Re: i.MX6 CSC and scaler
From: Steve Longerbeam
Date: Mon Dec 15 2014 - 13:23:55 EST
On 12/15/2014 09:03 AM, Jean-Michel Hautbois wrote:
> Hi Steve, Philipp,
>
> I see in the kernel sources you created a ipu-ic.c file which helps
> working with the Color Space Converter on i.MX6.
> We would like to use it on our board with GStreamer, as the conversion
> done by the CPU is not very efficient :).
> What is the easiest/best approach to this ?
> Should we create a video device using a new driver, which would be
> instanciated as a /dev/videoX and see as a transform element in
> GStreamer ?
> The idea is to have a separate element, ideally without memory copy or
> anything like that.
Hi JM,
I've written a mem2mem driver for this. It does tiling to support
> 1024x1024 scaled output frames. I've attached it, feel free to use
it, it was pulled from a 3.14 kernel. I haven't submitted this driver to
community yet, mostly because I want to improve it, most importantly
move the tiling support into ipu-ic, so that tiling could eventually be used by
any media-device enabled pipeline elements (instead of only mem2mem).
Also Philipp probably also has a mem2mem device as well.
You would need to write a gstreamer plugin to make use of the
mem2mem device for h/w CSC and scaling.
Steve
/*
* This is a mem2mem driver for the Freescale i.MX6 SOC. It carries out
* color-space conversion, downsizing, resizing, and rotation transformations
* on input buffers using the IPU Image Converter's Post-Processing task.
*
* Based on mem2mem_testdev.c by Pawel Osciak.
*
* Copyright (c) 2012-2013 Mentor Graphics Inc.
* Steve Longerbeam <steve_longerbeam@xxxxxxxxxx>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the
* License, or (at your option) any later version
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <media/v4l2-mem2mem.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-dma-contig.h>
#include <video/imx-ipu-v3.h>
#include <media/imx6.h>
MODULE_DESCRIPTION("i.MX6 Post-Processing mem2mem device");
MODULE_AUTHOR("Steve Longerbeam <steve_longerbeam@xxxxxxxxxx>");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.1");
static int instrument;
module_param(instrument, int, 0);
MODULE_PARM_DESC(instrument, "1 = enable conversion time measurement");
#define MIN_W 128
#define MIN_H 128
#define MAX_W 4096
#define MAX_H 4096
#define S_ALIGN 1 /* multiple of 2 pixels */
/*
* The IC Resizer has a restriction that the output frame from the
* resizer must be 1024 or less in both width (pixels) and height
* (lines).
*
* This driver attempts to split up a conversion when the desired
* capture (output) frame resolution exceeds the IC resizer limit
* of 1024 in either dimension.
*
* If either dimension of the output frame exceeds the limit, the
* dimension is split into 1, 2, or 4 equal stripes, for a maximum
* of 4*4 or 16 segments. A conversion is then carried out for each
* segment (but taking care to pass the full frame stride length to
* the DMA channel's parameter memory!). IDMA double-buffering is used
* to convert each segment back-to-back when possible (see note below
* when double_buffering boolean is set).
*
* Note that the input frame must be split up into the same number
* of segments as the output frame.
*/
#define MAX_SEG_W 4
#define MAX_SEG_H 4
#define MAX_SEGMENTS (MAX_SEG_W * MAX_SEG_H)
/* Flags that indicate a format can be used for capture/output */
#define MEM2MEM_CAPTURE (1 << 0)
#define MEM2MEM_OUTPUT (1 << 1)
#define MEM2MEM_NAME "mx6-m2m"
/* Per queue */
#define MEM2MEM_DEF_NUM_BUFS VIDEO_MAX_FRAME
/* In bytes, per queue */
#define MEM2MEM_VID_MEM_LIMIT SZ_256M
#define dprintk(dev, fmt, arg...) \
v4l2_dbg(1, 1, &dev->v4l2_dev, "%s: " fmt, __func__, ## arg)
struct m2mx6_pixfmt {
char *name;
u32 fourcc;
int depth; /* total bpp */
int y_depth; /* depth of Y plane for planar formats */
int uv_width_dec; /* decimation in width for U/V planes */
int uv_height_dec; /* decimation in height for U/V planes */
bool uv_packed; /* partial planar (U and V in same plane) */
u32 types; /* Types the format can be used for */
};
struct m2mx6_seg_off {
/* start Y or packed offset of this segment */
u32 offset;
/* offset from start to segment in U plane, for planar formats */
u32 u_off;
/* offset from start to segment in V plane, for planar formats */
u32 v_off;
};
/* Per-queue, driver-specific private data */
struct m2mx6_q_data {
unsigned int width;
unsigned int height;
unsigned int bytesperline;
unsigned int stride;
unsigned int rot_stride;
unsigned int sizeimage;
struct m2mx6_pixfmt *fmt;
dma_addr_t phys_start;
struct m2mx6_seg_off seg_off[MAX_SEGMENTS];
/* width of each segment */
unsigned int seg_width;
/* height of each segment */
unsigned int seg_height;
};
struct m2mx6_dev {
struct v4l2_device v4l2_dev;
struct video_device *vfd;
struct mutex dev_mutex;
spinlock_t irqlock;
struct ipu_soc *ipu;
struct v4l2_m2m_dev *m2m_dev;
struct vb2_alloc_ctx *alloc_ctx;
};
struct m2mx6_ctx {
struct m2mx6_dev *dev;
/* the IPU resources this context will need */
struct ipuv3_channel *ipu_mem_pp_ch;
struct ipuv3_channel *ipu_pp_mem_ch;
struct ipuv3_channel *ipu_mem_rot_pp_ch;
struct ipuv3_channel *ipu_rot_pp_mem_ch;
struct ipu_ic *ic;
/* the IPU end-of-frame irqs */
int pp_mem_irq;
int rot_pp_mem_irq;
/* current buffer number for double buffering */
int cur_buf_num;
/* intermediate buffer for rotation */
void *rot_intermediate_buf[2];
dma_addr_t rot_intermediate_phys[2];
unsigned long rot_intermediate_buf_size;
/* The rotation controls */
int rotation; /* degrees */
bool hflip;
bool vflip;
/* derived from rotation, hflip, vflip controls */
enum ipu_rotate_mode rot_mode;
/* Abort requested by m2m */
int aborting;
struct v4l2_m2m_ctx *m2m_ctx;
/* Source and destination queue data */
struct m2mx6_q_data q_data[2];
/* can we use double-buffering for this operation? */
bool double_buffering;
/* # of rows (horizontal stripes) if dest height is > 1024 */
unsigned int num_rows;
/* # of columns (vertical stripes) if dest width is > 1024 */
unsigned int num_cols;
/* num_rows * num_cols */
