Re: [RFC 3/4] lightnvm: read from rrpc write buffer if possible

From: Matias BjÃrling
Date: Fri Feb 05 2016 - 09:54:39 EST


On 02/04/2016 02:08 PM, Javier GonzÃlez wrote:
> Since writes are buffered in memory, incoming reads must retrieve
> buffered pages instead of submitting the I/O to the media.
>
> This patch implements this logic. When a read bio arrives to rrpc, valid
> pages from the flash blocks residing in memory are copied. If there are
> any "holes" in the bio, a new bio is submitted to the media to retrieve
> the necessary pages. The original bio is updated accordingly.
>
> Signed-off-by: Javier GonzÃlez <javier@xxxxxxxxxxxx>
> ---
> drivers/lightnvm/rrpc.c | 451 ++++++++++++++++++++++++++++++++++++-----------
> include/linux/lightnvm.h | 1 +
> 2 files changed, 346 insertions(+), 106 deletions(-)
>
> diff --git a/drivers/lightnvm/rrpc.c b/drivers/lightnvm/rrpc.c
> index e9fb19d..6348d52 100644
> --- a/drivers/lightnvm/rrpc.c
> +++ b/drivers/lightnvm/rrpc.c
> @@ -827,10 +827,13 @@ static void rrpc_end_io(struct nvm_rq *rqd)
> struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
> uint8_t nr_pages = rqd->nr_pages;
>
> - if (bio_data_dir(rqd->bio) == WRITE)
> + if (bio_data_dir(rqd->bio) == WRITE) {
> rrpc_end_io_write(rrpc, rqd, nr_pages);
> - else
> + } else {
> + if (rqd->flags & NVM_IOTYPE_SYNC)
> + return;
> rrpc_end_io_read(rrpc, rqd, nr_pages);
> + }
>
> bio_put(rqd->bio);
>
> @@ -842,83 +845,6 @@ static void rrpc_end_io(struct nvm_rq *rqd)
> mempool_free(rqd, rrpc->rq_pool);
> }
>
> -static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
> - struct nvm_rq *rqd, struct rrpc_buf_rq *brrqd,
> - unsigned long flags, int nr_pages)
> -{
> - struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> - struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rrqd);
> - struct rrpc_addr *gp;
> - sector_t laddr = rrpc_get_laddr(bio);
> - int is_gc = flags & NVM_IOTYPE_GC;
> - int i;
> -
> - if (!is_gc && rrpc_lock_rq(rrpc, bio, rrqd)) {
> - nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
> - mempool_free(rrqd, rrpc->rrq_pool);
> - mempool_free(rqd, rrpc->rq_pool);
> - return NVM_IO_REQUEUE;
> - }
> -
> - for (i = 0; i < nr_pages; i++) {
> - /* We assume that mapping occurs at 4KB granularity */
> - BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
> - gp = &rrpc->trans_map[laddr + i];
> -
> - if (gp->rblk) {
> - rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
> - gp->addr);
> - } else {
> - BUG_ON(is_gc);
> - rrpc_unlock_laddr(rrpc, r);
> - nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
> - rqd->dma_ppa_list);
> - mempool_free(rrqd, rrpc->rrq_pool);
> - mempool_free(rqd, rrpc->rq_pool);
> - return NVM_IO_DONE;
> - }
> -
> - brrqd[i].addr = gp;
> - }
> -
> - rqd->opcode = NVM_OP_HBREAD;
> -
> - return NVM_IO_OK;
> -}
> -
> -static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
> - unsigned long flags)
> -{
> - struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> - int is_gc = flags & NVM_IOTYPE_GC;
> - sector_t laddr = rrpc_get_laddr(bio);
> - struct rrpc_addr *gp;
> -
