[PATCH v6 1/3] nand: pl353: Add basic driver for arm pl353 smc nand interface

From: Punnaiah Choudary Kalluri
Date: Mon Apr 13 2015 - 12:13:09 EST


Add driver for arm pl353 static memory controller nand interface with
HW ECC support. This controller is used in xilinx zynq soc for interfacing
the nand flash memory.

Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx>
---
Changes in v6:
- Fixed the checkpatch.pl reported warnings
- Using the address cycles information from the onfi param page
earlier it is hardcoded to 5 in driver
Changes in v5:
- Configure the nand timing parameters as per the onfi spec
Changes in v4:
- Updated the driver to sync with pl353_smc driver APIs
Changes in v3:
- implemented the proper error codes
- further breakdown this patch to multiple sets
- added the controller and driver details to Documentation section
- updated the licenece to GPLv2
- reorganized the pl353_nand_ecc_init function
Changes in v2:
- use "depends on" rather than "select" option in kconfig
- remove unused variable parts
- remove dummy helper and use writel_relaxed directly
---
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/pl353_nand.c | 904 +++++++++++++++++++++++++++++++++++++++++
3 files changed, 912 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/pl353_nand.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5897d8d..c14a955 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -497,6 +497,13 @@ config MTD_NAND_NUC900
This enables the driver for the NAND Flash on evaluation board based
on w90p910 / NUC9xx.

+config MTD_NAND_PL353
+ tristate "ARM Pl353 NAND flash driver"
+ depends on MTD_NAND && ARM
+ depends on PL353_SMC
+ help
+ This enables access to the NAND flash device on PL353 SMC controller.
+
config MTD_NAND_JZ4740
tristate "Support for JZ4740 SoC NAND controller"
depends on MACH_JZ4740
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 582bbd05..c68fd7c 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o

nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/pl353_nand.c b/drivers/mtd/nand/pl353_nand.c
new file mode 100644
index 0000000..1fe048f
--- /dev/null
+++ b/drivers/mtd/nand/pl353_nand.c
@@ -0,0 +1,904 @@
+/*
+ * ARM PL353 NAND Flash Controller Driver
+ *
+ * Copyright (C) 2009 - 2014 Xilinx, Inc.
+ *
+ * This driver is based on plat_nand.c and mxc_nand.c drivers
+ *
+ * This program is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU General Public License version 2 as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/memory/pl353-smc.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_mtd.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#define PL353_NAND_DRIVER_NAME "pl353-nand"
+
+/* NAND flash driver defines */
+#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */
+#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */
+#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
+
+/* Flash memory controller operating parameters */
+
+#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \
+ (0 << 5)) /* No Jumping */
+
+/* AXI Address definitions */
+#define START_CMD_SHIFT 3
+#define END_CMD_SHIFT 11
+#define END_CMD_VALID_SHIFT 20
+#define ADDR_CYCLES_SHIFT 21
+#define CLEAR_CS_SHIFT 21
+#define ECC_LAST_SHIFT 10
+#define COMMAND_PHASE (0 << 19)
+#define DATA_PHASE BIT(19)
+
+#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
+#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
+
+#define ONDIE_ECC_FEATURE_ADDR 0x90
+#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
+#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
+#define PL353_NAND_LAST_TRANSFER_LENGTH 4
+
+/**
+ * struct pl353_nand_command_format - Defines NAND flash command format
+ * @start_cmd: First cycle command (Start command)
+ * @end_cmd: Second cycle command (Last command)
+ * @addr_cycles: Number of address cycles required to send the address
+ * @end_cmd_valid: The second cycle command is valid for cmd or data phase
+ */
+struct pl353_nand_command_format {
+ int start_cmd;
+ int end_cmd;
+ u8 addr_cycles;
+ u8 end_cmd_valid;
+};
+
+/**
+ * struct pl353_nand_info - Defines the NAND flash driver instance
+ * @chip: NAND chip information structure
+ * @mtd: MTD information structure