unsigned int num_segs;
/* Next segment to process */
unsigned int next_seg;
/* for instrumenting */
struct timeval start;
};
enum {
V4L2_M2M_SRC = 0,
V4L2_M2M_DST = 1,
};
static struct m2mx6_pixfmt m2mx6_formats[] = {
{
.name = "RGB565",
.fourcc = V4L2_PIX_FMT_RGB565,
.depth = 16,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "RGB24",
.fourcc = V4L2_PIX_FMT_RGB24,
.depth = 24,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "BGR24",
.fourcc = V4L2_PIX_FMT_BGR24,
.depth = 24,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "RGB32",
.fourcc = V4L2_PIX_FMT_RGB32,
.depth = 32,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "BGR32",
.fourcc = V4L2_PIX_FMT_BGR32,
.depth = 32,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:2 packed, YUYV",
.fourcc = V4L2_PIX_FMT_YUYV,
.depth = 16,
.uv_width_dec = 2,
.uv_height_dec = 1,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:2 packed, UYVY",
.fourcc = V4L2_PIX_FMT_UYVY,
.depth = 16,
.uv_width_dec = 2,
.uv_height_dec = 1,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:0 planar, YUV",
.fourcc = V4L2_PIX_FMT_YUV420,
.depth = 12,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 2,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:0 planar, YVU",
.fourcc = V4L2_PIX_FMT_YVU420,
.depth = 12,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 2,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:0 partial planar, NV12",
.fourcc = V4L2_PIX_FMT_NV12,
.depth = 12,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 2,
.uv_packed = true,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:0 partial planar, NV21",
.fourcc = V4L2_PIX_FMT_NV21,
.depth = 12,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 2,
.uv_packed = true,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:2 planar, YUV",
.fourcc = V4L2_PIX_FMT_YUV422P,
.depth = 16,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 1,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:2 partial planar, NV16",
.fourcc = V4L2_PIX_FMT_NV16,
.depth = 16,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 1,
.uv_packed = true,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
}, {
.name = "4:2:2 partial planar, NV61",
.fourcc = V4L2_PIX_FMT_NV61,
.depth = 16,
.y_depth = 8,
.uv_width_dec = 2,
.uv_height_dec = 1,
.uv_packed = true,
.types = MEM2MEM_CAPTURE | MEM2MEM_OUTPUT,
},
};
#define NUM_FORMATS ARRAY_SIZE(m2mx6_formats)
/* Rotation controls */
static struct v4l2_queryctrl m2mx6_ctrls[] = {
{
.id = V4L2_CID_HFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Horizontal Flip",
.minimum = 0,
.maximum = 1,
.step = 1,
.default_value = 0,
}, {
.id = V4L2_CID_VFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Vertical Flip",
.minimum = 0,
.maximum = 1,
.step = 1,
.default_value = 0,
}, {
.id = V4L2_CID_ROTATE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Rotation",
.minimum = 0,
.maximum = 270,
.step = 90,
.default_value = 0,
},
};
static struct m2mx6_pixfmt *m2mx6_get_format(struct v4l2_format *f)
{
struct m2mx6_pixfmt *ret = NULL;
int i;
for (i = 0; i < NUM_FORMATS; i++) {
if (m2mx6_formats[i].fourcc == f->fmt.pix.pixelformat) {
ret = &m2mx6_formats[i];
break;
}
}
return ret;
}
static struct v4l2_queryctrl *m2mx6_get_ctrl(int id)
{
struct v4l2_queryctrl *ret = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(m2mx6_ctrls); i++) {
if (id == m2mx6_ctrls[i].id) {
ret = &m2mx6_ctrls[i];
break;
}
}
return ret;
}
static struct m2mx6_q_data *get_q_data(struct m2mx6_ctx *ctx,
enum v4l2_buf_type type)
{
switch (type) {
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
return &ctx->q_data[V4L2_M2M_SRC];
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
return &ctx->q_data[V4L2_M2M_DST];
default:
BUG();
}
return NULL;
}
static inline int m2mx6_num_stripes(int dim)
{
if (dim <= 1024)
return 1;
else if (dim <= 2048)
return 2;
else
return 4;
}
static void m2mx6_calc_seg_offsets_planar(struct m2mx6_ctx *ctx,
enum v4l2_buf_type type)
{
struct m2mx6_q_data *q_data = get_q_data(ctx, type);
struct m2mx6_pixfmt *fmt = q_data->fmt;
u32 W, H, w, h, y_depth, y_stride, uv_stride;
u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
u32 y_row_off, y_col_off, y_off;
u32 y_size, uv_size;
int row, col, seg = 0;
/* setup some convenience vars */
W = q_data->width;
H = q_data->height;
w = q_data->seg_width;
h = q_data->seg_height;
y_depth = fmt->y_depth;
y_stride = q_data->stride;
uv_stride = y_stride / fmt->uv_width_dec;
if (fmt->uv_packed)
uv_stride *= 2;
y_size = H * y_stride;
uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
for (row = 0; row < ctx->num_rows; row++) {
y_row_off = row * h * y_stride;
uv_row_off = (row * h * uv_stride) / fmt->uv_height_dec;
for (col = 0; col < ctx->num_cols; col++) {
y_col_off = (col * w * y_depth) >> 3;
uv_col_off = y_col_off / fmt->uv_width_dec;
if (fmt->uv_packed)
uv_col_off *= 2;
y_off = y_row_off + y_col_off;
uv_off = uv_row_off + uv_col_off;
u_off = y_size - y_off + uv_off;
v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
q_data->seg_off[seg].offset = y_off;
q_data->seg_off[seg].u_off = u_off;
q_data->seg_off[seg++].v_off = v_off;
dprintk(ctx->dev,
"%s@[%d,%d]: y_off %08x, u_off %08x, v_off %08x\n",
type == V4L2_BUF_TYPE_VIDEO_OUTPUT ?
"Output" : "Capture", row, col,
y_off, u_off, v_off);
}
}
}
static void m2mx6_calc_seg_offsets_packed(struct m2mx6_ctx *ctx,
enum v4l2_buf_type type)
{
struct m2mx6_q_data *q_data = get_q_data(ctx, type);
struct m2mx6_pixfmt *fmt = q_data->fmt;
u32 W, H, w, h, depth, stride;
u32 row_off, col_off;
int row, col, seg = 0;
/* setup some convenience vars */
W = q_data->width;
H = q_data->height;
w = q_data->seg_width;
h = q_data->seg_height;
stride = q_data->stride;
depth = fmt->depth;
for (row = 0; row < ctx->num_rows; row++) {
row_off = row * h * stride;
for (col = 0; col < ctx->num_cols; col++) {
col_off = (col * w * depth) >> 3;
q_data->seg_off[seg].offset = row_off + col_off;
q_data->seg_off[seg].u_off = 0;
q_data->seg_off[seg++].v_off = 0;
dprintk(ctx->dev, "%s@[%d,%d]: phys %08x\n",
type == V4L2_BUF_TYPE_VIDEO_OUTPUT ?
