Re: [PATCH v2] mm: SLAB freelist randomization

From: Thomas Garnier
Date: Mon Apr 25 2016 - 21:58:44 EST


Make sense. I think it is still valuable to randomize earlier pages. I
will adapt the code, test and send patch v4.

Thanks for the quick feedback,
Thomas

On Mon, Apr 25, 2016 at 5:40 PM, Joonsoo Kim <iamjoonsoo.kim@xxxxxxx> wrote:
> On Mon, Apr 25, 2016 at 01:39:23PM -0700, Thomas Garnier wrote:
>> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
>> SLAB freelist. The list is randomized during initialization of a new set
>> of pages. The order on different freelist sizes is pre-computed at boot
>> for performance. Each kmem_cache has its own randomized freelist except
>> early on boot where global lists are used. This security feature reduces
>> the predictability of the kernel SLAB allocator against heap overflows
>> rendering attacks much less stable.
>>
>> For example this attack against SLUB (also applicable against SLAB)
>> would be affected:
>> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>>
>> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
>> a controllable heap is opened to new attacks not yet publicly discussed.
>> A kernel heap overflow can be transformed to multiple use-after-free.
>> This feature makes this type of attack harder too.
>>
>> To generate entropy, we use get_random_bytes_arch because 0 bits of
>> entropy is available in the boot stage. In the worse case this function
>> will fallback to the get_random_bytes sub API. We also generate a shift
>> random number to shift pre-computed freelist for each new set of pages.
>>
>> The config option name is not specific to the SLAB as this approach will
>> be extended to other allocators like SLUB.
>>
>> Performance results highlighted no major changes:
>>
>> slab_test 1 run on boot. Difference only seen on the 2048 size test
>> being the worse case scenario covered by freelist randomization. New
>> slab pages are constantly being created on the 10000 allocations.
>> Variance should be mainly due to getting new pages every few
>> allocations.
>>
>> Before:
>>
>> Single thread testing
>> =====================
>> 1. Kmalloc: Repeatedly allocate then free test
>> 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
>> 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
>> 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
>> 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
>> 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
>> 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
>> 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
>> 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
>> 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
>> 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
>> 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
>> 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
>> 2. Kmalloc: alloc/free test
>> 10000 times kmalloc(8)/kfree -> 121 cycles
>> 10000 times kmalloc(16)/kfree -> 121 cycles
>> 10000 times kmalloc(32)/kfree -> 121 cycles
>> 10000 times kmalloc(64)/kfree -> 121 cycles
>> 10000 times kmalloc(128)/kfree -> 121 cycles
>> 10000 times kmalloc(256)/kfree -> 119 cycles
>> 10000 times kmalloc(512)/kfree -> 119 cycles
>> 10000 times kmalloc(1024)/kfree -> 119 cycles
>> 10000 times kmalloc(2048)/kfree -> 119 cycles
>> 10000 times kmalloc(4096)/kfree -> 121 cycles
>> 10000 times kmalloc(8192)/kfree -> 119 cycles
>> 10000 times kmalloc(16384)/kfree -> 119 cycles
>>
>> After:
>>
>> Single thread testing
>> =====================
>> 1. Kmalloc: Repeatedly allocate then free test
>> 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
>> 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
>> 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
>> 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
>> 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
>> 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
