Re: [PATCH 6/6] ppc: ebpf/jit: Implement JIT compiler for extended BPF

From: Nilay Vaish
Date: Wed Jun 08 2016 - 23:20:29 EST


Naveen, can you point out where in the patch you update the variable:
idx, a member of codegen_contex structure? Somehow I am unable to
figure it out. I can only see that we set it to 0 in the
bpf_int_jit_compile function. Since all your test cases pass, I am
clearly overlooking something.

Thanks
Nilay

On 7 June 2016 at 08:32, Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx> wrote:
> PPC64 eBPF JIT compiler.
>
> Enable with:
> echo 1 > /proc/sys/net/core/bpf_jit_enable
> or
> echo 2 > /proc/sys/net/core/bpf_jit_enable
>
> ... to see the generated JIT code. This can further be processed with
> tools/net/bpf_jit_disasm.
>
> With CONFIG_TEST_BPF=m and 'modprobe test_bpf':
> test_bpf: Summary: 305 PASSED, 0 FAILED, [297/297 JIT'ed]
>
> ... on both ppc64 BE and LE.
>
> The details of the approach are documented through various comments in
> the code.
>
> Cc: Matt Evans <matt@xxxxxxxxxx>
> Cc: Denis Kirjanov <kda@xxxxxxxxxxxxxxxxx>
> Cc: Michael Ellerman <mpe@xxxxxxxxxxxxxx>
> Cc: Paul Mackerras <paulus@xxxxxxxxx>
> Cc: Alexei Starovoitov <ast@xxxxxx>
> Cc: Daniel Borkmann <daniel@xxxxxxxxxxxxx>
> Cc: "David S. Miller" <davem@xxxxxxxxxxxxx>
> Cc: Ananth N Mavinakayanahalli <ananth@xxxxxxxxxx>
> Signed-off-by: Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx>
> ---
> arch/powerpc/Kconfig | 3 +-
> arch/powerpc/include/asm/asm-compat.h | 2 +
> arch/powerpc/include/asm/ppc-opcode.h | 20 +-
> arch/powerpc/net/Makefile | 4 +
> arch/powerpc/net/bpf_jit.h | 53 +-
> arch/powerpc/net/bpf_jit64.h | 102 ++++
> arch/powerpc/net/bpf_jit_asm64.S | 180 +++++++
> arch/powerpc/net/bpf_jit_comp64.c | 956 ++++++++++++++++++++++++++++++++++
> 8 files changed, 1317 insertions(+), 3 deletions(-)
> create mode 100644 arch/powerpc/net/bpf_jit64.h
> create mode 100644 arch/powerpc/net/bpf_jit_asm64.S
> create mode 100644 arch/powerpc/net/bpf_jit_comp64.c
>
> diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
> index 01f7464..ee82f9a 100644
> --- a/arch/powerpc/Kconfig
> +++ b/arch/powerpc/Kconfig
> @@ -128,7 +128,8 @@ config PPC
> select IRQ_FORCED_THREADING
> select HAVE_RCU_TABLE_FREE if SMP
> select HAVE_SYSCALL_TRACEPOINTS
> - select HAVE_CBPF_JIT
> + select HAVE_CBPF_JIT if !PPC64
> + select HAVE_EBPF_JIT if PPC64
> select HAVE_ARCH_JUMP_LABEL
> select ARCH_HAVE_NMI_SAFE_CMPXCHG
> select ARCH_HAS_GCOV_PROFILE_ALL
> diff --git a/arch/powerpc/include/asm/asm-compat.h b/arch/powerpc/include/asm/asm-compat.h
> index dc85dcb..cee3aa0 100644
> --- a/arch/powerpc/include/asm/asm-compat.h
> +++ b/arch/powerpc/include/asm/asm-compat.h
> @@ -36,11 +36,13 @@
> #define PPC_MIN_STKFRM 112
>
> #ifdef __BIG_ENDIAN__
> +#define LHZX_BE stringify_in_c(lhzx)
> #define LWZX_BE stringify_in_c(lwzx)
> #define LDX_BE stringify_in_c(ldx)
> #define STWX_BE stringify_in_c(stwx)
> #define STDX_BE stringify_in_c(stdx)
> #else
> +#define LHZX_BE stringify_in_c(lhbrx)
> #define LWZX_BE stringify_in_c(lwbrx)
> #define LDX_BE stringify_in_c(ldbrx)
> #define STWX_BE stringify_in_c(stwbrx)
> diff --git a/arch/powerpc/include/asm/ppc-opcode.h b/arch/powerpc/include/asm/ppc-opcode.h
> index fd8d640..6a77d130 100644
> --- a/arch/powerpc/include/asm/ppc-opcode.h
> +++ b/arch/powerpc/include/asm/ppc-opcode.h
> @@ -142,9 +142,11 @@
> #define PPC_INST_ISEL 0x7c00001e
> #define PPC_INST_ISEL_MASK 0xfc00003e
> #define PPC_INST_LDARX 0x7c0000a8
> +#define PPC_INST_STDCX 0x7c0001ad
> #define PPC_INST_LSWI 0x7c0004aa
> #define PPC_INST_LSWX 0x7c00042a
> #define PPC_INST_LWARX 0x7c000028
> +#define PPC_INST_STWCX 0x7c00012d
> #define PPC_INST_LWSYNC 0x7c2004ac
> #define PPC_INST_SYNC 0x7c0004ac
> #define PPC_INST_SYNC_MASK 0xfc0007fe
> @@ -211,8 +213,11 @@
> #define PPC_INST_LBZ 0x88000000
> #define PPC_INST_LD 0xe8000000
> #define PPC_INST_LHZ 0xa0000000
> -#define PPC_INST_LHBRX 0x7c00062c
> #define PPC_INST_LWZ 0x80000000
> +#define PPC_INST_LHBRX 0x7c00062c
> +#define PPC_INST_LDBRX 0x7c000428
> +#define PPC_INST_STB 0x98000000
> +#define PPC_INST_STH 0xb0000000