"Output" : "Capture", row, col,
row_off + col_off);
}
}
}
static void m2mx6_calc_seg_offsets(struct m2mx6_ctx *ctx,
enum v4l2_buf_type type)
{
struct m2mx6_q_data *q_data = get_q_data(ctx, type);
memset(q_data->seg_off, 0, sizeof(q_data->seg_off));
if (q_data->fmt->y_depth)
m2mx6_calc_seg_offsets_planar(ctx, type);
else
m2mx6_calc_seg_offsets_packed(ctx, type);
}
/*
* mem2mem callbacks
*/
static void m2mx6_job_abort(void *priv)
{
struct m2mx6_ctx *ctx = priv;
/* Will cancel the transaction in the next interrupt handler */
ctx->aborting = 1;
}
static void m2mx6_lock(void *priv)
{
struct m2mx6_ctx *ctx = priv;
struct m2mx6_dev *dev = ctx->dev;
mutex_lock(&dev->dev_mutex);
}
static void m2mx6_unlock(void *priv)
{
struct m2mx6_ctx *ctx = priv;
struct m2mx6_dev *dev = ctx->dev;
mutex_unlock(&dev->dev_mutex);
}
/* hold spinlock when calling */
static void m2mx6_norotate_stop(struct m2mx6_ctx *ctx)
{
/* disable IC tasks and the channels */
ipu_ic_task_disable(ctx->ic);
ipu_idmac_disable_channel(ctx->ipu_mem_pp_ch);
ipu_idmac_disable_channel(ctx->ipu_pp_mem_ch);
ipu_ic_disable(ctx->ic);
}
/* hold spinlock when calling */
static void m2mx6_rotate_stop(struct m2mx6_ctx *ctx)
{
/* disable IC tasks and the channels */
ipu_ic_task_disable(ctx->ic);
ipu_idmac_disable_channel(ctx->ipu_mem_pp_ch);
ipu_idmac_disable_channel(ctx->ipu_pp_mem_ch);
ipu_idmac_disable_channel(ctx->ipu_mem_rot_pp_ch);
ipu_idmac_disable_channel(ctx->ipu_rot_pp_mem_ch);
ipu_idmac_unlink(ctx->ipu_pp_mem_ch, ctx->ipu_mem_rot_pp_ch);
ipu_ic_disable(ctx->ic);
}
/* hold spinlock when calling */
static void init_idmac_channel(struct m2mx6_ctx *ctx,
struct ipuv3_channel *channel,
struct m2mx6_q_data *q_data,
enum ipu_rotate_mode rot_mode,
bool rot_swap_width_height)
{
unsigned int burst_size;
u32 width, height, stride;
dma_addr_t addr0, addr1 = 0;
struct ipu_image image;
if (rot_swap_width_height) {
width = q_data->seg_height;
height = q_data->seg_width;
stride = q_data->rot_stride;
addr0 = ctx->rot_intermediate_phys[0];
if (ctx->double_buffering)
addr1 = ctx->rot_intermediate_phys[1];
} else {
width = q_data->seg_width;
height = q_data->seg_height;
stride = q_data->stride;
addr0 = q_data->phys_start + q_data->seg_off[0].offset;
if (ctx->double_buffering)
addr1 = q_data->phys_start + q_data->seg_off[1].offset;
}
ipu_cpmem_zero(channel);
memset(&image, 0, sizeof(image));
image.pix.width = image.rect.width = width;
image.pix.height = image.rect.height = height;
image.pix.bytesperline = stride;
image.pix.pixelformat = q_data->fmt->fourcc;
image.phys0 = addr0;
image.phys1 = addr1;
ipu_cpmem_set_image(channel, &image);
ipu_cpmem_set_uv_offset(channel, q_data->seg_off[0].u_off,
q_data->seg_off[0].v_off);
if (rot_mode)
ipu_cpmem_set_rotation(channel, rot_mode);
if (channel == ctx->ipu_mem_rot_pp_ch ||
channel == ctx->ipu_rot_pp_mem_ch) {
burst_size = 8;
ipu_cpmem_set_block_mode(channel);
} else
burst_size = (width % 16) ? 8 : 16;
ipu_cpmem_set_burstsize(channel, burst_size);
ipu_ic_task_idma_init(ctx->ic, channel, width, height,
burst_size, rot_mode);
ipu_cpmem_set_axi_id(channel, 1);
ipu_idmac_lock_enable(channel, 8);
ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
}
/* hold spinlock when calling */
static void m2mx6_norotate_start(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *s_q_data, *d_q_data;
enum ipu_color_space src_cs, dest_cs;
int ret;
s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
d_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
src_cs = ipu_pixelformat_to_colorspace(s_q_data->fmt->fourcc);
dest_cs = ipu_pixelformat_to_colorspace(d_q_data->fmt->fourcc);
/* setup the IC resizer and CSC */
ret = ipu_ic_task_init(ctx->ic,
s_q_data->seg_width,
s_q_data->seg_height,
d_q_data->seg_width,
d_q_data->seg_height,
src_cs, dest_cs);
if (ret) {
v4l2_err(&dev->v4l2_dev, "ipu_ic_task_init failed, %d\n", ret);
return;
}
/* init the source MEM-->IC PP IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_mem_pp_ch, s_q_data,
IPU_ROTATE_NONE, false);
/* init the destination IC PP-->MEM IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_pp_mem_ch, d_q_data,
ctx->rot_mode, false);
/* enable the IC */
ipu_ic_enable(ctx->ic);
/* set buffers ready */
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, 0);
ipu_idmac_select_buffer(ctx->ipu_pp_mem_ch, 0);
if (ctx->double_buffering) {
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, 1);
ipu_idmac_select_buffer(ctx->ipu_pp_mem_ch, 1);
}
/* enable the channels! */
ipu_idmac_enable_channel(ctx->ipu_mem_pp_ch);
ipu_idmac_enable_channel(ctx->ipu_pp_mem_ch);
ipu_ic_task_enable(ctx->ic);
ipu_cpmem_dump(ctx->ipu_mem_pp_ch);
ipu_cpmem_dump(ctx->ipu_pp_mem_ch);
ipu_ic_dump(ctx->ic);
ipu_dump(dev->ipu);
}
/* hold spinlock when calling */
static void m2mx6_rotate_start(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *s_q_data, *d_q_data;
enum ipu_color_space src_cs, dest_cs;
int ret;
s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
d_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
src_cs = ipu_pixelformat_to_colorspace(s_q_data->fmt->fourcc);
dest_cs = ipu_pixelformat_to_colorspace(d_q_data->fmt->fourcc);
/* setup the IC resizer and CSC (swap output width/height) */
ret = ipu_ic_task_init(ctx->ic,
s_q_data->seg_width,
s_q_data->seg_height,
d_q_data->seg_height,
d_q_data->seg_width,
src_cs, dest_cs);
if (ret) {
v4l2_err(&dev->v4l2_dev, "ipu_ic_task_init failed, %d\n", ret);
return;
}
/* init the source MEM-->IC PP IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_mem_pp_ch, s_q_data,
IPU_ROTATE_NONE, false);
/* init the IC PP-->MEM IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_pp_mem_ch, d_q_data,
IPU_ROTATE_NONE, true);
/* init the MEM-->IC PP ROT IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_mem_rot_pp_ch, d_q_data,
ctx->rot_mode, true);
/* init the destination IC PP ROT-->MEM IDMAC channel */
init_idmac_channel(ctx, ctx->ipu_rot_pp_mem_ch, d_q_data,
IPU_ROTATE_NONE, false);
/* now link IC PP-->MEM to MEM-->IC PP ROT */
ipu_idmac_link(ctx->ipu_pp_mem_ch, ctx->ipu_mem_rot_pp_ch);
/* enable the IC */
ipu_ic_enable(ctx->ic);
/* set buffers ready */
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, 0);
ipu_idmac_select_buffer(ctx->ipu_pp_mem_ch, 0);
ipu_idmac_select_buffer(ctx->ipu_rot_pp_mem_ch, 0);
if (ctx->double_buffering) {
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, 1);
ipu_idmac_select_buffer(ctx->ipu_pp_mem_ch, 1);
ipu_idmac_select_buffer(ctx->ipu_rot_pp_mem_ch, 1);
}
/* enable the channels! */
ipu_idmac_enable_channel(ctx->ipu_mem_pp_ch);
ipu_idmac_enable_channel(ctx->ipu_pp_mem_ch);
ipu_idmac_enable_channel(ctx->ipu_mem_rot_pp_ch);
ipu_idmac_enable_channel(ctx->ipu_rot_pp_mem_ch);
ipu_ic_task_enable(ctx->ic);
ipu_cpmem_dump(ctx->ipu_mem_pp_ch);
ipu_cpmem_dump(ctx->ipu_pp_mem_ch);
ipu_cpmem_dump(ctx->ipu_mem_rot_pp_ch);
ipu_cpmem_dump(ctx->ipu_rot_pp_mem_ch);
ipu_ic_dump(ctx->ic);
ipu_dump(dev->ipu);
}
static void m2mx6_device_run(void *priv)
{
struct m2mx6_ctx *ctx = priv;
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *s_q_data, *d_q_data;
struct vb2_buffer *src_buf, *dst_buf;
unsigned long flags;
src_buf = v4l2_m2m_next_src_buf(ctx->m2m_ctx);
dst_buf = v4l2_m2m_next_dst_buf(ctx->m2m_ctx);
s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
d_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
s_q_data->phys_start = vb2_dma_contig_plane_dma_addr(src_buf, 0);
d_q_data->phys_start = vb2_dma_contig_plane_dma_addr(dst_buf, 0);
if (!s_q_data->phys_start || !d_q_data->phys_start) {
v4l2_err(&dev->v4l2_dev,
"Acquiring kernel pointers to buffers failed\n");
return;
}
spin_lock_irqsave(&dev->irqlock, flags);
if (instrument)
do_gettimeofday(&ctx->start);
/*
* Can we use double-buffering for this operation? If there is
* only one segment (the whole image can be converted in a single
* operation) there's no point in using double-buffering. Also,
* the IPU's IDMAC channels allow only a single U and V plane
* offset shared between both buffers, but these offsets change
* for every segment, and therefore would have to be updated for
* each buffer which is not possible. So double-buffering is
* impossible when either the source or destination images are
* a planar format (YUV420, YUV422P, etc.).