> - if (!is_gc && rrpc_lock_rq(rrpc, bio, rrqd)) {
> - mempool_free(rrqd, rrpc->rrq_pool);
> - mempool_free(rqd, rrpc->rq_pool);
> - return NVM_IO_REQUEUE;
> - }
> -
> - BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
> - gp = &rrpc->trans_map[laddr];
> -
> - if (gp->rblk) {
> - rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
> - } else {
> - BUG_ON(is_gc);
> - rrpc_unlock_rq(rrpc, rrqd);
> - mempool_free(rrqd, rrpc->rrq_pool);
> - mempool_free(rqd, rrpc->rq_pool);
> - return NVM_IO_DONE;
> - }
> -
> - rqd->opcode = NVM_OP_HBREAD;
> - rrqd->addr = gp;
> -
> - return NVM_IO_OK;
> -}
> -
> /*
> * Copy data from current bio to block write buffer. This if necessary
> * to guarantee durability if a flash block becomes bad before all pages
> @@ -1051,14 +977,335 @@ static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
> return NVM_IO_DONE;
> }
>
> +static int rrpc_buffer_write(struct rrpc *rrpc, struct bio *bio,
> + struct rrpc_rq *rrqd, unsigned long flags)
> +{
> + uint8_t nr_pages = rrpc_get_pages(bio);
> +
> + rrqd->nr_pages = nr_pages;
> +
> + if (nr_pages > 1)
> + return rrpc_write_ppalist_rq(rrpc, bio, rrqd, flags, nr_pages);
> + else
> + return rrpc_write_rq(rrpc, bio, rrqd, flags);
> +}
> +
> +static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
> + struct nvm_rq *rqd, struct rrpc_buf_rq *brrqd,
> + unsigned long flags, int nr_pages)
> +{
> + struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> + struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rrqd);
> + struct rrpc_addr *gp;
> + sector_t laddr = rrpc_get_laddr(bio);
> + int is_gc = flags & NVM_IOTYPE_GC;
> + int i;
> +
> + if (!is_gc && rrpc_lock_rq(rrpc, bio, rrqd)) {
> + nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
> + return NVM_IO_REQUEUE;
> + }
> +
> + for (i = 0; i < nr_pages; i++) {
> + /* We assume that mapping occurs at 4KB granularity */
> + BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
> + gp = &rrpc->trans_map[laddr + i];
> +
> + if (gp->rblk) {
> + rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
> + gp->addr);
> + } else {
> + BUG_ON(is_gc);
> + rrpc_unlock_laddr(rrpc, r);
> + nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
> + rqd->dma_ppa_list);
> + return NVM_IO_DONE;
> + }
> +
> + brrqd[i].addr = gp;
> + }
> +
> + rqd->opcode = NVM_OP_HBREAD;
> +
> + return NVM_IO_OK;
> +}
> +
> +static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
> + unsigned long flags)
> +{
> + struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> + int is_gc = flags & NVM_IOTYPE_GC;
> + sector_t laddr = rrpc_get_laddr(bio);
> + struct rrpc_addr *gp;
> +
> + if (!is_gc && rrpc_lock_rq(rrpc, bio, rrqd))
> + return NVM_IO_REQUEUE;
> +
> + BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
> + gp = &rrpc->trans_map[laddr];
> +
> + if (gp->rblk) {
> + rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
> + } else {
> + BUG_ON(is_gc);
> + rrpc_unlock_rq(rrpc, rrqd);
> + return NVM_IO_DONE;
> + }
> +
> + rqd->opcode = NVM_OP_HBREAD;
> + rrqd->addr = gp;
> +
> + return NVM_IO_OK;
> +}
> +
> +static int rrpc_read_w_buf_entry(struct bio *bio, struct rrpc_block *rblk,