>> 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
>> 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
>> 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
>> 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
>> 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
>> 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
>> 2. Kmalloc: alloc/free test
>> 10000 times kmalloc(8)/kfree -> 121 cycles
>> 10000 times kmalloc(16)/kfree -> 121 cycles
>> 10000 times kmalloc(32)/kfree -> 123 cycles
>> 10000 times kmalloc(64)/kfree -> 142 cycles
>> 10000 times kmalloc(128)/kfree -> 121 cycles
>> 10000 times kmalloc(256)/kfree -> 119 cycles
>> 10000 times kmalloc(512)/kfree -> 119 cycles
>> 10000 times kmalloc(1024)/kfree -> 119 cycles
>> 10000 times kmalloc(2048)/kfree -> 119 cycles
>> 10000 times kmalloc(4096)/kfree -> 119 cycles
>> 10000 times kmalloc(8192)/kfree -> 119 cycles
>> 10000 times kmalloc(16384)/kfree -> 119 cycles
>>
>> Signed-off-by: Thomas Garnier <thgarnie@xxxxxxxxxx>
>> ---
>> Based on next-20160422
>> ---
>> include/linux/slab_def.h | 4 +
>> init/Kconfig | 9 ++
>> mm/slab.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++-
>> 3 files changed, 224 insertions(+), 2 deletions(-)
>>
>> diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
>> index 9edbbf3..182ec26 100644
>> --- a/include/linux/slab_def.h
>> +++ b/include/linux/slab_def.h
>> @@ -80,6 +80,10 @@ struct kmem_cache {
>> struct kasan_cache kasan_info;
>> #endif
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> + void *random_seq;
>> +#endif
>> +
>> struct kmem_cache_node *node[MAX_NUMNODES];
>> };
>>
>> diff --git a/init/Kconfig b/init/Kconfig
>> index 0c66640..73453d0 100644
>> --- a/init/Kconfig
>> +++ b/init/Kconfig
>> @@ -1742,6 +1742,15 @@ config SLOB
>>
>> endchoice
>>
>> +config FREELIST_RANDOM
>> + default n
>> + depends on SLAB
>> + bool "SLAB freelist randomization"
>> + help
>> + Randomizes the freelist order used on creating new SLABs. This
>> + security feature reduces the predictability of the kernel slab
>> + allocator against heap overflows.
>> +
>> config SLUB_CPU_PARTIAL
>> default y
>> depends on SLUB && SMP
>> diff --git a/mm/slab.c b/mm/slab.c
>> index b82ee6b..89eb617 100644
>> --- a/mm/slab.c
>> +++ b/mm/slab.c
>> @@ -116,6 +116,7 @@
>> #include <linux/kmemcheck.h>
>> #include <linux/memory.h>
>> #include <linux/prefetch.h>
>> +#include <linux/log2.h>
>>
>> #include <net/sock.h>
>>
>> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
>> }
>> }
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
>> + size_t count)
>> +{
>> + size_t i;
>> + unsigned int rand;
>> +
>> + for (i = 0; i < count; i++)
>> + list[i] = i;
>> +
>> + /* Fisher-Yates shuffle */
>> + for (i = count - 1; i > 0; i--) {
>> + rand = prandom_u32_state(state);
>> + rand %= (i + 1);
>> + swap(list[i], list[rand]);
>> + }
>> +}
>> +
>> +/* Create a random sequence per cache */
>> +static void cache_random_seq_create(struct kmem_cache *cachep)
>> +{
>> + unsigned int seed, count = cachep->num;
>> + struct rnd_state state;
>> +
>> + if (count < 2)
>> + return;
>> +
>> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
>> + BUG_ON(cachep->random_seq == NULL);
>
> Hello,
>
> Please make function return int and propagate error to the cache creator.
>
>> +
>> + /* Get best entropy at this stage */
>> + get_random_bytes_arch(&seed, sizeof(seed));
>> + prandom_seed_state(&state, seed);
>> +
>> + freelist_randomize(&state, cachep->random_seq, count);
>> +}
>> +
>> +/* Destroy the per-cache random freelist sequence */
>> +static void cache_random_seq_destroy(struct kmem_cache *cachep)
>> +{
>> + kfree(cachep->random_seq);
>> + cachep->random_seq = NULL;
>> +}
>> +
>> +/*
>> + * Global static list are used when pre-computed cache list are not yet
>> + * available. Lists of different sizes are created to optimize performance on
>> + * SLABS with different object counts.
