[RFC 3/3] mm, kswapd: stop performing compaction from kswapd

From: Vlastimil Babka
Date: Tue Jan 26 2016 - 10:37:01 EST


Similarly to direct reclaim/compaction, kswapd attempts to combine reclaim and
compaction to attempt making memory allocation of given order available. The
details differ from direct reclaim e.g. in having high watermark as a goal.
The code involved in kswapd's reclaim/compaction decisions has evolved to be
quite complex. Testing reveals that it doesn't actually work in at least one
scenario, and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or efficiency
(don't reclaim too much). The simplification relieas of doing all compaction in
kcompactd, which is simply woken up when high watermarks are reached by
kswapd's reclaim.

The scenario where kswapd compaction doesn't work was found with mmtests test
stress-highalloc configured to attempt order-9 allocations without direct
reclaim, just waking up kswapd. There was no compaction attempt from kswapd
during the whole test. Some added instrumentation shows what happens:

- balance_pgdat() sets end_zone to Normal, as it's not balanced
- reclaim is attempted on DMA zone, which sets nr_attempted to 99, but it
cannot reclaim anything, so sc.nr_reclaimed is 0
- for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so it
merely checks if high watermarks were reached for base pages. This is true,
so no reclaim is attempted. For DMA, testorder=0 wasn't used, as
compaction_suitable() returned COMPACT_SKIPPED
- even though the pgdat_needs_compaction flag wasn't set to false, no
compaction happens due to the condition sc.nr_reclaimed > nr_attempted
being false (as 0 < 99)
- priority-- due to nr_reclaimed being 0, repeat until priority reaches 0
pgdat_balanced() is false as only the small zone DMA appears balanced
(curiously in that check, watermark appears OK and compaction_suitable()
returns COMPACT_PARTIAL, because a lower classzone_idx is used there)

Now, even if it was decided that reclaim shouldn't be attempted on the DMA
zone, the scenario would be the same, as (sc.nr_reclaimed=0 > nr_attempted=0)
is also false. The condition really should use >= as the comment suggests.
Then there is a mismatch in the check for setting pgdat_needs_compaction to
false using low watermark, while the rest uses high watermark, and who knows
what other subtlety. Hopefully this demonstrates that this is unsustainable.

Luckily we can simplify this a lot. The reclaim/compaction decisions make
sense for direct reclaim scenario, but in kswapd, our primary goal is to reach
high watermark in order-0 pages. Afterwards we can attempt compaction just
once. Unlike direct reclaim, we don't reclaim extra pages (over the high
watermark), the current code already disallows it for good reasons.

After this patch, we simply wake up kcompactd to process the pgdat, after we
have either succeeded or failed to reach the high watermarks in kswapd, which
goes to sleep. Kcompactd will apply the usual criteria to determine which
zones are worth compacting. The key element is adding a "highorder" parameter
to zone_balanced, which, when set to false, makes it consider only order-0
watermark instead of the desired higher order (this was done previously by
kswapd_shrink_zone(), but not elsewhere). This false is passed for example
in pgdat_balanced(). Importantly, wakeup_kswapd() uses true to make sure kswapd
and thus kcompactd are woken up for a high-order allocation failure.

For testing, I used stress-highalloc configured to do order-9 allocations with
GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just on kswapd/kcompactd
reclaim/compaction (the interfering kernel builds in phases 1 and 2 work as
usual):

stress-highalloc
4.4 4.4 4.4
1-test 2-test 3-test
Success 1 4.00 ( 0.00%) 3.00 ( 25.00%) 9.00 (-125.00%)
Success 2 4.00 ( 0.00%) 4.00 ( 0.00%) 10.00 (-150.00%)
Success 3 38.00 ( 0.00%) 38.00 ( 0.00%) 76.00 (-100.00%)

4.4 4.4 4.4
1-test 2-test 3-test
User 2953.35 3093.48 3093.42
System 1122.04 1143.88 1156.99
Elapsed 1868.16 1874.77 1899.16