> + struct bvec_iter iter, int entry)
> +{
> + struct buf_entry *read_entry;
> + struct bio_vec bv;
> + struct page *page;
> + void *kaddr;
> + void *data;
> + int read = 0;
> +
> + lockdep_assert_held(&rblk->w_buf.s_lock);
> +
> + spin_lock(&rblk->w_buf.w_lock);
> + if (entry >= rblk->w_buf.cur_mem) {
> + spin_unlock(&rblk->w_buf.w_lock);
> + goto out;
> + }
> + spin_unlock(&rblk->w_buf.w_lock);
> +
> + read_entry = &rblk->w_buf.entries[entry];
> + data = read_entry->data;
> +
> + bv = bio_iter_iovec(bio, iter);
> + page = bv.bv_page;
> + kaddr = kmap_atomic(page);
> + memcpy(kaddr + bv.bv_offset, data, RRPC_EXPOSED_PAGE_SIZE);
> + kunmap_atomic(kaddr);
> + read++;
> +
> +out:
> + return read;
> +}
> +
> +static int rrpc_read_from_w_buf(struct rrpc *rrpc, struct nvm_rq *rqd,
> + struct rrpc_buf_rq *brrqd, unsigned long *read_bitmap)
> +{
> + struct nvm_dev *dev = rrpc->dev;
> + struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> + struct rrpc_addr *addr;
> + struct bio *bio = rqd->bio;
> + struct bvec_iter iter = bio->bi_iter;
> + struct rrpc_block *rblk;
> + unsigned long blk_id;
> + int nr_pages = rqd->nr_pages;
> + int left = nr_pages;
> + int read = 0;
> + int entry;
> + int i;
> +
> + if (nr_pages != bio->bi_vcnt)
> + goto out;
> +
> + if (nr_pages == 1) {
> + rblk = rrqd->addr->rblk;
> +
> + /* If the write buffer exists, the block is open in memory */
> + spin_lock(&rblk->w_buf.s_lock);
> + atomic_inc(&rblk->w_buf.refs);
> + if (rblk->w_buf.entries) {
> + blk_id = rblk->parent->id;
> + entry = rrqd->addr->addr -
> + (blk_id * dev->sec_per_pg * dev->pgs_per_blk);
> +
> + read = rrpc_read_w_buf_entry(bio, rblk, iter, entry);
> +
> + left -= read;
> + WARN_ON(test_and_set_bit(0, read_bitmap));
> + }
> + bio_advance_iter(bio, &iter, RRPC_EXPOSED_PAGE_SIZE);
> +
> + atomic_dec(&rblk->w_buf.refs);
> + spin_unlock(&rblk->w_buf.s_lock);
> +
> + goto out;
> + }
> +
> + /* Iterate through all pages and copy those that are found in the write
> + * buffer. We will complete the holes (if any) with a intermediate bio
> + * later on
> + */
> + for (i = 0; i < nr_pages; i++) {
> + addr = brrqd[i].addr;
> + rblk = addr->rblk;
> +
> + /* If the write buffer exists, the block is open in memory */
> + spin_lock(&rblk->w_buf.s_lock);
> + atomic_inc(&rblk->w_buf.refs);
> + if (rblk->w_buf.entries) {
> + blk_id = rblk->parent->id;
> + entry = addr->addr - (blk_id * dev->sec_per_pg *
> + dev->pgs_per_blk);
> +
> + read = rrpc_read_w_buf_entry(bio, rblk, iter, entry);
> +
> + left -= read;
> + WARN_ON(test_and_set_bit(i, read_bitmap));
> + }
> + bio_advance_iter(bio, &iter, RRPC_EXPOSED_PAGE_SIZE);
> +
> + atomic_dec(&rblk->w_buf.refs);
> + spin_unlock(&rblk->w_buf.s_lock);
> + }
> +
> +out:
> + return left;
> +}
> +
> +static int rrpc_submit_read_io(struct rrpc *rrpc, struct bio *bio,
> + struct nvm_rq *rqd, unsigned long flags)
> +{
> + struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
> + int err;
> +
> + err = nvm_submit_io(rrpc->dev, rqd);
> + if (err) {
> + pr_err("rrpc: I/O submission failed: %d\n", err);