+ * @nand_base: Virtual address of the NAND flash device
+ * @end_cmd_pending: End command is pending
+ * @end_cmd: End command
+ * @ecc_mode: ECC mode
+ * @row_addr_cycles: Row address cycles
+ * @col_addr_cycles: Column address cycles
+ */
+struct pl353_nand_info {
+ struct nand_chip chip;
+ struct mtd_info mtd;
+ void __iomem *nand_base;
+ unsigned long end_cmd_pending;
+ unsigned long end_cmd;
+ int ecc_mode;
+ u8 row_addr_cycles;
+ u8 col_addr_cycles;
+};
+
+/*
+ * The NAND flash operations command format
+ */
+static const struct pl353_nand_command_format pl353_nand_commands[] = {
+ {NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE},
+ {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE},
+ {NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE},
+ {NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE},
+ {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE},
+ {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE},
+ {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE},
+ {NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE},
+ {NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE},
+ {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
+ {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
+ {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
+ /* Add all the flash commands supported by the flash device and Linux */
+ /*
+ * The cache program command is not supported by driver because driver
+ * cant differentiate between page program and cached page program from
+ * start command, these commands can be differentiated through end
+ * command, which doesn't fit in to the driver design. The cache program
+ * command is not supported by NAND subsystem also, look at 1612 line
+ * number (in nand_write_page function) of nand_base.c file.
+ * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES},
+ */
+};
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_16 = {
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = {
+ {.offset = 8,
+ . length = 8} }
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+ .eccbytes = 12,
+ .eccpos = {
+ 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 2,
+ .length = 50} }
+};
+
+static unsigned int get_cyc_from_ns(u32 clkrate, u32 ns)
+{
+ unsigned int cycle;
+
+ cycle = NSEC_PER_SEC / clkrate;
+ return DIV_ROUND_CLOSEST(ns, cycle);
+}
+
+/**
+ * pl353_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd: Pointer to the mtd_info structure
+ * @data: Pointer to the page data
+ * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
+ const u8 *data, u8 *ecc_code)
+{
+ u32 ecc_value, ecc_status;
+ u8 ecc_reg, ecc_byte;
+ unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
+
+ /* Wait till the ECC operation is complete or timeout */
+ do {
+ if (pl353_smc_ecc_is_busy(mtd->dev.parent))
+ cpu_relax();
+ else
+ break;
+ } while (!time_after_eq(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ pr_err("%s timed out\n", __func__);
+ return -ETIMEDOUT;
+ }
+
+ for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+ /* Read ECC value for each block */
+ ecc_value = pl353_smc_get_ecc_val(mtd->dev.parent, ecc_reg);
+ ecc_status = (ecc_value >> 24) & 0xFF;
+ /* ECC value valid */
+ if (ecc_status & 0x40) {
+ for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+ /* Copy ECC bytes to MTD buffer */
+ *ecc_code = ecc_value & 0xFF;
+ ecc_value = ecc_value >> 8;
+ ecc_code++;
+ }
+ } else {
+ pr_warn("%s status failed\n", __func__);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/**
+ * onehot - onehot function
+ * @value: Value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if onebit is set.
+ *
+ * Return: 1 if it is onehot else 0
+ */
+static int onehot(unsigned short value)
+{
+ return (value & (value - 1)) == 0;
+}
+
+/**
+ * pl353_nand_correct_data - ECC correction function
+ * @mtd: Pointer to the mtd_info structure
+ * @buf: Pointer to the page data
+ * @read_ecc: Pointer to the ECC value read from spare data area
+ * @calc_ecc: Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * Return: 0 if no ECC errors found
+ * 1 if single bit error found and corrected.
+ * -1 if multiple ECC errors found.