> #define PPC_INST_STD 0xf8000000
> #define PPC_INST_STDU 0xf8000001
> #define PPC_INST_STW 0x90000000
> @@ -221,22 +226,34 @@
> #define PPC_INST_MTLR 0x7c0803a6
> #define PPC_INST_CMPWI 0x2c000000
> #define PPC_INST_CMPDI 0x2c200000
> +#define PPC_INST_CMPW 0x7c000000
> +#define PPC_INST_CMPD 0x7c200000
> #define PPC_INST_CMPLW 0x7c000040
> +#define PPC_INST_CMPLD 0x7c200040
> #define PPC_INST_CMPLWI 0x28000000
> +#define PPC_INST_CMPLDI 0x28200000
> #define PPC_INST_ADDI 0x38000000
> #define PPC_INST_ADDIS 0x3c000000
> #define PPC_INST_ADD 0x7c000214
> #define PPC_INST_SUB 0x7c000050
> #define PPC_INST_BLR 0x4e800020
> #define PPC_INST_BLRL 0x4e800021
> +#define PPC_INST_MULLD 0x7c0001d2
> #define PPC_INST_MULLW 0x7c0001d6
> #define PPC_INST_MULHWU 0x7c000016
> #define PPC_INST_MULLI 0x1c000000
> #define PPC_INST_DIVWU 0x7c000396
> +#define PPC_INST_DIVD 0x7c0003d2
> #define PPC_INST_RLWINM 0x54000000
> +#define PPC_INST_RLWIMI 0x50000000
> +#define PPC_INST_RLDICL 0x78000000
> #define PPC_INST_RLDICR 0x78000004
> #define PPC_INST_SLW 0x7c000030
> +#define PPC_INST_SLD 0x7c000036
> #define PPC_INST_SRW 0x7c000430
> +#define PPC_INST_SRD 0x7c000436
> +#define PPC_INST_SRAD 0x7c000634
> +#define PPC_INST_SRADI 0x7c000674
> #define PPC_INST_AND 0x7c000038
> #define PPC_INST_ANDDOT 0x7c000039
> #define PPC_INST_OR 0x7c000378
> @@ -247,6 +264,7 @@
> #define PPC_INST_XORI 0x68000000
> #define PPC_INST_XORIS 0x6c000000
> #define PPC_INST_NEG 0x7c0000d0
> +#define PPC_INST_EXTSW 0x7c0007b4
> #define PPC_INST_BRANCH 0x48000000
> #define PPC_INST_BRANCH_COND 0x40800000
> #define PPC_INST_LBZCIX 0x7c0006aa
> diff --git a/arch/powerpc/net/Makefile b/arch/powerpc/net/Makefile
> index 1306a58..c1ff16a 100644
> --- a/arch/powerpc/net/Makefile
> +++ b/arch/powerpc/net/Makefile
> @@ -1,4 +1,8 @@
> #
> # Arch-specific network modules
> #
> +ifeq ($(CONFIG_PPC64),y)
> +obj-$(CONFIG_BPF_JIT) += bpf_jit_asm64.o bpf_jit_comp64.o
> +else
> obj-$(CONFIG_BPF_JIT) += bpf_jit_asm.o bpf_jit_comp.o
> +endif
> diff --git a/arch/powerpc/net/bpf_jit.h b/arch/powerpc/net/bpf_jit.h
> index 313cfaf..d5301b6 100644
> --- a/arch/powerpc/net/bpf_jit.h
> +++ b/arch/powerpc/net/bpf_jit.h
> @@ -2,6 +2,7 @@
> * bpf_jit.h: BPF JIT compiler for PPC
> *
> * Copyright 2011 Matt Evans <matt@xxxxxxxxxx>, IBM Corporation
> + * 2016 Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx>
> *
> * This program is free software; you can redistribute it and/or
> * modify it under the terms of the GNU General Public License
> @@ -13,7 +14,9 @@
>
> #ifndef __ASSEMBLY__
>
> -#ifdef CONFIG_PPC64
> +#include <asm/types.h>
> +
> +#ifdef PPC64_ELF_ABI_v1
> #define FUNCTION_DESCR_SIZE 24
> #else
> #define FUNCTION_DESCR_SIZE 0
> @@ -52,6 +55,10 @@
> ___PPC_RA(base) | IMM_L(i))
> #define PPC_STWU(r, base, i) EMIT(PPC_INST_STWU | ___PPC_RS(r) | \
> ___PPC_RA(base) | IMM_L(i))
> +#define PPC_STH(r, base, i) EMIT(PPC_INST_STH | ___PPC_RS(r) | \
> + ___PPC_RA(base) | IMM_L(i))
> +#define PPC_STB(r, base, i) EMIT(PPC_INST_STB | ___PPC_RS(r) | \
> + ___PPC_RA(base) | IMM_L(i))
>
> #define PPC_LBZ(r, base, i) EMIT(PPC_INST_LBZ | ___PPC_RT(r) | \
> ___PPC_RA(base) | IMM_L(i))
> @@ -63,6 +70,19 @@
> ___PPC_RA(base) | IMM_L(i))
> #define PPC_LHBRX(r, base, b) EMIT(PPC_INST_LHBRX | ___PPC_RT(r) | \
> ___PPC_RA(base) | ___PPC_RB(b))
> +#define PPC_LDBRX(r, base, b) EMIT(PPC_INST_LDBRX | ___PPC_RT(r) | \
> + ___PPC_RA(base) | ___PPC_RB(b))
> +
> +#define PPC_BPF_LDARX(t, a, b, eh) EMIT(PPC_INST_LDARX | ___PPC_RT(t) | \
> + ___PPC_RA(a) | ___PPC_RB(b) | \
> + __PPC_EH(eh))
> +#define PPC_BPF_LWARX(t, a, b, eh) EMIT(PPC_INST_LWARX | ___PPC_RT(t) | \
> + ___PPC_RA(a) | ___PPC_RB(b) | \
> + __PPC_EH(eh))
> +#define PPC_BPF_STWCX(s, a, b) EMIT(PPC_INST_STWCX | ___PPC_RS(s) | \
> + ___PPC_RA(a) | ___PPC_RB(b))
> +#define PPC_BPF_STDCX(s, a, b) EMIT(PPC_INST_STDCX | ___PPC_RS(s) | \
> + ___PPC_RA(a) | ___PPC_RB(b))
>
> #ifdef CONFIG_PPC64
> #define PPC_BPF_LL(r, base, i) do { PPC_LD(r, base, i); } while(0)
> @@ -76,14 +96,23 @@
>
> #define PPC_CMPWI(a, i) EMIT(PPC_INST_CMPWI | ___PPC_RA(a) | IMM_L(i))