4.4 4.4 4.4
1-test 2-test 3-test
Minor Faults 108895488 109087527 109388744
Major Faults 620 604 750
Swap Ins 237 280 412
Swap Outs 3722 4585 3691
Allocation stalls 321 313 260
DMA allocs 110 159 7
DMA32 allocs 76286159 76181606 76855688
Normal allocs 26568981 26483685 26719273
Movable allocs 0 0 0
Direct pages scanned 53308 46054 47504
Kswapd pages scanned 2126926 2156583 2180757
Kswapd pages reclaimed 2119616 2134575 2173845
Direct pages reclaimed 53141 45355 47336
Kswapd efficiency 99% 98% 99%
Kswapd velocity 1138.514 1150.319 1148.275
Direct efficiency 99% 98% 99%
Direct velocity 28.535 24.565 25.013
Percentage direct scans 2% 2% 2%
Zone normal velocity 284.759 275.373 280.962
Zone dma32 velocity 882.278 899.486 892.326
Zone dma velocity 0.012 0.025 0.000
Page writes by reclaim 3722.000 4585.000 3691.000
Page writes file 0 0 0
Page writes anon 3722 4585 3691
Page reclaim immediate 139 293 245
Sector Reads 4392000 4389436 4434052
Sector Writes 11082116 11088032 11102164
Page rescued immediate 0 0 0
Slabs scanned 1554185 1546949 1573151
Direct inode steals 17675 27398 3110
Kswapd inode steals 49005 38837 63606
Kswapd skipped wait 0 0 0
THP fault alloc 816 725 784
THP collapse alloc 429 351 368
THP splits 5 4 7
THP fault fallback 583 619 561
THP collapse fail 12 12 13
Compaction stalls 1082 1064 924
Compaction success 185 134 113
Compaction failures 897 930 811
Page migrate success 547663 555349 1357157
Page migrate failure 23289 9299 23159
Compaction pages isolated 1143892 1146019 2810572
Compaction migrate scanned 1518500 1463701 7626063
Compaction free scanned 35478038 32735896 326240264
Compaction cost 601 608 1515

We can see that just adding kcompactd (second column) didn't help, as kswapd
was failing to do anything and went sleep with balanced_order=0, therefore
kcompactd didn't receive the correct order=9. After this patch (third column)
we see improvements in allocation success rate along with increased compaction
activity. The compaction stalls (direct compaction) in the interfering kernel
builds (probably THP's) also decreased by 10% thanks to kcompactd activity.
THP alloc successes are somewhat unstable (there should be no difference
between patch 1 and 2) but it doesn't look like a regression for this patch.

We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:

stress-highalloc
4.4 4.4 4.4
1-test2 2-test2 3-test2
Success 1 13.00 ( 0.00%) 11.00 ( 15.38%) 7.00 ( 46.15%)
Success 2 14.00 ( 0.00%) 12.00 ( 14.29%) 7.00 ( 50.00%)
Success 3 77.00 ( 0.00%) 80.00 ( -3.90%) 79.00 ( -2.60%)

4.4 4.4 4.4
1-test2 2-test2 3-test2
User 3109.78 3160.65 3141.30
System 1156.71 1169.76 1164.30
Elapsed 1890.71 1931.35 1883.46