*/
ctx->double_buffering = (ctx->num_segs > 1 &&
!s_q_data->fmt->y_depth &&
!d_q_data->fmt->y_depth);
ctx->cur_buf_num = 0;
ctx->next_seg = 1;
if (ctx->rot_mode >= IPU_ROTATE_90_RIGHT)
m2mx6_rotate_start(ctx);
else
m2mx6_norotate_start(ctx);
spin_unlock_irqrestore(&dev->irqlock, flags);
}
/* hold spinlock when calling */
static bool m2mx6_doirq(struct m2mx6_ctx *ctx)
{
struct m2mx6_q_data *s_q_data, *d_q_data;
struct vb2_buffer *src_vb, *dst_vb;
struct ipuv3_channel *outch;
struct m2mx6_seg_off *src_off, *dst_off;
outch = (ctx->rot_mode >= IPU_ROTATE_90_RIGHT) ?
ctx->ipu_rot_pp_mem_ch : ctx->ipu_pp_mem_ch;
s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT);
d_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
/*
* It is difficult to stop the channel DMA before the channels
* enter the paused state. Without double-buffering the channels
* are always in a paused state when the EOF irq occurs, so it
* is safe to stop the channels now. For double-buffering we
* just ignore the abort until the operation completes, when it
* is safe to shut down.
*/
if (ctx->aborting && !ctx->double_buffering) {
if (ctx->rot_mode >= IPU_ROTATE_90_RIGHT)
m2mx6_rotate_stop(ctx);
else
m2mx6_norotate_stop(ctx);
return true;
}
if (ctx->next_seg == ctx->num_segs) {
/*
* the conversion is complete
*/
if (ctx->rot_mode >= IPU_ROTATE_90_RIGHT)
m2mx6_rotate_stop(ctx);
else
m2mx6_norotate_stop(ctx);
if (!ctx->aborting) {
src_vb = v4l2_m2m_src_buf_remove(ctx->m2m_ctx);
dst_vb = v4l2_m2m_dst_buf_remove(ctx->m2m_ctx);
v4l2_m2m_buf_done(src_vb, VB2_BUF_STATE_DONE);
v4l2_m2m_buf_done(dst_vb, VB2_BUF_STATE_DONE);
if (instrument) {
struct timeval stop;
do_gettimeofday(&stop);
stop.tv_sec -= ctx->start.tv_sec;
stop.tv_usec -= ctx->start.tv_usec;
if (stop.tv_usec < 0) {
stop.tv_usec += 1000 * 1000;
stop.tv_sec -= 1;
}
v4l2_info(&ctx->dev->v4l2_dev,
"buf%d completed in %lu usec\n",
dst_vb->v4l2_buf.index,
stop.tv_sec * 1000 * 1000 +
stop.tv_usec);
}
}
return true;
}
/*
* not done, place the next segment buffers.
*/
if (!ctx->double_buffering) {
src_off = &s_q_data->seg_off[ctx->next_seg];
dst_off = &d_q_data->seg_off[ctx->next_seg];
ipu_cpmem_set_buffer(ctx->ipu_mem_pp_ch, 0,
s_q_data->phys_start + src_off->offset);
ipu_cpmem_set_buffer(outch, 0,
d_q_data->phys_start + dst_off->offset);
ipu_cpmem_set_uv_offset(ctx->ipu_mem_pp_ch,
src_off->u_off, src_off->v_off);
ipu_cpmem_set_uv_offset(outch,
dst_off->u_off, dst_off->v_off);
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, 0);
ipu_idmac_select_buffer(outch, 0);
} else if (ctx->next_seg < ctx->num_segs - 1) {
src_off = &s_q_data->seg_off[ctx->next_seg + 1];
dst_off = &d_q_data->seg_off[ctx->next_seg + 1];
ipu_cpmem_set_buffer(ctx->ipu_mem_pp_ch, ctx->cur_buf_num,
s_q_data->phys_start + src_off->offset);
ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
d_q_data->phys_start + dst_off->offset);
ipu_idmac_select_buffer(ctx->ipu_mem_pp_ch, ctx->cur_buf_num);
ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
ctx->cur_buf_num ^= 1;
}
ctx->next_seg++;
return false;
}
static irqreturn_t m2mx6_norotate_irq(int irq, void *data)
{
struct m2mx6_dev *dev = (struct m2mx6_dev *)data;
struct m2mx6_ctx *curr_ctx;
unsigned long flags;
bool done;
spin_lock_irqsave(&dev->irqlock, flags);
curr_ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
if (curr_ctx == NULL) {
v4l2_err(&dev->v4l2_dev,
"Instance released before the end of transaction\n");
spin_unlock_irqrestore(&dev->irqlock, flags);
return IRQ_HANDLED;
}
if (curr_ctx->rot_mode >= IPU_ROTATE_90_RIGHT) {
/* this is a rotation operation, just ignore */
spin_unlock_irqrestore(&dev->irqlock, flags);
return IRQ_HANDLED;
}
done = m2mx6_doirq(curr_ctx);
spin_unlock_irqrestore(&dev->irqlock, flags);
if (done)
v4l2_m2m_job_finish(dev->m2m_dev, curr_ctx->m2m_ctx);
return IRQ_HANDLED;
}
static irqreturn_t m2mx6_rotate_irq(int irq, void *data)
{
struct m2mx6_dev *dev = (struct m2mx6_dev *)data;
struct m2mx6_ctx *curr_ctx;
unsigned long flags;
bool done;
spin_lock_irqsave(&dev->irqlock, flags);
curr_ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
if (curr_ctx == NULL) {
v4l2_err(&dev->v4l2_dev,
"Instance released before the end of transaction\n");
spin_unlock_irqrestore(&dev->irqlock, flags);
return IRQ_HANDLED;
}
if (curr_ctx->rot_mode < IPU_ROTATE_90_RIGHT) {
/* this was NOT a rotation operation, shouldn't happen */
v4l2_err(&dev->v4l2_dev, "Unexpected rotation interrupt\n");
spin_unlock_irqrestore(&dev->irqlock, flags);
return IRQ_HANDLED;
}
done = m2mx6_doirq(curr_ctx);
spin_unlock_irqrestore(&dev->irqlock, flags);
if (done)
v4l2_m2m_job_finish(dev->m2m_dev, curr_ctx->m2m_ctx);
return IRQ_HANDLED;
}
static void m2mx6_release_ipu_resources(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
if (ctx->pp_mem_irq >= 0)
devm_free_irq(dev->v4l2_dev.dev, ctx->pp_mem_irq, dev);
if (ctx->rot_pp_mem_irq >= 0)
devm_free_irq(dev->v4l2_dev.dev, ctx->rot_pp_mem_irq, dev);
if (!IS_ERR_OR_NULL(ctx->ipu_mem_pp_ch))
ipu_idmac_put(ctx->ipu_mem_pp_ch);
if (!IS_ERR_OR_NULL(ctx->ipu_pp_mem_ch))
ipu_idmac_put(ctx->ipu_pp_mem_ch);
if (!IS_ERR_OR_NULL(ctx->ipu_mem_rot_pp_ch))
ipu_idmac_put(ctx->ipu_mem_rot_pp_ch);
if (!IS_ERR_OR_NULL(ctx->ipu_rot_pp_mem_ch))
ipu_idmac_put(ctx->ipu_rot_pp_mem_ch);
if (!IS_ERR_OR_NULL(ctx->ic))
ipu_ic_put(ctx->ic);