> #define PPC_CMPDI(a, i) EMIT(PPC_INST_CMPDI | ___PPC_RA(a) | IMM_L(i))
> +#define PPC_CMPW(a, b) EMIT(PPC_INST_CMPW | ___PPC_RA(a) | \
> + ___PPC_RB(b))
> +#define PPC_CMPD(a, b) EMIT(PPC_INST_CMPD | ___PPC_RA(a) | \
> + ___PPC_RB(b))
> #define PPC_CMPLWI(a, i) EMIT(PPC_INST_CMPLWI | ___PPC_RA(a) | IMM_L(i))
> +#define PPC_CMPLDI(a, i) EMIT(PPC_INST_CMPLDI | ___PPC_RA(a) | IMM_L(i))
> #define PPC_CMPLW(a, b) EMIT(PPC_INST_CMPLW | ___PPC_RA(a) | \
> ___PPC_RB(b))
> +#define PPC_CMPLD(a, b) EMIT(PPC_INST_CMPLD | ___PPC_RA(a) | \
> + ___PPC_RB(b))
>
> #define PPC_SUB(d, a, b) EMIT(PPC_INST_SUB | ___PPC_RT(d) | \
> ___PPC_RB(a) | ___PPC_RA(b))
> #define PPC_ADD(d, a, b) EMIT(PPC_INST_ADD | ___PPC_RT(d) | \
> ___PPC_RA(a) | ___PPC_RB(b))
> +#define PPC_MULD(d, a, b) EMIT(PPC_INST_MULLD | ___PPC_RT(d) | \
> + ___PPC_RA(a) | ___PPC_RB(b))
> #define PPC_MULW(d, a, b) EMIT(PPC_INST_MULLW | ___PPC_RT(d) | \
> ___PPC_RA(a) | ___PPC_RB(b))
> #define PPC_MULHWU(d, a, b) EMIT(PPC_INST_MULHWU | ___PPC_RT(d) | \
> @@ -92,6 +121,8 @@
> ___PPC_RA(a) | IMM_L(i))
> #define PPC_DIVWU(d, a, b) EMIT(PPC_INST_DIVWU | ___PPC_RT(d) | \
> ___PPC_RA(a) | ___PPC_RB(b))
> +#define PPC_DIVD(d, a, b) EMIT(PPC_INST_DIVD | ___PPC_RT(d) | \
> + ___PPC_RA(a) | ___PPC_RB(b))
> #define PPC_AND(d, a, b) EMIT(PPC_INST_AND | ___PPC_RA(d) | \
> ___PPC_RS(a) | ___PPC_RB(b))
> #define PPC_ANDI(d, a, i) EMIT(PPC_INST_ANDI | ___PPC_RA(d) | \
> @@ -100,6 +131,7 @@
> ___PPC_RS(a) | ___PPC_RB(b))
> #define PPC_OR(d, a, b) EMIT(PPC_INST_OR | ___PPC_RA(d) | \
> ___PPC_RS(a) | ___PPC_RB(b))
> +#define PPC_MR(d, a) PPC_OR(d, a, a)
> #define PPC_ORI(d, a, i) EMIT(PPC_INST_ORI | ___PPC_RA(d) | \
> ___PPC_RS(a) | IMM_L(i))
> #define PPC_ORIS(d, a, i) EMIT(PPC_INST_ORIS | ___PPC_RA(d) | \
> @@ -110,13 +142,30 @@
> ___PPC_RS(a) | IMM_L(i))
> #define PPC_XORIS(d, a, i) EMIT(PPC_INST_XORIS | ___PPC_RA(d) | \
> ___PPC_RS(a) | IMM_L(i))
> +#define PPC_EXTSW(d, a) EMIT(PPC_INST_EXTSW | ___PPC_RA(d) | \
> + ___PPC_RS(a))
> #define PPC_SLW(d, a, s) EMIT(PPC_INST_SLW | ___PPC_RA(d) | \
> ___PPC_RS(a) | ___PPC_RB(s))
> +#define PPC_SLD(d, a, s) EMIT(PPC_INST_SLD | ___PPC_RA(d) | \
> + ___PPC_RS(a) | ___PPC_RB(s))
> #define PPC_SRW(d, a, s) EMIT(PPC_INST_SRW | ___PPC_RA(d) | \
> ___PPC_RS(a) | ___PPC_RB(s))
> +#define PPC_SRD(d, a, s) EMIT(PPC_INST_SRD | ___PPC_RA(d) | \
> + ___PPC_RS(a) | ___PPC_RB(s))
> +#define PPC_SRAD(d, a, s) EMIT(PPC_INST_SRAD | ___PPC_RA(d) | \
> + ___PPC_RS(a) | ___PPC_RB(s))
> +#define PPC_SRADI(d, a, i) EMIT(PPC_INST_SRADI | ___PPC_RA(d) | \
> + ___PPC_RS(a) | __PPC_SH(i) | \
> + (((i) & 0x20) >> 4))
> #define PPC_RLWINM(d, a, i, mb, me) EMIT(PPC_INST_RLWINM | ___PPC_RA(d) | \
> ___PPC_RS(a) | __PPC_SH(i) | \
> __PPC_MB(mb) | __PPC_ME(me))
> +#define PPC_RLWIMI(d, a, i, mb, me) EMIT(PPC_INST_RLWIMI | ___PPC_RA(d) | \
> + ___PPC_RS(a) | __PPC_SH(i) | \
> + __PPC_MB(mb) | __PPC_ME(me))
> +#define PPC_RLDICL(d, a, i, mb) EMIT(PPC_INST_RLDICL | ___PPC_RA(d) | \
> + ___PPC_RS(a) | __PPC_SH(i) | \
> + __PPC_MB64(mb) | (((i) & 0x20) >> 4))
> #define PPC_RLDICR(d, a, i, me) EMIT(PPC_INST_RLDICR | ___PPC_RA(d) | \
> ___PPC_RS(a) | __PPC_SH(i) | \
> __PPC_ME64(me) | (((i) & 0x20) >> 4))
> @@ -127,6 +176,8 @@
> #define PPC_SRWI(d, a, i) PPC_RLWINM(d, a, 32-(i), i, 31)
> /* sldi = rldicr Rx, Ry, n, 63-n */
> #define PPC_SLDI(d, a, i) PPC_RLDICR(d, a, i, 63-(i))
> +/* sldi = rldicl Rx, Ry, 64-n, n */
> +#define PPC_SRDI(d, a, i) PPC_RLDICL(d, a, 64-(i), i)
>
> #define PPC_NEG(d, a) EMIT(PPC_INST_NEG | ___PPC_RT(d) | ___PPC_RA(a))
>
> diff --git a/arch/powerpc/net/bpf_jit64.h b/arch/powerpc/net/bpf_jit64.h
> new file mode 100644
> index 0000000..5046d6f
> --- /dev/null
> +++ b/arch/powerpc/net/bpf_jit64.h
> @@ -0,0 +1,102 @@
> +/*
> + * bpf_jit64.h: BPF JIT compiler for PPC64
> + *
> + * Copyright 2016 Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx>
> + * IBM Corporation
> + *
> + * This program is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU General Public License
> + * as published by the Free Software Foundation; version 2
> + * of the License.