4.4 4.4 4.4
1-test2 2-test2 3-test2
Minor Faults 110079446 111295014 110632582
Major Faults 612 612 627
Swap Ins 223 191 174
Swap Outs 4829 4285 4796
Allocation stalls 4516 4571 4577
DMA allocs 129 164 12
DMA32 allocs 77336335 78049863 77568017
Normal allocs 26946355 27371021 26879992
Movable allocs 0 0 0
Direct pages scanned 164893 159692 113793
Kswapd pages scanned 2115489 2076764 2099869
Kswapd pages reclaimed 2107476 2069146 2091612
Direct pages reclaimed 164268 158978 113527
Kswapd efficiency 99% 99% 99%
Kswapd velocity 1118.886 1075.291 1114.900
Direct efficiency 99% 99% 99%
Direct velocity 87.212 82.684 60.417
Percentage direct scans 7% 7% 5%
Zone normal velocity 289.128 301.114 280.090
Zone dma32 velocity 916.944 856.826 895.227
Zone dma velocity 0.026 0.036 0.000
Page writes by reclaim 4829.000 4285.000 4796.000
Page writes file 0 0 0
Page writes anon 4829 4285 4796
Page reclaim immediate 274 379 30
Sector Reads 4465640 4469740 4431932
Sector Writes 11117364 11126004 11117220
Page rescued immediate 0 0 0
Slabs scanned 1677445 1882706 1655883
Direct inode steals 8364 16551 5725
Kswapd inode steals 65367 61029 67560
Kswapd skipped wait 0 0 0
THP fault alloc 769 686 685
THP collapse alloc 332 356 368
THP splits 3 2 2
THP fault fallback 691 731 658
THP collapse fail 20 20 21
Compaction stalls 2686 2749 2256
Compaction success 889 955 512
Compaction failures 1797 1794 1744
Page migrate success 2442538 2396245 3044899
Page migrate failure 31276 32952 58085
Compaction pages isolated 4963155 4875568 6204653
Compaction migrate scanned 17004834 13387834 20155758
Compaction free scanned 269507706 259687893 437874337
Compaction cost 2749 2674 3420

Here, this patch does lower the success rate for phases 1 and 2 with
interference, but importantly phase 3 (no interference) is the same. There's
however significant reduction in direct compaction stalls, made entirely of the
successful stalls. This means the offload to kcompactd is working as expected,
and direct compaction is reduced either due to detecting contention, on
compaction deferred by kcompactd. The apparent regression of alloc success rate
is likely due to races - a direct compaction attempt immediately followed by
allocation attempt is more likely to succeed than when the allocation attempts
are asynchronous to kcompactd activity. This is the price for reduced
latencies.

Signed-off-by: Vlastimil Babka <vbabka@xxxxxxx>
---
mm/vmscan.c | 131 +++++++++++++++++-------------------------------------------
1 file changed, 36 insertions(+), 95 deletions(-)

diff --git a/mm/vmscan.c b/mm/vmscan.c
index 1449e21c55cc..dd4ccce93509 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -2981,18 +2981,23 @@ static void age_active_anon(struct zone *zone, struct scan_control *sc)
} while (memcg);
}

-static bool zone_balanced(struct zone *zone, int order,
- unsigned long balance_gap, int classzone_idx)
+static bool zone_balanced(struct zone *zone, int order, bool highorder,
+ unsigned long balance_gap, int classzone_idx)
{
- if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
- balance_gap, classzone_idx))
- return false;
+ unsigned long mark = high_wmark_pages(zone) + balance_gap;

- if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
- order, 0, classzone_idx) == COMPACT_SKIPPED)
- return false;
+ /*
+ * When checking from pgdat_balanced(), kswapd should stop and sleep
+ * when it reaches the high order-0 watermark and let kcompactd take
+ * over. Other callers such as wakeup_kswapd() want to determine the
+ * true high-order watermark.
+ */
+ if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
+ mark += (1UL << order);
+ order = 0;
+ }

- return true;
+ return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
}

/*
@@ -3042,7 +3047,7 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
continue;
}

- if (zone_balanced(zone, order, 0, i))
+ if (zone_balanced(zone, order, false, 0, i))
balanced_pages += zone->managed_pages;
else if (!order)
return false;
@@ -3096,8 +3101,7 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
*/
static bool kswapd_shrink_zone(struct zone *zone,
int classzone_idx,
- struct scan_control *sc,
- unsigned long *nr_attempted)
+ struct scan_control *sc)
{
int testorder = sc->order;
unsigned long balance_gap;
@@ -3107,17 +3111,6 @@ static bool kswapd_shrink_zone(struct zone *zone,
sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));