ctx->ipu_mem_pp_ch = ctx->ipu_pp_mem_ch = ctx->ipu_mem_rot_pp_ch =
ctx->ipu_rot_pp_mem_ch = NULL;
ctx->ic = NULL;
ctx->pp_mem_irq = ctx->rot_pp_mem_irq = -1;
}
static int m2mx6_get_ipu_resources(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
int ret;
ctx->ic = ipu_ic_get(dev->ipu, IC_TASK_POST_PROCESSOR);
if (IS_ERR(ctx->ic)) {
v4l2_err(&dev->v4l2_dev, "could not get IC PP\n");
ret = PTR_ERR(ctx->ic);
goto err;
}
/* get our IDMAC channels */
ctx->ipu_mem_pp_ch = ipu_idmac_get(dev->ipu,
IPUV3_CHANNEL_MEM_IC_PP);
ctx->ipu_pp_mem_ch = ipu_idmac_get(dev->ipu,
IPUV3_CHANNEL_IC_PP_MEM);
ctx->ipu_mem_rot_pp_ch = ipu_idmac_get(dev->ipu,
IPUV3_CHANNEL_MEM_ROT_PP);
ctx->ipu_rot_pp_mem_ch = ipu_idmac_get(dev->ipu,
IPUV3_CHANNEL_ROT_PP_MEM);
if (IS_ERR(ctx->ipu_mem_pp_ch) ||
IS_ERR(ctx->ipu_pp_mem_ch) ||
IS_ERR(ctx->ipu_mem_rot_pp_ch) ||
IS_ERR(ctx->ipu_rot_pp_mem_ch)) {
v4l2_err(&dev->v4l2_dev, "could not acquire IDMAC channels\n");
ret = -EBUSY;
goto err;
}
/* acquire the EOF interrupts */
ctx->pp_mem_irq = ipu_idmac_channel_irq(dev->ipu,
ctx->ipu_pp_mem_ch,
IPU_IRQ_EOF);
ctx->rot_pp_mem_irq = ipu_idmac_channel_irq(dev->ipu,
ctx->ipu_rot_pp_mem_ch,
IPU_IRQ_EOF);
ret = devm_request_irq(dev->v4l2_dev.dev, ctx->pp_mem_irq,
m2mx6_norotate_irq, 0, MEM2MEM_NAME, dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "could not acquire irq %d\n",
ctx->pp_mem_irq);
goto err;
}
ret = devm_request_irq(dev->v4l2_dev.dev, ctx->rot_pp_mem_irq,
m2mx6_rotate_irq, 0, MEM2MEM_NAME, dev);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev, "could not acquire irq %d\n",
ctx->rot_pp_mem_irq);
goto err;
}
return 0;
err:
m2mx6_release_ipu_resources(ctx);
return ret;
}
/*
* video ioctls
*/
static int vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strncpy(cap->driver, MEM2MEM_NAME, sizeof(cap->driver) - 1);
strncpy(cap->card, MEM2MEM_NAME, sizeof(cap->card) - 1);
cap->bus_info[0] = 0;
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_VIDEO_OUTPUT
| V4L2_CAP_STREAMING;
return 0;
}
static int enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
struct m2mx6_pixfmt *fmt;
int i, num = 0;
for (i = 0; i < NUM_FORMATS; ++i) {
if (m2mx6_formats[i].types & type) {
/* index-th format of type type found ? */
if (num == f->index)
break;
/* Correct type but haven't reached our index yet,
* just increment per-type index */
++num;
}
}
if (i < NUM_FORMATS) {
/* Format found */
fmt = &m2mx6_formats[i];
strncpy(f->description, fmt->name, sizeof(f->description) - 1);
f->pixelformat = fmt->fourcc;
return 0;
}
/* Format not found */
return -EINVAL;
}
static void free_rot_intermediate_buffer(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
if (ctx->rot_intermediate_buf[0]) {
dma_free_coherent(dev->v4l2_dev.dev,
2 * ctx->rot_intermediate_buf_size,
ctx->rot_intermediate_buf[0],
ctx->rot_intermediate_phys[0]);
ctx->rot_intermediate_buf[0] =
ctx->rot_intermediate_buf[1] = NULL;
}
}
static int alloc_rot_intermediate_buffer(struct m2mx6_ctx *ctx)
{
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *d_q_data;
unsigned long newlen;
d_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
newlen = PAGE_ALIGN(d_q_data->sizeimage);
if (ctx->rot_intermediate_buf[0]) {
if (ctx->rot_intermediate_buf_size == newlen)
goto out;
free_rot_intermediate_buffer(ctx);
}
ctx->rot_intermediate_buf_size = newlen;
ctx->rot_intermediate_buf[0] =
(void *)dma_alloc_coherent(dev->v4l2_dev.dev,
2 * ctx->rot_intermediate_buf_size,
&ctx->rot_intermediate_phys[0],
GFP_DMA | GFP_KERNEL);
if (!ctx->rot_intermediate_buf[0]) {
v4l2_err(&dev->v4l2_dev,
"failed to alloc rotation intermediate buffer\n");
return -ENOMEM;
}
ctx->rot_intermediate_buf[1] = ctx->rot_intermediate_buf[0] +
ctx->rot_intermediate_buf_size;
ctx->rot_intermediate_phys[1] = ctx->rot_intermediate_phys[0] +
ctx->rot_intermediate_buf_size;
out:
return 0;
}
static int vidioc_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return enum_fmt(f, MEM2MEM_CAPTURE);
}
static int vidioc_enum_fmt_vid_out(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return enum_fmt(f, MEM2MEM_OUTPUT);
}
static int m2mx6_g_fmt(struct m2mx6_ctx *ctx, struct v4l2_format *f)
{
struct vb2_queue *vq;
struct m2mx6_q_data *q_data;
vq = v4l2_m2m_get_vq(ctx->m2m_ctx, f->type);
if (!vq)
return -EINVAL;
q_data = get_q_data(ctx, f->type);
f->fmt.pix.width = q_data->width;
f->fmt.pix.height = q_data->height;
f->fmt.pix.field = V4L2_FIELD_NONE;
f->fmt.pix.pixelformat = q_data->fmt->fourcc;
f->fmt.pix.bytesperline = (q_data->width * q_data->fmt->depth) >> 3;
f->fmt.pix.sizeimage = q_data->sizeimage;
return 0;
}
static int vidioc_g_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
return m2mx6_g_fmt(priv, f);
}
static int vidioc_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
return m2mx6_g_fmt(priv, f);
}
static int m2mx6_try_fmt(struct m2mx6_ctx *ctx, struct v4l2_format *f,
struct m2mx6_pixfmt *fmt)
{
unsigned int num_rows, num_cols;
enum v4l2_field field;
u32 w_align, h_align;
field = f->fmt.pix.field;
if (field == V4L2_FIELD_ANY)
field = V4L2_FIELD_NONE;
else if (V4L2_FIELD_NONE != field)
return -EINVAL;
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
if (!ctx->num_rows || !ctx->num_cols) {
v4l2_err(&ctx->dev->v4l2_dev,
"call capture S_FMT first to determine segmentation\n");
return -EAGAIN;
}
num_rows = ctx->num_rows;
num_cols = ctx->num_cols;
