB, aggrb=177339KB/s, minb=213KB/s, maxb=176375KB/s,
> mint=600020msec, maxt=600178msec
>
> Interpreting the results you can see total bandwidth stays the same but overall
> request latency is decreased in f1 (random, mostly cached) and f3 (sequential)
> workloads. There is a slight bump in latency for since it's random data that's

s/for/for f2/

> unlikely to be cached but we're always trying "fast read".
>
> In our application we have starting keeping track of "fast read" hits/misses
> and for files / requests that have a lot hit ratio we don't do "fast reads"
> mostly getting rid of extra latency in the uncached cases. In our real world
> work load we were able to reduce average response time by 20 to 30% (depends
> on amount of IO done by request).
>
> I've performed other benchmarks and I have no observed any perf regressions in
> any of the normal (old) code paths.
>
> I have co-developed these changes with Christoph Hellwig.
>

There have been several incomplete attempts to implement fincore(). If
we were to complete those attempts, preadv2() could be implemented
using fincore()+pread(). Plus we get fincore(), which is useful for
other (but probably similar) reasons. Probably fincore()+pwrite() could
be used to implement pwritev2(), but I don't know what pwritev2() does
yet.

Implementing fincore() is more flexible, requires less code and is less
likely to have bugs. So why not go that way? Yes, it's more CPU
intensive, but how much? Is the difference sufficient to justify the
preadv2()/pwritev2() approach?
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/