/*
- * Kswapd reclaims only single pages with compaction enabled. Trying
- * too hard to reclaim until contiguous free pages have become
- * available can hurt performance by evicting too much useful data
- * from memory. Do not reclaim more than needed for compaction.
- */
- if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
- compaction_suitable(zone, sc->order, 0, classzone_idx)
- != COMPACT_SKIPPED)
- testorder = 0;
-
- /*
* We put equal pressure on every zone, unless one zone has way too
* many pages free already. The "too many pages" is defined as the
* high wmark plus a "gap" where the gap is either the low
@@ -3131,15 +3124,12 @@ static bool kswapd_shrink_zone(struct zone *zone,
* reclaim is necessary
*/
lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
- if (!lowmem_pressure && zone_balanced(zone, testorder,
+ if (!lowmem_pressure && zone_balanced(zone, testorder, false,
balance_gap, classzone_idx))
return true;

shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);

- /* Account for the number of pages attempted to reclaim */
- *nr_attempted += sc->nr_to_reclaim;
-
clear_bit(ZONE_WRITEBACK, &zone->flags);

/*
@@ -3149,7 +3139,7 @@ static bool kswapd_shrink_zone(struct zone *zone,
* waits.
*/
if (zone_reclaimable(zone) &&
- zone_balanced(zone, testorder, 0, classzone_idx)) {
+ zone_balanced(zone, testorder, false, 0, classzone_idx)) {
clear_bit(ZONE_CONGESTED, &zone->flags);
clear_bit(ZONE_DIRTY, &zone->flags);
}
@@ -3161,7 +3151,7 @@ static bool kswapd_shrink_zone(struct zone *zone,
* For kswapd, balance_pgdat() will work across all this node's zones until
* they are all at high_wmark_pages(zone).
*
- * Returns the final order kswapd was reclaiming at
+ * Returns the highest zone idx kswapd was reclaiming at
*
* There is special handling here for zones which are full of pinned pages.
* This can happen if the pages are all mlocked, or if they are all used by
@@ -3178,8 +3168,7 @@ static bool kswapd_shrink_zone(struct zone *zone,
* interoperates with the page allocator fallback scheme to ensure that aging
* of pages is balanced across the zones.
*/
-static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
- int *classzone_idx)
+static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
{
int i;
int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
@@ -3196,9 +3185,7 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
count_vm_event(PAGEOUTRUN);

do {
- unsigned long nr_attempted = 0;
bool raise_priority = true;
- bool pgdat_needs_compaction = (order > 0);

sc.nr_reclaimed = 0;

@@ -3233,7 +3220,7 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
break;
}

- if (!zone_balanced(zone, order, 0, 0)) {
+ if (!zone_balanced(zone, order, true, 0, 0)) {
end_zone = i;
break;
} else {
@@ -3249,24 +3236,6 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
if (i < 0)
goto out;

- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
-
- if (!populated_zone(zone))
- continue;
-
- /*
- * If any zone is currently balanced then kswapd will
- * not call compaction as it is expected that the
- * necessary pages are already available.
- */
- if (pgdat_needs_compaction &&
- zone_watermark_ok(zone, order,
- low_wmark_pages(zone),
- *classzone_idx, 0))
- pgdat_needs_compaction = false;
- }
-
/*
* If we're getting trouble reclaiming, start doing writepage
* even in laptop mode.
@@ -3310,8 +3279,7 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
* that that high watermark would be met at 100%
* efficiency.
*/
- if (kswapd_shrink_zone(zone, end_zone,
- &sc, &nr_attempted))
+ if (kswapd_shrink_zone(zone, end_zone, &sc))
raise_priority = false;
}

@@ -3324,46 +3292,25 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
pfmemalloc_watermark_ok(pgdat))
wake_up_all(&pgdat->pfmemalloc_wait);