> + */
> +#ifndef _BPF_JIT64_H
> +#define _BPF_JIT64_H
> +
> +#include "bpf_jit.h"
> +
> +/*
> + * Stack layout:
> + *
> + * [ prev sp ] <-------------
> + * [ nv gpr save area ] 8*8 |
> + * fp (r31) --> [ ebpf stack space ] 512 |
> + * [ local/tmp var space ] 16 |
> + * [ frame header ] 32/112 |
> + * sp (r1) ---> [ stack pointer ] --------------
> + */
> +
> +/* for bpf JIT code internal usage */
> +#define BPF_PPC_STACK_LOCALS 16
> +/* for gpr non volatile registers BPG_REG_6 to 10, plus skb cache registers */
> +#define BPF_PPC_STACK_SAVE (8*8)
> +/* Ensure this is quadword aligned */
> +#define BPF_PPC_STACKFRAME (STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS + \
> + MAX_BPF_STACK + BPF_PPC_STACK_SAVE)
> +
> +#ifndef __ASSEMBLY__
> +
> +/* BPF register usage */
> +#define SKB_HLEN_REG (MAX_BPF_REG + 0)
> +#define SKB_DATA_REG (MAX_BPF_REG + 1)
> +#define TMP_REG_1 (MAX_BPF_REG + 2)
> +#define TMP_REG_2 (MAX_BPF_REG + 3)
> +
> +/* BPF to ppc register mappings */
> +static const int b2p[] = {
> + /* function return value */
> + [BPF_REG_0] = 8,
> + /* function arguments */
> + [BPF_REG_1] = 3,
> + [BPF_REG_2] = 4,
> + [BPF_REG_3] = 5,
> + [BPF_REG_4] = 6,
> + [BPF_REG_5] = 7,
> + /* non volatile registers */
> + [BPF_REG_6] = 27,
> + [BPF_REG_7] = 28,
> + [BPF_REG_8] = 29,
> + [BPF_REG_9] = 30,
> + /* frame pointer aka BPF_REG_10 */
> + [BPF_REG_FP] = 31,
> + /* eBPF jit internal registers */
> + [SKB_HLEN_REG] = 25,
> + [SKB_DATA_REG] = 26,
> + [TMP_REG_1] = 9,
> + [TMP_REG_2] = 10
> +};
> +
> +/* Assembly helpers */
> +#define DECLARE_LOAD_FUNC(func) u64 func(u64 r3, u64 r4); \
> + u64 func##_negative_offset(u64 r3, u64 r4); \
> + u64 func##_positive_offset(u64 r3, u64 r4);
> +
> +DECLARE_LOAD_FUNC(sk_load_word);
> +DECLARE_LOAD_FUNC(sk_load_half);
> +DECLARE_LOAD_FUNC(sk_load_byte);
> +
> +#define CHOOSE_LOAD_FUNC(imm, func) \
> + (imm < 0 ? \
> + (imm >= SKF_LL_OFF ? func##_negative_offset : func) : \
> + func##_positive_offset)
> +
> +#define SEEN_FUNC 0x1000 /* might call external helpers */
> +#define SEEN_STACK 0x2000 /* uses BPF stack */
> +#define SEEN_SKB 0x4000 /* uses sk_buff */
> +
> +struct codegen_context {
> + /*
> + * This is used to track register usage as well
> + * as calls to external helpers.
> + * - register usage is tracked with corresponding
> + * bits (r3-r10 and r25-r31)
> + * - rest of the bits can be used to track other
> + * things -- for now, we use bits 16 to 23
> + * encoded in SEEN_* macros above
> + */
> + unsigned int seen;
> + unsigned int idx;
> +};
> +
> +#endif /* !__ASSEMBLY__ */
> +
> +#endif
> diff --git a/arch/powerpc/net/bpf_jit_asm64.S b/arch/powerpc/net/bpf_jit_asm64.S
> new file mode 100644
> index 0000000..7e4c514
> --- /dev/null
> +++ b/arch/powerpc/net/bpf_jit_asm64.S
> @@ -0,0 +1,180 @@
> +/*
> + * bpf_jit_asm64.S: Packet/header access helper functions
> + * for PPC64 BPF compiler.
> + *
> + * Copyright 2016, Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx>
> + * IBM Corporation
> + *
> + * Based on bpf_jit_asm.S by Matt Evans
> + *
> + * This program is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU General Public License
> + * as published by the Free Software Foundation; version 2
> + * of the License.
> + */
> +
> +#include <asm/ppc_asm.h>
> +#include <asm/ptrace.h>
> +#include "bpf_jit64.h"
> +
> +/*
> + * All of these routines are called directly from generated code,
> + * with the below register usage:
> + * r27 skb pointer (ctx)
> + * r25 skb header length
> + * r26 skb->data pointer
> + * r4 offset
> + *
> + * Result is passed back in:
> + * r8 data read in host endian format (accumulator)
> + *
> + * r9 is used as a temporary register
> + */
> +
> +#define r_skb r27
> +#define r_hlen r25
> +#define r_data r26
> +#define r_off r4
> +#define r_val r8
> +#define r_tmp r9
> +
> +_GLOBAL_TOC(sk_load_word)
> + cmpdi r_off, 0
> + blt bpf_slow_path_word_neg
> + b sk_load_word_positive_offset
> +
> +_GLOBAL_TOC(sk_load_word_positive_offset)
> + /* Are we accessing past headlen? */
> + subi r_tmp, r_hlen, 4
> + cmpd r_tmp, r_off
> + blt bpf_slow_path_word
> + /* Nope, just hitting the header. cr0 here is eq or gt! */
> + LWZX_BE r_val, r_data, r_off
> + blr /* Return success, cr0 != LT */
> +
> +_GLOBAL_TOC(sk_load_half)
> + cmpdi r_off, 0
> + blt bpf_slow_path_half_neg
> + b sk_load_half_positive_offset
> +
> +_GLOBAL_TOC(sk_load_half_positive_offset)
> + subi r_tmp, r_hlen, 2
> + cmpd r_tmp, r_off
> + blt bpf_slow_path_half
> + LHZX_BE r_val, r_data, r_off
> + blr
> +
> +_GLOBAL_TOC(sk_load_byte)
> + cmpdi r_off, 0
> + blt bpf_slow_path_byte_neg
> + b sk_load_byte_positive_offset
> +
> +_GLOBAL_TOC(sk_load_byte_positive_offset)
> + cmpd r_hlen, r_off
> + ble bpf_slow_path_byte
> + lbzx r_val, r_data, r_off
> + blr
> +
> +/*
> + * Call out to skb_copy_bits:
> + * Allocate a new stack frame here to remain ABI-compliant in
> + * stashing LR.