>> + */
>> +static freelist_idx_t freelist_random_seq_2[2];
>> +static freelist_idx_t freelist_random_seq_4[4];
>> +static freelist_idx_t freelist_random_seq_8[8];
>> +static freelist_idx_t freelist_random_seq_16[16];
>> +static freelist_idx_t freelist_random_seq_32[32];
>> +static freelist_idx_t freelist_random_seq_64[64];
>> +static freelist_idx_t freelist_random_seq_128[128];
>> +static freelist_idx_t freelist_random_seq_256[256];
>> +const static struct m_list {
>> + size_t count;
>> + freelist_idx_t *list;
>> +} freelist_random_seqs[] = {
>> + { ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 },
>> + { ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 },
>> + { ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 },
>> + { ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 },
>> + { ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 },
>> + { ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 },
>> + { ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 },
>> + { ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 },
>> +};
>
> I'd like to remove this global static list even if we can't get random
> sequence in early boot-up process. In this stage that kernel is not
> yet initialized, malicious user cannot do anything so random sequence
> doesn't give any more security. After kernel initialization, we will
> use per cache random sequence so problem suface is really small. If you
> want to randomize freelist sequence even in this case, you can manually
> permute the sequence with calling prandom_u32_state(). But, I don't
> think it is necessary.
>
> Thanks.
>
>> +
>> +/* Pre-compute the global pre-computed lists early at boot */
>> +static void __init freelist_random_init(void)
>> +{
>> + unsigned int seed;
>> + size_t i;
>> + struct rnd_state state;
>> +
>> + /* Get best entropy available at this stage */
>> + get_random_bytes_arch(&seed, sizeof(seed));
>> + prandom_seed_state(&state, seed);
>> +
>> + for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) {
>> + freelist_randomize(&state, freelist_random_seqs[i].list,
>> + freelist_random_seqs[i].count);
>> + }
>> +}
>> +#else
>> +static inline void __init freelist_random_init(void) { }
>> +static inline void cache_random_seq_create(struct kmem_cache *cachep) { }
>> +static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
>> +#endif /* CONFIG_FREELIST_RANDOM */
>> +
>> +
>> /*
>> * Initialisation. Called after the page allocator have been initialised and
>> * before smp_init().
>> @@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void)
>> if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
>> slab_max_order = SLAB_MAX_ORDER_HI;
>>
>> + freelist_random_init();
>> +
>> /* Bootstrap is tricky, because several objects are allocated
>> * from caches that do not exist yet:
>> * 1) initialize the kmem_cache cache: it contains the struct
>> @@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep)
>> int i;
>> struct kmem_cache_node *n;
>>
>> + cache_random_seq_destroy(cachep);
>> +
>> free_percpu(cachep->cpu_cache);
>>
>> /* NUMA: free the node structures */
>> @@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
>> #endif
>> }
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> +/* Hold information during a freelist initialization */
>> +struct freelist_init_state {
>> + unsigned int padding;
>> + unsigned int pos;
>> + unsigned int count;
>> + unsigned int rand;
>> + struct m_list freelist_random_seq;
>> +};
>> +
>> +/* Select the right pre-computed list and initialize state */
>> +static void freelist_state_initialize(struct freelist_init_state *state,
>> + struct kmem_cache *cachep,
>> + unsigned int count)
>> +{
>> + unsigned int idx;