> + bio_put(bio);
> + if (!(flags & NVM_IOTYPE_GC)) {
> + rrpc_unlock_rq(rrpc, rrqd);
> + if (rqd->nr_pages > 1)
> + nvm_dev_dma_free(rrpc->dev,
> + rqd->ppa_list, rqd->dma_ppa_list);
> + }
> + return NVM_IO_ERR;
> + }
> +
> + return NVM_IO_OK;
> +}
> +
> +static int rrpc_fill_partial_read_bio(struct rrpc *rrpc, struct bio *bio,
> + unsigned long *read_bitmap, struct nvm_rq *rqd,
> + struct rrpc_buf_rq *brrqd, uint8_t nr_pages)
> +{
> + struct bio *new_bio;
> + struct page *page;
> + struct bio_vec src_bv, dst_bv;
> + void *src_p, *dst_p;
> + int nr_holes = nr_pages - bitmap_weight(read_bitmap, nr_pages);
> + int hole;
> + int i = 0;
> + int ret;
> + DECLARE_COMPLETION_ONSTACK(wait);
> +
> + new_bio = bio_alloc(GFP_KERNEL, nr_holes);
> + if (!new_bio) {
> + pr_err("nvm: rrpc: could not alloc read bio\n");
> + return NVM_IO_ERR;
> + }
> +
> + hole = find_first_zero_bit(read_bitmap, nr_pages);
> + do {
> + page = mempool_alloc(rrpc->page_pool, GFP_KERNEL);
> + if (!page) {
> + bio_put(new_bio);
> + pr_err("nvm: rrpc: could not alloc read page\n");
> + goto err;
> + }
> +
> + ret = bio_add_page(new_bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
> + if (ret != RRPC_EXPOSED_PAGE_SIZE) {
> + pr_err("nvm: rrpc: could not add page to bio\n");
> + mempool_free(page, rrpc->page_pool);
> + goto err;
> + }
> +
> + rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
> + brrqd[hole].addr->addr);
> +
> + i++;
> + hole = find_next_zero_bit(read_bitmap, nr_pages, hole + 1);
> + } while (hole != nr_pages);
> +
> + if (nr_holes != new_bio->bi_vcnt) {
> + pr_err("rrpc: malformed bio\n");
> + goto err;
> + }
> +
> + new_bio->bi_iter.bi_sector = bio->bi_iter.bi_sector;
> + new_bio->bi_rw = READ;
> + new_bio->bi_private = &wait;
> + new_bio->bi_end_io = rrpc_end_sync_bio;
> +
> + rqd->flags |= NVM_IOTYPE_SYNC;
> + rqd->bio = new_bio;
> + rqd->nr_pages = nr_holes;
> +
> + rrpc_submit_read_io(rrpc, new_bio, rqd, rqd->flags);
> + wait_for_completion_io(&wait);
> +
> + if (new_bio->bi_error)
> + goto err;
> +
> + /* Fill the holes in the original bio */
> + i = 0;
> + hole = find_first_zero_bit(read_bitmap, nr_pages);
> + do {
> + src_bv = new_bio->bi_io_vec[i];
> + dst_bv = bio->bi_io_vec[hole];
> +
> + src_p = kmap_atomic(src_bv.bv_page);
> + dst_p = kmap_atomic(dst_bv.bv_page);
> +
> + memcpy(dst_p + dst_bv.bv_offset,
> + src_p + src_bv.bv_offset,
> + RRPC_EXPOSED_PAGE_SIZE);
> +
> + kunmap_atomic(src_p);
> + kunmap_atomic(dst_p);
> +
> + mempool_free(&src_bv.bv_page, rrpc->page_pool);
> +
> + i++;
> + hole = find_next_zero_bit(read_bitmap, nr_pages, hole + 1);
> + } while (hole != nr_pages);
> +
> + bio_put(new_bio);
> +
> + /* Complete the original bio and associated request */
> + rqd->flags &= ~NVM_IOTYPE_SYNC;
> + rqd->bio = bio;
> + rqd->nr_pages = nr_pages;
> +
> + bio_endio(bio);
> + rrpc_end_io(rqd);
> + return NVM_IO_OK;
> +
> +err:
> + /* Free allocated pages in new bio */
> + for (i = 0; i < new_bio->bi_vcnt; i++) {
> + src_bv = new_bio->bi_io_vec[i];
> + mempool_free(&src_bv.bv_page, rrpc->page_pool);
> + }
> + bio_endio(new_bio);