+ */
+static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+ unsigned char *read_ecc,
+ unsigned char *calc_ecc)
+{
+ unsigned char bit_addr;
+ unsigned int byte_addr;
+ unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+ unsigned short calc_ecc_lower, calc_ecc_upper;
+
+ read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+ read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+ calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+ calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+ ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+ ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+ if ((ecc_odd == 0) && (ecc_even == 0))
+ return 0; /* no error */
+
+ if (ecc_odd == (~ecc_even & 0xfff)) {
+ /* bits [11:3] of error code is byte offset */
+ byte_addr = (ecc_odd >> 3) & 0x1ff;
+ /* bits [2:0] of error code is bit offset */
+ bit_addr = ecc_odd & 0x7;
+ /* Toggling error bit */
+ buf[byte_addr] ^= (1 << bit_addr);
+ return 1;
+ }
+
+ if (onehot(ecc_odd | ecc_even) == 1)
+ return 1; /* one error in parity */
+
+ return -EBADMSG; /* Uncorrectable error */
+}
+
+/**
+ * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @page: Page number to read
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ unsigned long data_phase_addr;
+ uint8_t *p;
+
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+
+ p = chip->oob_poi;
+ chip->read_buf(mtd, p,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @page: Page number to write
+ *
+ * Return: Zero on success and EIO on failure
+ */
+static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int status = 0;
+ const uint8_t *buf = chip->oob_poi;
+ unsigned long data_phase_addr;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+ chip->write_buf(mtd, buf,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Send command to program the OOB data */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ *
+ * Return: Zero on success and error on failure.
+ */
+static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf,
+ int oob_required)
+{
+ int i, status, eccsize = chip->ecc.size;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ unsigned long data_phase_addr;
+ uint8_t *oob_ptr;
+
+ for ( ; (eccsteps - 1); eccsteps--) {
+ chip->write_buf(mtd, p, eccsize);
+ p += eccsize;
+ }
+ chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Wait for ECC to be calculated and read the error values */
+ p = buf;
+ status = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+ if (status)
+ return status;
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
+
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr &= ~PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+
+ /* Write the spare area with ECC bytes */
+ oob_ptr = chip->oob_poi;
+ chip->write_buf(mtd, oob_ptr,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+ chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the buffer to store read data
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * Return: 0 always and updates ECC operation status in to MTD structure
+ */
+static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ unsigned long data_phase_addr;
+ uint8_t *oob_ptr;
+
+ for ( ; (eccsteps - 1); eccsteps--) {
+ chip->read_buf(mtd, p, eccsize);
+ p += eccsize;
+ }
+ chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Read the calculated ECC value */
+ p = buf;
+ stat = chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+ if (stat < 0)
+ return stat;
+
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr &= ~PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+ /* Read the stored ECC value */
+ oob_ptr = chip->oob_poi;