>> + const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1;
>> +
>> + memset(state, 0, sizeof(*state));
>> + state->count = count;
>> + state->pos = 0;
>> +
>> + /* Use best entropy available to define a random shift */
>> + get_random_bytes_arch(&state->rand, sizeof(state->rand));
>> +
>> + if (cachep->random_seq) {
>> + state->freelist_random_seq.list = cachep->random_seq;
>> + state->freelist_random_seq.count = count;
>> + } else {
>> + /* count is always >= 2 */
>> + idx = ilog2(count) - 1;
>> + if (idx >= last_idx)
>> + idx = last_idx;
>> + else if (roundup_pow_of_two(idx + 1) != count)
>> + idx++;
>> + state->freelist_random_seq = freelist_random_seqs[idx];
>> + }
>> +}
>> +
>> +/* Get the next entry on the list depending on the target list size */
>> +static freelist_idx_t get_next_entry(struct freelist_init_state *state)
>> +{
>> + freelist_idx_t ret;
>> +
>> + if (state->pos == state->freelist_random_seq.count) {
>> + state->padding += state->pos;
>> + state->pos = 0;
>> + }
>> +
>> + /* Randomize the entry using the random shift */
>> + ret = state->freelist_random_seq.list[state->pos++];
>> + ret = (ret + state->rand) % state->freelist_random_seq.count;
>> + return ret;
>> +}
>> +
>> +static freelist_idx_t next_random_slot(struct freelist_init_state *state)
>> +{
>> + freelist_idx_t entry;
>> +
>> + do {
>> + entry = get_next_entry(state);
>> + } while ((entry + state->padding) >= state->count);
>> +
>> + return entry + state->padding;
>> +}
>> +
>> +/*
>> + * Shuffle the freelist initialization state based on pre-computed lists.
>> + * return true if the list was successfully shuffled, false otherwise.
>> + */
>> +static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
>> +{
>> + unsigned int objfreelist, i, count = cachep->num;
>> + struct freelist_init_state state;
>> +
>> + if (count < 2)
>> + return false;
>> +
>> + objfreelist = 0;
>> + freelist_state_initialize(&state, cachep, count);
>> +
>> + /* Take the first random entry as the objfreelist */
>> + if (OBJFREELIST_SLAB(cachep)) {
>> + objfreelist = next_random_slot(&state);
>> + page->freelist = index_to_obj(cachep, page, objfreelist) +
>> + obj_offset(cachep);
>> + count--;
>> + }
>> + for (i = 0; i < count; i++)
>> + set_free_obj(page, i, next_random_slot(&state));
>> +
>> + if (OBJFREELIST_SLAB(cachep))
>> + set_free_obj(page, i, objfreelist);
>> + return true;
>> +}
>> +#else
>> +static inline bool shuffle_freelist(struct kmem_cache *cachep,
>> + struct page *page)
>> +{
>> + return false;
>> +}
>> +#endif /* CONFIG_FREELIST_RANDOM */
>> +
>> static void cache_init_objs(struct kmem_cache *cachep,
>> struct page *page)
>> {
>> int i;
>> void *objp;
>> + bool shuffled;
>>
>> cache_init_objs_debug(cachep, page);
>>
>> - if (OBJFREELIST_SLAB(cachep)) {
>> + /* Try to randomize the freelist if enabled */
>> + shuffled = shuffle_freelist(cachep, page);
>> +
>> + if (!shuffled && OBJFREELIST_SLAB(cachep)) {
>> page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
>> obj_offset(cachep);
>> }
>> @@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
>> kasan_poison_object_data(cachep, objp);
>> }
>>
>> - set_free_obj(page, i, i);
>> + if (!shuffled)
>> + set_free_obj(page, i, i);
>> }
>> }
>>
>> @@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
>> int shared = 0;
>> int batchcount = 0;
>>
>> + cache_random_seq_create(cachep);
>> +
>> if (!is_root_cache(cachep)) {
>> struct kmem_cache *root = memcg_root_cache(cachep);
>> limit = root->limit;
>> --
>> 2.8.0.rc3.226.g39d4020
>>
>> --
>> To unsubscribe, send a message with 'unsubscribe linux-mm' in
>> the body to majordomo@xxxxxxxxxx For more info on Linux MM,
>> see: http://www.linux-mm.org/ .
>> Don't email: <a href=mailto:"dont@xxxxxxxxx";> email@xxxxxxxxx </a>