[PATCH 1/1] [RFC] workqueue: fix ghost PENDING flag while doing MQ IO
From: Roman Pen
Date: Mon Apr 25 2016 - 11:23:29 EST
Hi,
This is RFC, because for last couple of days I hunt a mystery bug and
since now I do not have a strong feeling that the following story is
nothing but bug's trick and attempt to cheat me.
[Sorry, the whole story and explanation are quite long]
The bug is reproduced quite often on our server AMD Opteron(tm) 6386 SE
with 64 cpus and 8 NUMA nodes on 4.4.5 kernel. What I observe is stalled
IO request in MQ ctx->rq_list with the following backtrace:
[ 601.347452] INFO: task kworker/u129:5:1636 blocked for more than 120 seconds.
[ 601.347574] Tainted: G O 4.4.5-1-storage+ #6
[ 601.347651] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 601.348142] kworker/u129:5 D ffff880803077988 0 1636 2 0x00000000
[ 601.348519] Workqueue: ibnbd_server_fileio_wq ibnbd_dev_file_submit_io_worker [ibnbd_server]
[ 601.348999] ffff880803077988 ffff88080466b900 ffff8808033f9c80 ffff880803078000
[ 601.349662] ffff880807c95000 7fffffffffffffff ffffffff815b0920 ffff880803077ad0
[ 601.350333] ffff8808030779a0 ffffffff815b01d5 0000000000000000 ffff880803077a38
[ 601.350965] Call Trace:
[ 601.351203] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.351444] [<ffffffff815b01d5>] schedule+0x35/0x80
[ 601.351709] [<ffffffff815b2dd2>] schedule_timeout+0x192/0x230
[ 601.351958] [<ffffffff812d43f7>] ? blk_flush_plug_list+0xc7/0x220
[ 601.352208] [<ffffffff810bd737>] ? ktime_get+0x37/0xa0
[ 601.352446] [<ffffffff815b0920>] ? bit_wait+0x60/0x60
[ 601.352688] [<ffffffff815af784>] io_schedule_timeout+0xa4/0x110
[ 601.352951] [<ffffffff815b3a4e>] ? _raw_spin_unlock_irqrestore+0xe/0x10
[ 601.353196] [<ffffffff815b093b>] bit_wait_io+0x1b/0x70
[ 601.353440] [<ffffffff815b056d>] __wait_on_bit+0x5d/0x90
[ 601.353689] [<ffffffff81127bd0>] wait_on_page_bit+0xc0/0xd0
[ 601.353958] [<ffffffff81096db0>] ? autoremove_wake_function+0x40/0x40
[ 601.354200] [<ffffffff81127cc4>] __filemap_fdatawait_range+0xe4/0x140
[ 601.354441] [<ffffffff81127d34>] filemap_fdatawait_range+0x14/0x30
[ 601.354688] [<ffffffff81129a9f>] filemap_write_and_wait_range+0x3f/0x70
[ 601.354932] [<ffffffff811ced3b>] blkdev_fsync+0x1b/0x50
[ 601.355193] [<ffffffff811c82d9>] vfs_fsync_range+0x49/0xa0
[ 601.355432] [<ffffffff811cf45a>] blkdev_write_iter+0xca/0x100
[ 601.355679] [<ffffffff81197b1a>] __vfs_write+0xaa/0xe0
[ 601.355925] [<ffffffff81198379>] vfs_write+0xa9/0x1a0
[ 601.356164] [<ffffffff811c59d8>] kernel_write+0x38/0x50
The underlying device is a null_blk, with default parameters:
root@pserver8:~# cat /sys/module/null_blk/parameters/queue_mode
2 # MQ
root@pserver8:~# cat /sys/module/null_blk/parameters/submit_queues
1 # number of hw queues
root@pserver8:~# cat /sys/module/null_blk/parameters/irqmode
1 # softirq
Verification that nullb0 has something inflight:
root@pserver8:~# cat /sys/block/nullb0/inflight
0 1
root@pserver8:~# find /sys/block/nullb0/mq/0/cpu* -name rq_list -print -exec cat {} \;
...