> + */
> +#define bpf_slow_path_common(SIZE) \
> + mflr r0; \
> + std r0, PPC_LR_STKOFF(r1); \
> + stdu r1, -(STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS)(r1); \
> + mr r3, r_skb; \
> + /* r4 = r_off as passed */ \
> + addi r5, r1, STACK_FRAME_MIN_SIZE; \
> + li r6, SIZE; \
> + bl skb_copy_bits; \
> + nop; \
> + /* save r5 */ \
> + addi r5, r1, STACK_FRAME_MIN_SIZE; \
> + /* r3 = 0 on success */ \
> + addi r1, r1, STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS; \
> + ld r0, PPC_LR_STKOFF(r1); \
> + mtlr r0; \
> + cmpdi r3, 0; \
> + blt bpf_error; /* cr0 = LT */
> +
> +bpf_slow_path_word:
> + bpf_slow_path_common(4)
> + /* Data value is on stack, and cr0 != LT */
> + LWZX_BE r_val, 0, r5
> + blr
> +
> +bpf_slow_path_half:
> + bpf_slow_path_common(2)
> + LHZX_BE r_val, 0, r5
> + blr
> +
> +bpf_slow_path_byte:
> + bpf_slow_path_common(1)
> + lbzx r_val, 0, r5
> + blr
> +
> +/*
> + * Call out to bpf_internal_load_pointer_neg_helper
> + */
> +#define sk_negative_common(SIZE) \
> + mflr r0; \
> + std r0, PPC_LR_STKOFF(r1); \
> + stdu r1, -STACK_FRAME_MIN_SIZE(r1); \
> + mr r3, r_skb; \
> + /* r4 = r_off, as passed */ \
> + li r5, SIZE; \
> + bl bpf_internal_load_pointer_neg_helper; \
> + nop; \
> + addi r1, r1, STACK_FRAME_MIN_SIZE; \
> + ld r0, PPC_LR_STKOFF(r1); \
> + mtlr r0; \
> + /* R3 != 0 on success */ \
> + cmpldi r3, 0; \
> + beq bpf_error_slow; /* cr0 = EQ */
> +
> +bpf_slow_path_word_neg:
> + lis r_tmp, -32 /* SKF_LL_OFF */
> + cmpd r_off, r_tmp /* addr < SKF_* */
> + blt bpf_error /* cr0 = LT */
> + b sk_load_word_negative_offset
> +
> +_GLOBAL_TOC(sk_load_word_negative_offset)
> + sk_negative_common(4)
> + LWZX_BE r_val, 0, r3
> + blr
> +
> +bpf_slow_path_half_neg:
> + lis r_tmp, -32 /* SKF_LL_OFF */
> + cmpd r_off, r_tmp /* addr < SKF_* */
> + blt bpf_error /* cr0 = LT */
> + b sk_load_half_negative_offset
> +
> +_GLOBAL_TOC(sk_load_half_negative_offset)
> + sk_negative_common(2)
> + LHZX_BE r_val, 0, r3
> + blr
> +
> +bpf_slow_path_byte_neg:
> + lis r_tmp, -32 /* SKF_LL_OFF */
> + cmpd r_off, r_tmp /* addr < SKF_* */
> + blt bpf_error /* cr0 = LT */
> + b sk_load_byte_negative_offset
> +
> +_GLOBAL_TOC(sk_load_byte_negative_offset)
> + sk_negative_common(1)
> + lbzx r_val, 0, r3
> + blr
> +
> +bpf_error_slow:
> + /* fabricate a cr0 = lt */
> + li r_tmp, -1
> + cmpdi r_tmp, 0
> +bpf_error:
> + /*
> + * Entered with cr0 = lt
> + * Generated code will 'blt epilogue', returning 0.
> + */
> + li r_val, 0
> + blr
> diff --git a/arch/powerpc/net/bpf_jit_comp64.c b/arch/powerpc/net/bpf_jit_comp64.c
> new file mode 100644
> index 0000000..954ff53
> --- /dev/null
> +++ b/arch/powerpc/net/bpf_jit_comp64.c
> @@ -0,0 +1,956 @@
> +/*
> + * bpf_jit_comp64.c: eBPF JIT compiler
> + *
> + * Copyright 2016 Naveen N. Rao <naveen.n.rao@xxxxxxxxxxxxxxxxxx>
> + * IBM Corporation
> + *
> + * Based on the powerpc classic BPF JIT compiler by Matt Evans
> + *
> + * This program is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU General Public License
> + * as published by the Free Software Foundation; version 2
> + * of the License.
> + */
> +#include <linux/moduleloader.h>
> +#include <asm/cacheflush.h>
> +#include <linux/netdevice.h>
> +#include <linux/filter.h>
> +#include <linux/if_vlan.h>
> +
> +#include "bpf_jit64.h"
> +
> +int bpf_jit_enable __read_mostly;
> +
> +static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
> +{
> + int *p = area;
> +
> + /* Fill whole space with trap instructions */
> + while (p < (int *)((char *)area + size))
> + *p++ = BREAKPOINT_INSTRUCTION;
> +}
> +
> +static inline void bpf_flush_icache(void *start, void *end)
> +{
> + smp_wmb();
> + flush_icache_range((unsigned long)start, (unsigned long)end);
> +}
> +
> +static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
> +{
> + return (ctx->seen & (1 << (31 - b2p[i])));
> +}
> +
> +static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
> +{
> + ctx->seen |= (1 << (31 - b2p[i]));
> +}
> +
> +static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
> +{
> + /*
> + * We only need a stack frame if:
> + * - we call other functions (kernel helpers), or
> + * - the bpf program uses its stack area
> + * The latter condition is deduced from the usage of BPF_REG_FP
> + */
> + return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
> +}
> +
> +static void bpf_jit_emit_skb_loads(u32 *image, struct codegen_context *ctx)
> +{
> + /*
> + * Load skb->len and skb->data_len
> + * r3 points to skb
> + */
> + PPC_LWZ(b2p[SKB_HLEN_REG], 3, offsetof(struct sk_buff, len));
> + PPC_LWZ(b2p[TMP_REG_1], 3, offsetof(struct sk_buff, data_len));
> + /* header_len = len - data_len */
> + PPC_SUB(b2p[SKB_HLEN_REG], b2p[SKB_HLEN_REG], b2p[TMP_REG_1]);
> +
> + /* skb->data pointer */
> + PPC_BPF_LL(b2p[SKB_DATA_REG], 3, offsetof(struct sk_buff, data));
> +}
> +
> +static void bpf_jit_emit_func_call(u32 *image, struct codegen_context *ctx, u64 func)
> +{
> +#ifdef PPC64_ELF_ABI_v1
> + /* func points to the function descriptor */
> + PPC_LI64(b2p[TMP_REG_2], func);
> + /* Load actual entry point from function descriptor */
> + PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
> + /* ... and move it to LR */
> + PPC_MTLR(b2p[TMP_REG_1]);
> + /*
> + * Load TOC from function descriptor at offset 8.