+ chip->read_buf(mtd, oob_ptr,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+ /* de-assert chip select */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+ oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+ chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ /* Check ECC error for all blocks and correct if it is correctable */
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/**
+ * pl353_nand_select_chip - Select the flash device
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+
+}
+
+/**
+ * pl353_nand_cmd_function - Send command to NAND device
+ * @mtd: Pointer to the mtd_info structure
+ * @command: The command to be sent to the flash device
+ * @column: The column address for this command, -1 if none
+ * @page_addr: The page address for this command, -1 if none
+ */
+static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ const struct pl353_nand_command_format *curr_cmd = NULL;
+ struct pl353_nand_info *xnand =
+ container_of(mtd, struct pl353_nand_info, mtd);
+ void __iomem *cmd_addr;
+ unsigned long cmd_data = 0, end_cmd_valid = 0;
+ unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i;
+ unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+ u32 addrcycles;
+
+ if (xnand->end_cmd_pending) {
+ /*
+ * Check for end command if this command request is same as the
+ * pending command then return
+ */
+ if (xnand->end_cmd == command) {
+ xnand->end_cmd = 0;
+ xnand->end_cmd_pending = 0;
+ return;
+ }
+ }
+
+ /* Emulate NAND_CMD_READOOB for large page device */
+ if ((mtd->writesize > PL353_NAND_ECC_SIZE) &&
+ (command == NAND_CMD_READOOB)) {
+ column += mtd->writesize;
+ command = NAND_CMD_READ0;
+ }
+
+ /* Get the command format */
+ for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE ||
+ pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++)
+ if (command == pl353_nand_commands[i].start_cmd)
+ curr_cmd = &pl353_nand_commands[i];
+
+ if (curr_cmd == NULL)
+ return;
+
+ /* Clear interrupt */
+ pl353_smc_clr_nand_int(mtd->dev.parent);
+
+ /* Get the command phase address */
+ if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE)
+ end_cmd_valid = 1;
+
+ if (curr_cmd->end_cmd == NAND_CMD_NONE)
+ end_cmd = 0x0;
+ else
+ end_cmd = curr_cmd->end_cmd;
+
+ if ((command == NAND_CMD_READ0) && (command == NAND_CMD_SEQIN))
+ addrcycles = xnand->row_addr_cycles + xnand->col_addr_cycles;
+ else if (command == NAND_CMD_ERASE1)
+ addrcycles = xnand->row_addr_cycles;
+ else
+ addrcycles = curr_cmd->addr_cycles;
+
+ cmd_phase_addr = (unsigned long __force)xnand->nand_base |
+ (addrcycles << ADDR_CYCLES_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (COMMAND_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (curr_cmd->start_cmd << START_CMD_SHIFT);
+
+ cmd_addr = (void __iomem * __force)cmd_phase_addr;
+
+ /* Get the data phase address */
+ end_cmd_valid = 0;
+
+ data_phase_addr = (unsigned long __force)xnand->nand_base |
+ (0x0 << CLEAR_CS_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (DATA_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (0x0 << ECC_LAST_SHIFT);
+
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+ /* Command phase AXI write */
+ /* Read & Write */
+ if (column != -1 && page_addr != -1) {
+ /* Adjust columns for 16 bit bus width */
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ cmd_data = column;
+ if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+ cmd_data |= page_addr << 16;
+ /* Another address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20)) {
+ writel_relaxed(cmd_data, cmd_addr);
+ cmd_data = (page_addr >> 16);
+ }
+ } else {
+ cmd_data |= page_addr << 8;
+ }
+ } else if (page_addr != -1) {
+ /* Erase */
+ cmd_data = page_addr;
+ } else if (column != -1) {
+ /*
+ * Change read/write column, read id etc
+ * Adjust columns for 16 bit bus width
+ */
+ if ((chip->options & NAND_BUSWIDTH_16) &&
+ ((command == NAND_CMD_READ0) ||
+ (command == NAND_CMD_SEQIN) ||
+ (command == NAND_CMD_RNDOUT) ||