/sys/block/nullb0/mq/0/cpu2/rq_list
CTX pending:
ffff8838038e2400
...
GDB shows that request is alive, nothing is corrupted and all bitmaps
are valid:
root@pserver8:~# gdb /usr/src/linux-4.4.5-1-storage/vmlinux /proc/kcore
(gdb) p (struct request *)0xffff8838038e2400
$1 = (struct request *) 0xffff8838038e2400
(gdb) p *$1
...
atomic_flags = 1,
cpu = -1,
__data_len = 98304,
__sector = 192210432,
...
bio = 0xffff8807ef64d000,
biotail = 0xffff8807ef64df00,
start_time = 4294963642,
...
(gdb) p $1->mq_ctx
$3 = (struct blk_mq_ctx *) 0xffffe8c7e0c9d300
(gdb) p $1->mq_ctx->cpu
$4 = 2
(gdb) p $1->q->queue_hw_ctx[$1->q->mq_map[2]]
$5 = (struct blk_mq_hw_ctx *) 0xffff8807f1967c00
(gdb) p $5->ctx_map
$6 = {
size = 8,
bits_per_word = 8,
map = 0xffff8807f1bb6200
}
(gdb) p *$5->ctx_map.map@8
$18 = {{
word = 4,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}, {
word = 0,
depth = 8
}}
(gdb) p &$5->ctxs[0 + 2]->rq_list
$23 = (struct list_head *) 0xffffe8c7e0c9d308
(gdb) p $5->ctxs[0 + 2]->rq_list
$24 = {
next = 0xffff8838038e2400,
prev = 0xffff8838038e2400 <<<<< Our pended request
}
During debug it became clear that stalled request is always inserted in
the rq_list from the following path:
save_stack_trace_tsk + 34
blk_mq_insert_requests + 231
blk_mq_flush_plug_list + 281
blk_flush_plug_list + 199
wait_on_page_bit + 192
__filemap_fdatawait_range + 228
filemap_fdatawait_range + 20
filemap_write_and_wait_range + 63
blkdev_fsync + 27
vfs_fsync_range + 73
blkdev_write_iter + 202
__vfs_write + 170
vfs_write + 169
kernel_write + 56
So blk_flush_plug_list() was called with from_schedule == true.
If from_schedule is true, that means that finally blk_mq_insert_requests()
offloads execution of __blk_mq_run_hw_queue() and uses kblockd workqueue,
i.e. it calls kblockd_schedule_delayed_work_on().
That can mean, that we race with another CPU, which is about to execute
__blk_mq_run_hw_queue() work.
Ok, then I decided to trace deeper and to understand does the race exist,
and if yes, is that because of a probable pending hctx->run_work.
For further tracing I used 4 new events:
1. insert of a request in a rq_list
2. hctx marked as pending
3. did kblockd_schedule_delayed_work_on() succeed or not
4. actual execution of flush_busy_ctxs()
and inserted these events as in hunks below:
@@ -690,6 +690,8 @@ static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
struct blk_mq_ctx *ctx;
int i;
+ trace_hctx_flush_busy_ctxs(hctx);
+
for (i = 0; i < hctx->ctx_map.size; i++) {
struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
@@ -872,8 +876,9 @@ void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
put_cpu();
}
- kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
- &hctx->run_work, 0);
+ queued = kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
+ &hctx->run_work, 0);
+ trace_hctx_delayed_work_queued(hctx, queued);
@@ -1047,8 +1052,10 @@ static void blk_mq_insert_requests(struct request_queue *q,
list_del_init(&rq->queuelist);
rq->mq_ctx = ctx;
__blk_mq_insert_req_list(hctx, ctx, rq, false);
+ trace_hctx_insert_req_list(hctx, rq);
}
blk_mq_hctx_mark_pending(hctx, ctx);
+ trace_hctx_mark_pending(hctx);
spin_unlock(&ctx->lock);
I have to say, that I could not use kernel trace events framework
(i.e. this one include/trace/events), because bug of course immediately
disappears.