> + return NVM_IO_ERR;
> +}
> +
> static int rrpc_submit_read(struct rrpc *rrpc, struct bio *bio,
> struct rrpc_rq *rrqd, unsigned long flags)
> {
> struct nvm_rq *rqd;
> struct rrpc_buf_rq brrqd[rrpc->max_write_pgs];
> + unsigned long read_bitmap; /* Max 64 ppas per request */
> + uint8_t left;
> uint8_t nr_pages = rrpc_get_pages(bio);
> int err;
>
> + bitmap_zero(&read_bitmap, nr_pages);
> +
> rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
> if (!rqd) {
> pr_err_ratelimited("rrpc: not able to queue bio.");
> @@ -1073,22 +1320,25 @@ static int rrpc_submit_read(struct rrpc *rrpc, struct bio *bio,
> &rqd->dma_ppa_list);
> if (!rqd->ppa_list) {
> pr_err("rrpc: not able to allocate ppa list\n");
> - mempool_free(rrqd, rrpc->rrq_pool);
> mempool_free(rqd, rrpc->rq_pool);
> + mempool_free(rrqd, rrpc->rrq_pool);
> return NVM_IO_ERR;
> }
>
> err = rrpc_read_ppalist_rq(rrpc, bio, rqd, brrqd, flags,
> nr_pages);
> if (err) {
> - mempool_free(rrqd, rrpc->rrq_pool);
> mempool_free(rqd, rrpc->rq_pool);
> + mempool_free(rrqd, rrpc->rrq_pool);
> return err;
> }
> } else {
> err = rrpc_read_rq(rrpc, bio, rqd, flags);
> - if (err)
> + if (err) {
> + mempool_free(rrqd, rrpc->rrq_pool);
> + mempool_free(rqd, rrpc->rq_pool);
> return err;
> + }
> }
>
> bio_get(bio);
> @@ -1097,33 +1347,22 @@ static int rrpc_submit_read(struct rrpc *rrpc, struct bio *bio,
> rqd->nr_pages = rrqd->nr_pages = nr_pages;
> rqd->flags = flags;
>
> - err = nvm_submit_io(rrpc->dev, rqd);
> - if (err) {
> - pr_err("rrpc: I/O submission failed: %d\n", err);
> - bio_put(bio);
> - if (!(flags & NVM_IOTYPE_GC)) {
> - rrpc_unlock_rq(rrpc, rrqd);
> - if (rqd->nr_pages > 1)
> - nvm_dev_dma_free(rrpc->dev,
> - rqd->ppa_list, rqd->dma_ppa_list);
> - }
> + left = rrpc_read_from_w_buf(rrpc, rqd, brrqd, &read_bitmap);
> + if (left == 0) {
> + bio_endio(bio);
> + rrpc_end_io(rqd);
> + return NVM_IO_OK;
> + } else if (left < 0)
> return NVM_IO_ERR;
> - }
>
> - return NVM_IO_OK;
> -}
> + if (bitmap_empty(&read_bitmap, nr_pages))
> + return rrpc_submit_read_io(rrpc, bio, rqd, flags);
>
> -static int rrpc_buffer_write(struct rrpc *rrpc, struct bio *bio,
> - struct rrpc_rq *rrqd, unsigned long flags)
> -{
> - uint8_t nr_pages = rrpc_get_pages(bio);
> -
> - rrqd->nr_pages = nr_pages;
> -
> - if (nr_pages > 1)
> - return rrpc_write_ppalist_rq(rrpc, bio, rrqd, flags, nr_pages);
> - else
> - return rrpc_write_rq(rrpc, bio, rrqd, flags);
> + /* The read bio could not be completely read from the write buffer. This
> + * case only occurs when several pages are sent in a single bio
> + */
> + return rrpc_fill_partial_read_bio(rrpc, bio, &read_bitmap, rqd, brrqd,
> + nr_pages);
> }
>
> static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
> diff --git a/include/linux/lightnvm.h b/include/linux/lightnvm.h
> index eda9743..ae26ced 100644
> --- a/include/linux/lightnvm.h
> +++ b/include/linux/lightnvm.h
> @@ -11,6 +11,7 @@ enum {
>
> NVM_IOTYPE_NONE = 0,
> NVM_IOTYPE_GC = 1,
> + NVM_IOTYPE_SYNC = 2,
> };
>
> #define NVM_BLK_BITS (16)
>

Seems like this can be merged into the write buffer patch as well?