- /*
- * Fragmentation may mean that the system cannot be rebalanced
- * for high-order allocations in all zones. If twice the
- * allocation size has been reclaimed and the zones are still
- * not balanced then recheck the watermarks at order-0 to
- * prevent kswapd reclaiming excessively. Assume that a
- * process requested a high-order can direct reclaim/compact.
- */
- if (order && sc.nr_reclaimed >= 2UL << order)
- order = sc.order = 0;
-
/* Check if kswapd should be suspending */
if (try_to_freeze() || kthread_should_stop())
break;

/*
- * Compact if necessary and kswapd is reclaiming at least the
- * high watermark number of pages as requsted
- */
- if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
- compact_pgdat(pgdat, order);
-
- /*
* Raise priority if scanning rate is too low or there was no
* progress in reclaiming pages
*/
if (raise_priority || !sc.nr_reclaimed)
sc.priority--;
} while (sc.priority >= 1 &&
- !pgdat_balanced(pgdat, order, *classzone_idx));
+ !pgdat_balanced(pgdat, order, classzone_idx));

out:
/*
- * Return the order we were reclaiming at so prepare_kswapd_sleep()
- * makes a decision on the order we were last reclaiming at. However,
- * if another caller entered the allocator slow path while kswapd
- * was awake, order will remain at the higher level
+ * Return the highest zone idx we were reclaiming at so
+ * prepare_kswapd_sleep() makes the same decisions as here.
*/
- *classzone_idx = end_zone;
- return order;
+ return end_zone;
}

static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
@@ -3443,7 +3390,6 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
static int kswapd(void *p)
{
unsigned long order, new_order;
- unsigned balanced_order;
int classzone_idx, new_classzone_idx;
int balanced_classzone_idx;
pg_data_t *pgdat = (pg_data_t*)p;
@@ -3476,23 +3422,19 @@ static int kswapd(void *p)
set_freezable();

order = new_order = 0;
- balanced_order = 0;
classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
balanced_classzone_idx = classzone_idx;
for ( ; ; ) {
bool ret;

/*
- * If the last balance_pgdat was unsuccessful it's unlikely a
- * new request of a similar or harder type will succeed soon
- * so consider going to sleep on the basis we reclaimed at
+ * While we were reclaiming, there might have been another
+ * wakeup, so check the values.
*/
- if (balanced_order == new_order) {
- new_order = pgdat->kswapd_max_order;
- new_classzone_idx = pgdat->classzone_idx;
- pgdat->kswapd_max_order = 0;
- pgdat->classzone_idx = pgdat->nr_zones - 1;
- }
+ new_order = pgdat->kswapd_max_order;
+ new_classzone_idx = pgdat->classzone_idx;
+ pgdat->kswapd_max_order = 0;
+ pgdat->classzone_idx = pgdat->nr_zones - 1;

if (order < new_order || classzone_idx > new_classzone_idx) {
/*
@@ -3502,7 +3444,7 @@ static int kswapd(void *p)
order = new_order;
classzone_idx = new_classzone_idx;
} else {
- kswapd_try_to_sleep(pgdat, balanced_order,
+ kswapd_try_to_sleep(pgdat, order,
balanced_classzone_idx);
order = pgdat->kswapd_max_order;
classzone_idx = pgdat->classzone_idx;
@@ -3522,9 +3464,8 @@ static int kswapd(void *p)
*/
if (!ret) {
trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
- balanced_classzone_idx = classzone_idx;
- balanced_order = balance_pgdat(pgdat, order,
- &balanced_classzone_idx);
+ balanced_classzone_idx = balance_pgdat(pgdat, order,
+ classzone_idx);
}
}

@@ -3554,7 +3495,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
}
if (!waitqueue_active(&pgdat->kswapd_wait))
return;
- if (zone_balanced(zone, order, 0, 0))
+ if (zone_balanced(zone, order, true, 0, 0))
return;

trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
--
2.7.0