I wrote my own static lockless ring buffer with capacity for 64 events.
But I could not use any sorts of atomics - bug disappears.
My ring buffer was implemented per CPU, but then I had to sort all the
events out using some proper global accurate clock.
But I could not use sched_clock() - bug disappears.
I chose raw rdtsc(), and again, not rdtsc_ordered(), but unordered
variant. rdtsc_ordered() again "fixes" the bug. So frankly I am not
sure can I trust rdtsc(), which again can be reordered, but ok, no
other option.
So here is the sorted output of the tracer of another stalled request:
rdtsc=849688091004, cpu= 6, INS_REQ hctx=ffff8800d46c0000, rq=ffff884000343600
rdtsc=849688091304, cpu= 6, MARK_PEND hctx=ffff8800d46c0000
rdtsc=849688099595, cpu= 6, KBLK_SCHED hctx=ffff8800d46c0000, queued=1
rdtsc=849688106102, cpu= 6, FLUSH_BUSY hctx=ffff8800d46c0000
rdtsc=849688109586, cpu= 2, INS_REQ hctx=ffff8800d46c0000, rq=ffff884000343cc0
rdtsc=849688109957, cpu= 2, MARK_PEND hctx=ffff8800d46c0000
rdtsc=849688110921, cpu= 2, KBLK_SCHED hctx=ffff8800d46c0000, queued=0
I see always the same picture for all runs I did (of course CPUs number
and rq addresses can vary):
CPU#6 CPU#2
reqeust ffff884000343600 inserted
hctx marked as pended
kblockd_schedule...() returns 1
<schedule to kblockd workqueue>
*** WORK_STRUCT_PENDING_BIT is cleared ***
flush_busy_ctxs() is executed
reqeust ffff884000343cc0 inserted
hctx marked as pended
kblockd_schedule...() returns 0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
WTF?
As a result ffff884000343cc0 request pended forever.
According to the trace output I see that another CPU _always_ observes
WORK_STRUCT_PENDING_BIT as set for that hctx->run_work, even it was
cleared on another CPU.
Checking the workqueue.c code I see that clearing the bit is nothing
more, but atomic_long_set(), which is <mov> instruction. This
function:
static inline void set_work_data()
In attempt to "fix" the mystery I replaced atomic_long_set() call with
atomic_long_xchg(), which is <xchg> instruction.
The problem has gone.
For me it looks that test_and_set_bit() (<lock btsl> instruction) does
not require flush of all CPU caches, which can be dirty after executing
of <mov> on another CPU. But <xchg> really updates the memory and the
following execution of <lock btsl> observes that bit was cleared.
As a conculusion I can say, that I am lucky enough and can reproduce
this bug in several minutes on a specific load (I tried many other
simple loads using fio, even using btrecord/btreplay, no success).
And that easy reproduction on a specific load gives me some freedom
to test and then to be sure, that problem has gone.
Signed-off-by: Roman Pen <roman.penyaev@xxxxxxxxxxxxxxxx>
Cc: Tejun Heo <tj@xxxxxxxxxx>
Cc: Jens Axboe <axboe@xxxxxxxxx>
Cc: linux-block@xxxxxxxxxxxxxxx
Cc: linux-kernel@xxxxxxxxxxxxxxx
---
kernel/workqueue.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 450c21f..60cd6db 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -621,7 +621,7 @@ static inline void set_work_data(struct work_struct *work, unsigned long data,
unsigned long flags)
{
WARN_ON_ONCE(!work_pending(work));
- atomic_long_set(&work->data, data | flags | work_static(work));
+ atomic_long_xchg(&work->data, data | flags | work_static(work));
}
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
--
2.7.4