} else {
num_rows = m2mx6_num_stripes(f->fmt.pix.height);
num_cols = m2mx6_num_stripes(f->fmt.pix.width);
}
/* V4L2 specification suggests the driver corrects the format struct
* if any of the dimensions is unsupported */
f->fmt.pix.field = field;
/*
* We have to adjust the width such that the segment physaddrs and
* U and V plane offsets are multiples of 8 bytes as required by
* the IPU DMA Controller. For the planar formats, this corresponds
* to a pixel alignment of 16 times num_cols (but use a more formal
* equation since the variables are available). For all the packed
* formats, 8 times num_cols is good enough.
*
* For height alignment, we just have to ensure that the segment
* heights are even whole numbers, so h_align = 2 * num_rows.
*/
if (fmt->y_depth)
w_align = (64 * fmt->uv_width_dec * num_cols) / fmt->y_depth;
else
w_align = 8 * num_cols;
w_align = ilog2(w_align);
h_align = ilog2(2 * num_rows);
v4l_bound_align_image(&f->fmt.pix.width, MIN_W, MAX_W, w_align,
&f->fmt.pix.height, MIN_H, MAX_H, h_align,
S_ALIGN);
f->fmt.pix.bytesperline = (f->fmt.pix.width * fmt->depth) >> 3;
f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline;
return 0;
}
static int vidioc_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct m2mx6_pixfmt *fmt;
struct m2mx6_ctx *ctx = priv;
fmt = m2mx6_get_format(f);
if (!fmt || !(fmt->types & MEM2MEM_CAPTURE)) {
v4l2_err(&ctx->dev->v4l2_dev,
"Fourcc format (0x%08x) invalid.\n",
f->fmt.pix.pixelformat);
return -EINVAL;
}
return m2mx6_try_fmt(ctx, f, fmt);
}
static int vidioc_try_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct m2mx6_pixfmt *fmt;
struct m2mx6_ctx *ctx = priv;
fmt = m2mx6_get_format(f);
if (!fmt || !(fmt->types & MEM2MEM_OUTPUT)) {
v4l2_err(&ctx->dev->v4l2_dev,
"Fourcc format (0x%08x) invalid.\n",
f->fmt.pix.pixelformat);
return -EINVAL;
}
return m2mx6_try_fmt(ctx, f, fmt);
}
static int m2mx6_s_fmt(struct m2mx6_ctx *ctx, struct v4l2_format *f)
{
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *q_data;
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(ctx->m2m_ctx, f->type);
if (!vq)
return -EINVAL;
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
if (vb2_is_busy(vq)) {
v4l2_err(&dev->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
/* set segmentation */
ctx->num_rows = m2mx6_num_stripes(f->fmt.pix.height);
ctx->num_cols = m2mx6_num_stripes(f->fmt.pix.width);
ctx->num_segs = ctx->num_cols * ctx->num_rows;
}
q_data->fmt = m2mx6_get_format(f);
q_data->width = f->fmt.pix.width;
q_data->height = f->fmt.pix.height;
q_data->bytesperline = f->fmt.pix.bytesperline;
if (q_data->fmt->y_depth) {
q_data->stride = (q_data->fmt->y_depth * q_data->width) >> 3;
q_data->rot_stride =
(q_data->fmt->y_depth * q_data->height) >> 3;
} else {
q_data->stride = q_data->bytesperline;
q_data->rot_stride =
(q_data->fmt->depth * q_data->height) >> 3;
}
q_data->sizeimage = q_data->bytesperline * q_data->height;
q_data->seg_height = q_data->height / ctx->num_rows;
q_data->seg_width = q_data->width / ctx->num_cols;
m2mx6_calc_seg_offsets(ctx, f->type);
v4l2_info(&dev->v4l2_dev,
"%s format: %dx%d (%d %dx%d segments), %c%c%c%c\n",
f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE ? "Capture" : "Output",
q_data->width, q_data->height,
ctx->num_segs, q_data->seg_width, q_data->seg_height,
q_data->fmt->fourcc & 0xff,
(q_data->fmt->fourcc >> 8) & 0xff,
(q_data->fmt->fourcc >> 16) & 0xff,
(q_data->fmt->fourcc >> 24) & 0xff);
return 0;
}
static int vidioc_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct m2mx6_ctx *ctx = priv;
int ret;
ret = vidioc_try_fmt_vid_cap(file, ctx, f);
if (ret)
return ret;
ret = m2mx6_s_fmt(ctx, f);
if (ret)
return ret;
return 0;
}
static int vidioc_s_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
int ret;
ret = vidioc_try_fmt_vid_out(file, priv, f);
if (ret)
return ret;
return m2mx6_s_fmt(priv, f);
}
static int vidioc_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *reqbufs)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_reqbufs(file, ctx->m2m_ctx, reqbufs);
}
static int vidioc_querybuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_querybuf(file, ctx->m2m_ctx, buf);
}
static int vidioc_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_qbuf(file, ctx->m2m_ctx, buf);
}
static int vidioc_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_dqbuf(file, ctx->m2m_ctx, buf);
}
static int vidioc_expbuf(struct file *file, void *priv,
struct v4l2_exportbuffer *eb)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_expbuf(file, ctx->m2m_ctx, eb);
}
static int vidioc_streamon(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_streamon(file, ctx->m2m_ctx, type);
}
static int vidioc_streamoff(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct m2mx6_ctx *ctx = priv;
return v4l2_m2m_streamoff(file, ctx->m2m_ctx, type);
}
static int vidioc_queryctrl(struct file *file, void *priv,
struct v4l2_queryctrl *qc)
{
struct v4l2_queryctrl *c;
c = m2mx6_get_ctrl(qc->id);
if (!c)
return -EINVAL;
*qc = *c;
return 0;
}
static int vidioc_g_ctrl(struct file *file, void *priv,
struct v4l2_control *ctrl)
{
struct m2mx6_ctx *ctx = priv;
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
ctrl->value = ctx->hflip ? 1 : 0;
break;
case V4L2_CID_VFLIP:
ctrl->value = ctx->vflip ? 1 : 0;
break;
case V4L2_CID_ROTATE:
ctrl->value = ctx->rotation;
break;
default:
v4l2_err(&ctx->dev->v4l2_dev, "Invalid control\n");
ret = -EINVAL;
break;
}
return ret;
}
static int check_ctrl_val(struct m2mx6_ctx *ctx, struct v4l2_control *ctrl)
{
struct v4l2_queryctrl *c;
c = m2mx6_get_ctrl(ctrl->id);
if (!c)
return -EINVAL;
if (ctrl->value < c->minimum || ctrl->value > c->maximum) {
v4l2_err(&ctx->dev->v4l2_dev, "Value out of range\n");
return -ERANGE;
}
return 0;
}
static int vidioc_s_ctrl(struct file *file, void *priv,
struct v4l2_control *ctrl)
{
struct m2mx6_ctx *ctx = priv;
struct m2mx6_dev *dev = ctx->dev;
struct vb2_queue *vq;
enum ipu_rotate_mode rot_mode;
bool hflip, vflip;
int rotation;
int ret = 0;
vq = v4l2_m2m_get_vq(ctx->m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
if (!vq)
return -EINVAL;
/* can't change rotation mid-streaming */
if (vb2_is_streaming(vq)) {
v4l2_err(&dev->v4l2_dev, "%s: not allowed while streaming\n",
__func__);
return -EBUSY;
}
ret = check_ctrl_val(ctx, ctrl);
if (ret)
return ret;
rotation = ctx->rotation;
hflip = ctx->hflip;
vflip = ctx->vflip;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
hflip = (ctrl->value == 1);
break;
case V4L2_CID_VFLIP:
vflip = (ctrl->value == 1);
break;
case V4L2_CID_ROTATE:
rotation = ctrl->value;
break;
default:
v4l2_err(&dev->v4l2_dev, "Invalid control\n");
return -EINVAL;
}
ret = ipu_degrees_to_rot_mode(&rot_mode, rotation, hflip, vflip);
if (ret)
return ret;
ctx->rotation = rotation;
ctx->hflip = hflip;
ctx->vflip = vflip;
ctx->rot_mode = rot_mode;
return 0;
}
static const struct v4l2_ioctl_ops m2mx6_ioctl_ops = {
.vidioc_querycap = vidioc_querycap,
.vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_out = vidioc_enum_fmt_vid_out,
.vidioc_g_fmt_vid_out = vidioc_g_fmt_vid_out,
.vidioc_try_fmt_vid_out = vidioc_try_fmt_vid_out,
.vidioc_s_fmt_vid_out = vidioc_s_fmt_vid_out,
.vidioc_reqbufs = vidioc_reqbufs,
.vidioc_querybuf = vidioc_querybuf,
.vidioc_qbuf = vidioc_qbuf,
.vidioc_dqbuf = vidioc_dqbuf,
.vidioc_expbuf = vidioc_expbuf,
.vidioc_streamon = vidioc_streamon,
.vidioc_streamoff = vidioc_streamoff,
.vidioc_queryctrl = vidioc_queryctrl,
.vidioc_g_ctrl = vidioc_g_ctrl,
.vidioc_s_ctrl = vidioc_s_ctrl,
};
/*
* Queue operations
*/
static int m2mx6_queue_setup(struct vb2_queue *vq,
const struct v4l2_format *fmt,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], void *alloc_ctxs[])
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(vq);
struct m2mx6_q_data *q_data;
unsigned int size, count = *nbuffers;
q_data = get_q_data(ctx, vq->type);
size = q_data->width * q_data->height * q_data->fmt->depth >> 3;
while (size * count > MEM2MEM_VID_MEM_LIMIT)
count--;
*nplanes = 1;
*nbuffers = count;
sizes[0] = size;
alloc_ctxs[0] = ctx->dev->alloc_ctx;
return 0;
}
static int m2mx6_buf_prepare(struct vb2_buffer *vb)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct m2mx6_dev *dev = ctx->dev;
struct m2mx6_q_data *q_data;
q_data = get_q_data(ctx, vb->vb2_queue->type);
if (vb2_plane_size(vb, 0) < q_data->sizeimage) {
v4l2_err(&dev->v4l2_dev,
"%s: data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0),
(long)q_data->sizeimage);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, q_data->sizeimage);
return 0;
}
static void m2mx6_buf_queue(struct vb2_buffer *vb)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_m2m_buf_queue(ctx->m2m_ctx, vb);
}
static void m2mx6_wait_prepare(struct vb2_queue *q)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(q);
m2mx6_unlock(ctx);
}
static void m2mx6_wait_finish(struct vb2_queue *q)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(q);
m2mx6_lock(ctx);
}
static int m2mx6_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(q);
int ret;
if (!ctx->ipu_mem_pp_ch) {
ret = m2mx6_get_ipu_resources(ctx);
if (ret)
return ret;
}
if (ctx->rot_mode >= IPU_ROTATE_90_RIGHT &&
!ctx->rot_intermediate_buf[0]) {
ret = alloc_rot_intermediate_buffer(ctx);
if (ret)
goto relres;
}
return 0;
relres:
m2mx6_release_ipu_resources(ctx);
return ret;
}
static int m2mx6_stop_streaming(struct vb2_queue *q)
{
struct m2mx6_ctx *ctx = vb2_get_drv_priv(q);
m2mx6_release_ipu_resources(ctx);
free_rot_intermediate_buffer(ctx);
return 0;
}
static struct vb2_ops m2mx6_qops = {
.queue_setup = m2mx6_queue_setup,
.buf_prepare = m2mx6_buf_prepare,
.buf_queue = m2mx6_buf_queue,
.wait_prepare = m2mx6_wait_prepare,
.wait_finish = m2mx6_wait_finish,
.start_streaming = m2mx6_start_streaming,
.stop_streaming = m2mx6_stop_streaming,
};
static int queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
struct m2mx6_ctx *ctx = priv;
int ret;
memset(src_vq, 0, sizeof(*src_vq));
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
src_vq->drv_priv = ctx;
src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
src_vq->ops = &m2mx6_qops;
src_vq->mem_ops = &vb2_dma_contig_memops;
src_vq->timestamp_type = V4L2_BUF_FLAG_TIMESTAMP_COPY;
ret = vb2_queue_init(src_vq);
if (ret)
return ret;
memset(dst_vq, 0, sizeof(*dst_vq));
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
dst_vq->drv_priv = ctx;
dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
dst_vq->ops = &m2mx6_qops;
dst_vq->mem_ops = &vb2_dma_contig_memops;
dst_vq->timestamp_type = V4L2_BUF_FLAG_TIMESTAMP_COPY;
return vb2_queue_init(dst_vq);
}
/*
* File operations
*/
static int m2mx6_open(struct file *file)
{