> + * We can clobber r2 since we get called through a
> + * function pointer (so caller will save/restore r2)
> + * and since we don't use a TOC ourself.
> + */
> + PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
> +#else
> + /* We can clobber r12 */
> + PPC_FUNC_ADDR(12, func);
> + PPC_MTLR(12);
> +#endif
> + PPC_BLRL();
> +}
> +
> +static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
> +{
> + int i;
> + bool new_stack_frame = bpf_has_stack_frame(ctx);
> +
> + if (new_stack_frame) {
> + /*
> + * We need a stack frame, but we don't necessarily need to
> + * save/restore LR unless we call other functions
> + */
> + if (ctx->seen & SEEN_FUNC) {
> + EMIT(PPC_INST_MFLR | __PPC_RT(R0));
> + PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
> + }
> +
> + PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
> + }
> +
> + /*
> + * Back up non-volatile regs -- BPF registers 6-10
> + * If we haven't created our own stack frame, we save these
> + * in the protected zone below the previous stack frame
> + */
> + for (i = BPF_REG_6; i <= BPF_REG_10; i++)
> + if (bpf_is_seen_register(ctx, i))
> + PPC_BPF_STL(b2p[i], 1,
> + (new_stack_frame ? BPF_PPC_STACKFRAME : 0) -
> + (8 * (32 - b2p[i])));
> +
> + /*
> + * Save additional non-volatile regs if we cache skb
> + * Also, setup skb data
> + */
> + if (ctx->seen & SEEN_SKB) {
> + PPC_BPF_STL(b2p[SKB_HLEN_REG], 1,
> + BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG])));
> + PPC_BPF_STL(b2p[SKB_DATA_REG], 1,
> + BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG])));
> + bpf_jit_emit_skb_loads(image, ctx);
> + }
> +
> + /* Setup frame pointer to point to the bpf stack area */
> + if (bpf_is_seen_register(ctx, BPF_REG_FP))
> + PPC_ADDI(b2p[BPF_REG_FP], 1,
> + BPF_PPC_STACKFRAME - BPF_PPC_STACK_SAVE);
> +}
> +
> +static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
> +{
> + int i;
> + bool new_stack_frame = bpf_has_stack_frame(ctx);
> +
> + /* Move result to r3 */
> + PPC_MR(3, b2p[BPF_REG_0]);
> +
> + /* Restore NVRs */
> + for (i = BPF_REG_6; i <= BPF_REG_10; i++)
> + if (bpf_is_seen_register(ctx, i))
> + PPC_BPF_LL(b2p[i], 1,
> + (new_stack_frame ? BPF_PPC_STACKFRAME : 0) -
> + (8 * (32 - b2p[i])));
> +
> + /* Restore non-volatile registers used for skb cache */
> + if (ctx->seen & SEEN_SKB) {
> + PPC_BPF_LL(b2p[SKB_HLEN_REG], 1,
> + BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG])));
> + PPC_BPF_LL(b2p[SKB_DATA_REG], 1,
> + BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG])));
> + }
> +
> + /* Tear down our stack frame */
> + if (new_stack_frame) {
> + PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
> + if (ctx->seen & SEEN_FUNC) {
> + PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
> + PPC_MTLR(0);
> + }
> + }
> +
> + PPC_BLR();
> +}
> +
> +/* Assemble the body code between the prologue & epilogue */
> +static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
> + struct codegen_context *ctx,
> + u32 *addrs)
> +{
> + const struct bpf_insn *insn = fp->insnsi;
> + int flen = fp->len;
> + int i;
> +
> + /* Start of epilogue code - will only be valid 2nd pass onwards */
> + u32 exit_addr = addrs[flen];
> +
> + for (i = 0; i < flen; i++) {
> + u32 code = insn[i].code;
> + u32 dst_reg = b2p[insn[i].dst_reg];
> + u32 src_reg = b2p[insn[i].src_reg];
> + s16 off = insn[i].off;
> + s32 imm = insn[i].imm;
> + u64 imm64;
> + u8 *func;
> + u32 true_cond;
> + int stack_local_off;
> +
> + /*
> + * addrs[] maps a BPF bytecode address into a real offset from
> + * the start of the body code.
> + */
> + addrs[i] = ctx->idx * 4;
> +
> + /*
> + * As an optimization, we note down which non-volatile registers
> + * are used so that we can only save/restore those in our
> + * prologue and epilogue. We do this here regardless of whether
> + * the actual BPF instruction uses src/dst registers or not
> + * (for instance, BPF_CALL does not use them). The expectation
> + * is that those instructions will have src_reg/dst_reg set to
> + * 0. Even otherwise, we just lose some prologue/epilogue
> + * optimization but everything else should work without
> + * any issues.