+ (command == NAND_CMD_RNDIN)))
+ column >>= 1;
+ cmd_data = column;
+ }
+
+ writel_relaxed(cmd_data, cmd_addr);
+
+ if (curr_cmd->end_cmd_valid) {
+ xnand->end_cmd = curr_cmd->end_cmd;
+ xnand->end_cmd_pending = 1;
+ }
+
+ ndelay(100);
+
+ if ((command == NAND_CMD_READ0) ||
+ (command == NAND_CMD_RESET) ||
+ (command == NAND_CMD_PARAM) ||
+ (command == NAND_CMD_GET_FEATURES)) {
+
+ /* Wait till the device is ready or timeout */
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ cpu_relax();
+ } while (!time_after_eq(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout))
+ pr_err("%s timed out\n", __func__);
+ return;
+ }
+}
+
+/**
+ * pl353_nand_read_buf - read chip data into buffer
+ * @mtd: Pointer to the mtd info structure
+ * @buf: Pointer to the buffer to store read data
+ * @len: Number of bytes to read
+ */
+static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ unsigned long *ptr = (unsigned long *)buf;
+
+ len >>= 2;
+ for (i = 0; i < len; i++)
+ ptr[i] = readl(chip->IO_ADDR_R);
+}
+
+/**
+ * pl353_nand_write_buf - write buffer to chip
+ * @mtd: Pointer to the mtd info structure
+ * @buf: Pointer to the buffer to store read data
+ * @len: Number of bytes to write
+ */
+static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ unsigned long *ptr = (unsigned long *)buf;
+
+ len >>= 2;
+
+ for (i = 0; i < len; i++)
+ writel(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * pl353_nand_device_ready - Check device ready/busy line
+ * @mtd: Pointer to the mtd_info structure
+ *
+ * Return: 0 on busy or 1 on ready state
+ */
+static int pl353_nand_device_ready(struct mtd_info *mtd)
+{
+ if (pl353_smc_get_nand_int_status_raw(mtd->dev.parent)) {
+ pl353_smc_clr_nand_int(mtd->dev.parent);
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
+ * @mtd: Pointer to the mtd_info structure
+ *
+ * This function initializes the ecc block and functional pointers as per the
+ * ecc mode
+ *
+ * Return: Zero on success and error on failure.
+ */
+static int pl353_nand_ecc_init(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct pl353_nand_info *xnand =
+ container_of(mtd, struct pl353_nand_info, mtd);
+
+ nand_chip->ecc.read_oob = pl353_nand_read_oob;
+ nand_chip->ecc.write_oob = pl353_nand_write_oob;
+ nand_chip->ecc.strength = 1;
+
+ switch (xnand->ecc_mode) {
+ case NAND_ECC_HW:
+ if (mtd->writesize > 2048) {
+ pr_warn("hardware ECC not possible\n");
+ return -ENOTSUPP;
+ }
+
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.calculate = pl353_nand_calculate_hwecc;
+ nand_chip->ecc.correct = pl353_nand_correct_data;
+ nand_chip->ecc.hwctl = NULL;
+ nand_chip->ecc.read_page = pl353_nand_read_page_hwecc;
+ nand_chip->ecc.size = PL353_NAND_ECC_SIZE;
+ nand_chip->ecc.write_page = pl353_nand_write_page_hwecc;
+ pl353_smc_set_ecc_pg_size(mtd->dev.parent, mtd->writesize);
+ pl353_smc_set_ecc_mode(mtd->dev.parent, PL353_SMC_ECCMODE_APB);
+ /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+ nand_chip->ecc.bytes = 3;
+
+ if (mtd->oobsize == 16)
+ nand_chip->ecc.layout = &nand_oob_16;
+ else
+ nand_chip->ecc.layout = &nand_oob_64;
+
+ break;
+ default:
+ return -ENOTSUPP;
+ }
+
+ return 0;
+}
+
+static int pl353_nand_init_timing(struct device *dev, int mode)
+{
+ const struct nand_sdr_timings *time;
+ u32 t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr;
+ ulong clkrate;
+
+ time = onfi_async_timing_mode_to_sdr_timings(mode);
+ if (IS_ERR(time))
+ return PTR_ERR(time);
+
+ clkrate = pl353_smc_get_clkrate(dev);
+ t_rc = get_cyc_from_ns(clkrate, time->tRC_min / 1000);
+ t_wc = get_cyc_from_ns(clkrate, time->tWC_min / 1000);
+ t_rea = get_cyc_from_ns(clkrate, time->tREA_max / 1000);
+ t_wp = get_cyc_from_ns(clkrate, time->tWP_min / 1000);
+ t_clr = get_cyc_from_ns(clkrate, time->tCLR_min / 1000);