struct m2mx6_dev *dev = video_drvdata(file);
struct m2mx6_ctx *ctx;
int ret = 0;
if (mutex_lock_interruptible(&dev->dev_mutex))
return -ERESTARTSYS;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
ret = -ENOMEM;
goto unlock;
}
file->private_data = ctx;
ctx->dev = dev;
ctx->q_data[V4L2_M2M_SRC].fmt = &m2mx6_formats[0];
ctx->q_data[V4L2_M2M_DST].fmt = &m2mx6_formats[0];
ctx->pp_mem_irq = ctx->rot_pp_mem_irq = -1;
ctx->m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
if (IS_ERR(ctx->m2m_ctx)) {
ret = PTR_ERR(ctx->m2m_ctx);
kfree(ctx);
goto unlock;
}
unlock:
mutex_unlock(&dev->dev_mutex);
return ret;
}
static int m2mx6_release(struct file *file)
{
struct m2mx6_dev *dev = video_drvdata(file);
struct m2mx6_ctx *ctx = file->private_data;
mutex_lock(&dev->dev_mutex);
/*
* in case appplication did not call streamoff,
* release IPU resources here
*/
m2mx6_release_ipu_resources(ctx);
free_rot_intermediate_buffer(ctx);
v4l2_m2m_ctx_release(ctx->m2m_ctx);
kfree(ctx);
mutex_unlock(&dev->dev_mutex);
return 0;
}
static unsigned int m2mx6_poll(struct file *file,
struct poll_table_struct *wait)
{
struct m2mx6_dev *dev = video_drvdata(file);
struct m2mx6_ctx *ctx = file->private_data;
int ret;
if (mutex_lock_interruptible(&dev->dev_mutex))
return -ERESTARTSYS;
ret = v4l2_m2m_poll(file, ctx->m2m_ctx, wait);
mutex_unlock(&dev->dev_mutex);
return ret;
}
static int m2mx6_mmap(struct file *file, struct vm_area_struct *vma)
{
struct m2mx6_dev *dev = video_drvdata(file);
struct m2mx6_ctx *ctx = file->private_data;
int ret;
if (mutex_lock_interruptible(&dev->dev_mutex))
return -ERESTARTSYS;
ret = v4l2_m2m_mmap(file, ctx->m2m_ctx, vma);
mutex_unlock(&dev->dev_mutex);
return ret;
}
static const struct v4l2_file_operations m2mx6_fops = {
.owner = THIS_MODULE,
.open = m2mx6_open,
.release = m2mx6_release,
.poll = m2mx6_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = m2mx6_mmap,
};
static struct video_device m2mx6_videodev = {
.name = MEM2MEM_NAME,
.fops = &m2mx6_fops,
.ioctl_ops = &m2mx6_ioctl_ops,
.minor = -1,
.release = video_device_release,
.vfl_dir = VFL_DIR_M2M,
};
static struct v4l2_m2m_ops m2m_ops = {
.device_run = m2mx6_device_run,
.job_abort = m2mx6_job_abort,
.lock = m2mx6_lock,
.unlock = m2mx6_unlock,
};
static int of_dev_node_match(struct device *dev, void *data)
{
return dev->of_node == data;
}
static struct ipu_soc *m2mx6_find_ipu(struct m2mx6_dev *dev,
struct device_node *node)
{
struct device_node *ipu_node;
struct device *ipu_dev;
ipu_node = of_parse_phandle(node, "ipu", 0);
if (!ipu_node) {
v4l2_err(&dev->v4l2_dev, "missing ipu phandle!\n");
return NULL;
}
ipu_dev = bus_find_device(&platform_bus_type, NULL,
ipu_node, of_dev_node_match);
of_node_put(ipu_node);
if (!ipu_dev) {
v4l2_err(&dev->v4l2_dev, "failed to find ipu device!\n");
return NULL;
}
return dev_get_drvdata(ipu_dev);
}
static int m2mx6_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct m2mx6_dev *dev;
struct video_device *vfd;
int ret;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
spin_lock_init(&dev->irqlock);
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret)
return ret;
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
/* get our IPU */
dev->ipu = m2mx6_find_ipu(dev, node);
if (IS_ERR_OR_NULL(dev->ipu)) {
v4l2_err(&dev->v4l2_dev, "could not get ipu\n");
ret = -ENODEV;
goto unreg_dev;
}
mutex_init(&dev->dev_mutex);
vfd = video_device_alloc();
if (!vfd) {
v4l2_err(&dev->v4l2_dev, "Failed to allocate video device\n");
ret = -ENOMEM;
goto unreg_dev;
}
*vfd = m2mx6_videodev;
vfd->v4l2_dev = &dev->v4l2_dev;
vfd->lock = &dev->dev_mutex;
dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
if (IS_ERR(dev->m2m_dev)) {
v4l2_err(&dev->v4l2_dev, "Failed to init mem2mem device\n");
ret = PTR_ERR(dev->m2m_dev);
video_device_release(vfd);
goto unreg_dev;
}
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
v4l2_err(&dev->v4l2_dev, "Failed to register video device\n");
video_device_release(vfd);
goto rel_m2m;
}
video_set_drvdata(vfd, dev);
snprintf(vfd->name, sizeof(vfd->name), "%s", m2mx6_videodev.name);
dev->vfd = vfd;
v4l2_info(&dev->v4l2_dev,
"Device registered as /dev/video%d, on ipu%d\n",
vfd->num, ipu_get_num(dev->ipu));
platform_set_drvdata(pdev, dev);
dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
if (IS_ERR(dev->alloc_ctx)) {
v4l2_err(&dev->v4l2_dev, "Failed to alloc vb2 context\n");
ret = PTR_ERR(dev->alloc_ctx);
goto unreg_vdev;
}
return 0;
unreg_vdev:
video_unregister_device(dev->vfd);
rel_m2m:
v4l2_m2m_release(dev->m2m_dev);
unreg_dev:
v4l2_device_unregister(&dev->v4l2_dev);
return ret;
}
static int m2mx6_remove(struct platform_device *pdev)
{
struct m2mx6_dev *dev =
(struct m2mx6_dev *)platform_get_drvdata(pdev);
v4l2_info(&dev->v4l2_dev, "Removing " MEM2MEM_NAME "\n");
v4l2_m2m_release(dev->m2m_dev);
vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
video_unregister_device(dev->vfd);
v4l2_device_unregister(&dev->v4l2_dev);
return 0;
}
static struct of_device_id m2mx6_dt_ids[] = {
{ .compatible = "fsl,imx6-v4l2-mem2mem" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, m2mx6_dt_ids);
static struct platform_driver m2mx6_pdrv = {
.probe = m2mx6_probe,
.remove = m2mx6_remove,
.driver = {
.name = MEM2MEM_NAME,
.owner = THIS_MODULE,
.of_match_table = m2mx6_dt_ids,
},
};
module_platform_driver(m2mx6_pdrv);