> + */
> + if (dst_reg >= 24 && dst_reg <= 31)
> + bpf_set_seen_register(ctx, insn[i].dst_reg);
> + if (src_reg >= 24 && src_reg <= 31)
> + bpf_set_seen_register(ctx, insn[i].src_reg);
> +
> + switch (code) {
> + /*
> + * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
> + */
> + case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
> + case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
> + PPC_ADD(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
> + case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
> + PPC_SUB(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
> + case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
> + case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
> + case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
> + if (BPF_OP(code) == BPF_SUB)
> + imm = -imm;
> + if (imm) {
> + if (imm >= -32768 && imm < 32768)
> + PPC_ADDI(dst_reg, dst_reg, IMM_L(imm));
> + else {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + }
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
> + case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
> + if (BPF_CLASS(code) == BPF_ALU)
> + PPC_MULW(dst_reg, dst_reg, src_reg);
> + else
> + PPC_MULD(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
> + case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
> + if (imm >= -32768 && imm < 32768)
> + PPC_MULI(dst_reg, dst_reg, IMM_L(imm));
> + else {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + if (BPF_CLASS(code) == BPF_ALU)
> + PPC_MULW(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + else
> + PPC_MULD(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
> + case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
> + PPC_CMPWI(src_reg, 0);
> + PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_JMP(exit_addr);
> + if (BPF_OP(code) == BPF_MOD) {
> + PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg);
> + PPC_MULW(b2p[TMP_REG_1], src_reg,
> + b2p[TMP_REG_1]);
> + PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + } else
> + PPC_DIVWU(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
> + case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
> + PPC_CMPDI(src_reg, 0);
> + PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_JMP(exit_addr);
> + if (BPF_OP(code) == BPF_MOD) {
> + PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg);
> + PPC_MULD(b2p[TMP_REG_1], src_reg,
> + b2p[TMP_REG_1]);
> + PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + } else
> + PPC_DIVD(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
> + case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
> + case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
> + case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
> + if (imm == 0)
> + return -EINVAL;
> + else if (imm == 1)
> + goto bpf_alu32_trunc;
> +
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + switch (BPF_CLASS(code)) {
> + case BPF_ALU:
> + if (BPF_OP(code) == BPF_MOD) {
> + PPC_DIVWU(b2p[TMP_REG_2], dst_reg,
> + b2p[TMP_REG_1]);
> + PPC_MULW(b2p[TMP_REG_1],
> + b2p[TMP_REG_1],
> + b2p[TMP_REG_2]);
> + PPC_SUB(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + } else
> + PPC_DIVWU(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + break;
> + case BPF_ALU64:
> + if (BPF_OP(code) == BPF_MOD) {
> + PPC_DIVD(b2p[TMP_REG_2], dst_reg,
> + b2p[TMP_REG_1]);
> + PPC_MULD(b2p[TMP_REG_1],
> + b2p[TMP_REG_1],
> + b2p[TMP_REG_2]);
> + PPC_SUB(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + } else
> + PPC_DIVD(dst_reg, dst_reg,
> + b2p[TMP_REG_1]);
> + break;
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
> + case BPF_ALU64 | BPF_NEG: /* dst = -dst */
> + PPC_NEG(dst_reg, dst_reg);
> + goto bpf_alu32_trunc;
> +
> + /*
> + * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
> + */
> + case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
> + case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
> + PPC_AND(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
> + case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
> + if (!IMM_H(imm))
> + PPC_ANDI(dst_reg, dst_reg, IMM_L(imm));
> + else {
> + /* Sign-extended */
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
> + case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
> + PPC_OR(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
> + case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
> + if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
> + /* Sign-extended */
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + } else {
> + if (IMM_L(imm))
> + PPC_ORI(dst_reg, dst_reg, IMM_L(imm));
> + if (IMM_H(imm))
> + PPC_ORIS(dst_reg, dst_reg, IMM_H(imm));
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
> + case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
> + PPC_XOR(dst_reg, dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
> + case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
> + if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
> + /* Sign-extended */
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]);
> + } else {
> + if (IMM_L(imm))
> + PPC_XORI(dst_reg, dst_reg, IMM_L(imm));
> + if (IMM_H(imm))
> + PPC_XORIS(dst_reg, dst_reg, IMM_H(imm));
> + }
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
> + /* slw clears top 32 bits */
> + PPC_SLW(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
> + PPC_SLD(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
> + /* with imm 0, we still need to clear top 32 bits */
> + PPC_SLWI(dst_reg, dst_reg, imm);
> + break;
> + case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
> + if (imm != 0)
> + PPC_SLDI(dst_reg, dst_reg, imm);
> + break;
> + case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
> + PPC_SRW(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
> + PPC_SRD(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
> + PPC_SRWI(dst_reg, dst_reg, imm);
> + break;
> + case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
> + if (imm != 0)
> + PPC_SRDI(dst_reg, dst_reg, imm);
> + break;
> + case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
> + PPC_SRAD(dst_reg, dst_reg, src_reg);
> + break;
> + case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
> + if (imm != 0)
> + PPC_SRADI(dst_reg, dst_reg, imm);
> + break;
> +
> + /*
> + * MOV
> + */
> + case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
> + case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
> + PPC_MR(dst_reg, src_reg);
> + goto bpf_alu32_trunc;
> + case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
> + case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
> + PPC_LI32(dst_reg, imm);
> + if (imm < 0)
> + goto bpf_alu32_trunc;
> + break;
> +
> +bpf_alu32_trunc:
> + /* Truncate to 32-bits */
> + if (BPF_CLASS(code) == BPF_ALU)
> + PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
> + break;
> +
> + /*
> + * BPF_FROM_BE/LE
> + */
> + case BPF_ALU | BPF_END | BPF_FROM_LE:
> + case BPF_ALU | BPF_END | BPF_FROM_BE:
> +#ifdef __BIG_ENDIAN__
> + if (BPF_SRC(code) == BPF_FROM_BE)
> + goto emit_clear;
> +#else /* !__BIG_ENDIAN__ */
> + if (BPF_SRC(code) == BPF_FROM_LE)
> + goto emit_clear;
> +#endif
> + switch (imm) {
> + case 16:
> + /* Rotate 8 bits left & mask with 0x0000ff00 */
> + PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23);
> + /* Rotate 8 bits right & insert LSB to reg */
> + PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31);
> + /* Move result back to dst_reg */