+ t_ar = get_cyc_from_ns(clkrate, time->tAR_min / 1000);
+ t_rr = get_cyc_from_ns(clkrate, time->tRR_min / 1000);
+
+ pl353_smc_set_cycles(dev, t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_probe - Probe method for the NAND driver
+ * @pdev: Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_probe(struct platform_device *pdev)
+{
+ struct pl353_nand_info *xnand;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ struct resource *res;
+ struct mtd_part_parser_data ppdata;
+
+ xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL);
+ if (!xnand)
+ return -ENOMEM;
+
+ /* Map physical address of NAND flash */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ xnand->nand_base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(xnand->nand_base))
+ return PTR_ERR(xnand->nand_base);
+
+ /* Link the private data with the MTD structure */
+ mtd = &xnand->mtd;
+ nand_chip = &xnand->chip;
+
+ nand_chip->priv = xnand;
+ mtd->priv = nand_chip;
+ mtd->dev.parent = pdev->dev.parent;
+ mtd->owner = THIS_MODULE;
+ mtd->name = PL353_NAND_DRIVER_NAME;
+
+ /* Set address of NAND IO lines */
+ nand_chip->IO_ADDR_R = xnand->nand_base;
+ nand_chip->IO_ADDR_W = xnand->nand_base;
+
+ /* Set the driver entry points for MTD */
+ nand_chip->cmdfunc = pl353_nand_cmd_function;
+ nand_chip->dev_ready = pl353_nand_device_ready;
+ nand_chip->select_chip = pl353_nand_select_chip;
+
+ /* If we don't set this delay driver sets 20us by default */
+ nand_chip->chip_delay = 30;
+
+ /* Buffer read/write routines */
+ nand_chip->read_buf = pl353_nand_read_buf;
+ nand_chip->write_buf = pl353_nand_write_buf;
+
+ /* Set the device option and flash width */
+ nand_chip->options = NAND_BUSWIDTH_AUTO;
+ nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+
+ platform_set_drvdata(pdev, xnand);
+ if (pl353_nand_init_timing(pdev->dev.parent, 0))
+ return -ENOTSUPP;
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, 1, NULL)) {
+ dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+ return -ENXIO;
+ }
+
+ xnand->ecc_mode = of_get_nand_ecc_mode(pdev->dev.of_node);
+ if (xnand->ecc_mode < 0)
+ xnand->ecc_mode = NAND_ECC_HW;
+
+ xnand->row_addr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+ xnand->col_addr_cycles =
+ (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+ if (pl353_nand_ecc_init(mtd))
+ return -ENOTSUPP;
+
+ if (nand_chip->options & NAND_BUSWIDTH_16)
+ pl353_smc_set_buswidth(pdev->dev.parent,
+ PL353_SMC_MEM_WIDTH_16);
+
+ /* TODO: Based on the parameter page info, change the timing mode */
+
+ if (nand_scan_tail(mtd)) {
+ dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+ return -ENXIO;
+ }
+
+ ppdata.of_node = pdev->dev.of_node;
+
+ mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_remove - Remove method for the NAND driver
+ * @pdev: Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_remove(struct platform_device *pdev)
+{
+ struct pl353_nand_info *xnand = platform_get_drvdata(pdev);
+
+ /* Release resources, unregister device */
+ nand_release(&xnand->mtd);
+
+ return 0;
+}
+
+/* Match table for device tree binding */
+static const struct of_device_id pl353_nand_of_match[] = {
+ { .compatible = "arm,pl353-nand-r2p1" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
+
+/*
+ * pl353_nand_driver - This structure defines the NAND subsystem platform driver
+ */
+static struct platform_driver pl353_nand_driver = {
+ .probe = pl353_nand_probe,
+ .remove = pl353_nand_remove,
+ .driver = {
+ .name = PL353_NAND_DRIVER_NAME,
+ .of_match_table = pl353_nand_of_match,
+ },
+};
+
+module_platform_driver(pl353_nand_driver);
+
+MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx>");
+MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
+MODULE_LICENSE("GPL v2");
--
1.7.4

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/