> + PPC_MR(dst_reg, b2p[TMP_REG_1]);
> + break;
> + case 32:
> + /*
> + * Rotate word left by 8 bits:
> + * 2 bytes are already in their final position
> + * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
> + */
> + PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31);
> + /* Rotate 24 bits and insert byte 1 */
> + PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7);
> + /* Rotate 24 bits and insert byte 3 */
> + PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23);
> + PPC_MR(dst_reg, b2p[TMP_REG_1]);
> + break;
> + case 64:
> + /*
> + * Way easier and faster(?) to store the value
> + * into stack and then use ldbrx
> + *
> + * First, determine where in stack we can store
> + * this:
> + * - if we have allotted a stack frame, then we
> + * will utilize the area set aside by
> + * BPF_PPC_STACK_LOCALS
> + * - else, we use the area beneath the NV GPR
> + * save area
> + *
> + * ctx->seen will be reliable in pass2, but
> + * the instructions generated will remain the
> + * same across all passes
> + */
> + if (bpf_has_stack_frame(ctx))
> + stack_local_off = STACK_FRAME_MIN_SIZE;
> + else
> + stack_local_off = -(BPF_PPC_STACK_SAVE + 8);
> +
> + PPC_STD(dst_reg, 1, stack_local_off);
> + PPC_ADDI(b2p[TMP_REG_1], 1, stack_local_off);
> + PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]);
> + break;
> + }
> + break;
> +
> +emit_clear:
> + switch (imm) {
> + case 16:
> + /* zero-extend 16 bits into 64 bits */
> + PPC_RLDICL(dst_reg, dst_reg, 0, 48);
> + break;
> + case 32:
> + /* zero-extend 32 bits into 64 bits */
> + PPC_RLDICL(dst_reg, dst_reg, 0, 32);
> + break;
> + case 64:
> + /* nop */
> + break;
> + }
> + break;
> +
> + /*
> + * BPF_ST(X)
> + */
> + case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
> + case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
> + if (BPF_CLASS(code) == BPF_ST) {
> + PPC_LI(b2p[TMP_REG_1], imm);
> + src_reg = b2p[TMP_REG_1];
> + }
> + PPC_STB(src_reg, dst_reg, off);
> + break;
> + case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
> + case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
> + if (BPF_CLASS(code) == BPF_ST) {
> + PPC_LI(b2p[TMP_REG_1], imm);
> + src_reg = b2p[TMP_REG_1];
> + }
> + PPC_STH(src_reg, dst_reg, off);
> + break;
> + case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
> + case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
> + if (BPF_CLASS(code) == BPF_ST) {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + src_reg = b2p[TMP_REG_1];
> + }
> + PPC_STW(src_reg, dst_reg, off);
> + break;
> + case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
> + case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
> + if (BPF_CLASS(code) == BPF_ST) {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + src_reg = b2p[TMP_REG_1];
> + }
> + PPC_STD(src_reg, dst_reg, off);
> + break;
> +
> + /*
> + * BPF_STX XADD (atomic_add)
> + */
> + /* *(u32 *)(dst + off) += src */
> + case BPF_STX | BPF_XADD | BPF_W:
> + /* Get EA into TMP_REG_1 */
> + PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
> + /* error if EA is not word-aligned */
> + PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x03);
> + PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + 12);
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_JMP(exit_addr);
> + /* load value from memory into TMP_REG_2 */
> + PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
> + /* add value from src_reg into this */
> + PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
> + /* store result back */
> + PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
> + /* we're done if this succeeded */
> + PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
> + /* otherwise, let's try once more */
> + PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
> + PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
> + PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
> + /* exit if the store was not successful */
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_BCC(COND_NE, exit_addr);
> + break;
> + /* *(u64 *)(dst + off) += src */
> + case BPF_STX | BPF_XADD | BPF_DW:
> + PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
> + /* error if EA is not doubleword-aligned */
> + PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x07);
> + PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (3*4));
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_JMP(exit_addr);
> + PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
> + PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
> + PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
> + PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
> + PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
> + PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
> + PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
> + PPC_LI(b2p[BPF_REG_0], 0);
> + PPC_BCC(COND_NE, exit_addr);
> + break;
> +
> + /*
> + * BPF_LDX
> + */
> + /* dst = *(u8 *)(ul) (src + off) */
> + case BPF_LDX | BPF_MEM | BPF_B:
> + PPC_LBZ(dst_reg, src_reg, off);
> + break;
> + /* dst = *(u16 *)(ul) (src + off) */
> + case BPF_LDX | BPF_MEM | BPF_H:
> + PPC_LHZ(dst_reg, src_reg, off);
> + break;
> + /* dst = *(u32 *)(ul) (src + off) */
> + case BPF_LDX | BPF_MEM | BPF_W:
> + PPC_LWZ(dst_reg, src_reg, off);
> + break;
> + /* dst = *(u64 *)(ul) (src + off) */
> + case BPF_LDX | BPF_MEM | BPF_DW:
> + PPC_LD(dst_reg, src_reg, off);
> + break;
> +
> + /*
> + * Doubleword load
> + * 16 byte instruction that uses two 'struct bpf_insn'
> + */
> + case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
> + imm64 = ((u64)(u32) insn[i].imm) |
> + (((u64)(u32) insn[i+1].imm) << 32);
> + /* Adjust for two bpf instructions */
> + addrs[++i] = ctx->idx * 4;
> + PPC_LI64(dst_reg, imm64);
> + break;
> +
> + /*
> + * Return/Exit
> + */
> + case BPF_JMP | BPF_EXIT:
> + /*
> + * If this isn't the very last instruction, branch to
> + * the epilogue. If we _are_ the last instruction,
> + * we'll just fall through to the epilogue.
> + */
> + if (i != flen - 1)
> + PPC_JMP(exit_addr);
> + /* else fall through to the epilogue */
> + break;
> +
> + /*
> + * Call kernel helper
> + */
> + case BPF_JMP | BPF_CALL:
> + ctx->seen |= SEEN_FUNC;
> + func = (u8 *) __bpf_call_base + imm;
> +
> + /* Save skb pointer if we need to re-cache skb data */
> + if (bpf_helper_changes_skb_data(func))
> + PPC_BPF_STL(3, 1, STACK_FRAME_MIN_SIZE);
> +
> + bpf_jit_emit_func_call(image, ctx, (u64)func);
> +
> + /* move return value from r3 to BPF_REG_0 */
> + PPC_MR(b2p[BPF_REG_0], 3);
> +
> + /* refresh skb cache */
> + if (bpf_helper_changes_skb_data(func)) {
> + /* reload skb pointer to r3 */
> + PPC_BPF_LL(3, 1, STACK_FRAME_MIN_SIZE);
> + bpf_jit_emit_skb_loads(image, ctx);
> + }
> + break;
> +
> + /*
> + * Jumps and branches
> + */
> + case BPF_JMP | BPF_JA:
> + PPC_JMP(addrs[i + 1 + off]);
> + break;
> +
> + case BPF_JMP | BPF_JGT | BPF_K:
> + case BPF_JMP | BPF_JGT | BPF_X:
> + case BPF_JMP | BPF_JSGT | BPF_K:
> + case BPF_JMP | BPF_JSGT | BPF_X:
> + true_cond = COND_GT;
> + goto cond_branch;
> + case BPF_JMP | BPF_JGE | BPF_K:
> + case BPF_JMP | BPF_JGE | BPF_X:
> + case BPF_JMP | BPF_JSGE | BPF_K:
> + case BPF_JMP | BPF_JSGE | BPF_X:
> + true_cond = COND_GE;
> + goto cond_branch;
> + case BPF_JMP | BPF_JEQ | BPF_K:
> + case BPF_JMP | BPF_JEQ | BPF_X:
> + true_cond = COND_EQ;
> + goto cond_branch;
> + case BPF_JMP | BPF_JNE | BPF_K:
> + case BPF_JMP | BPF_JNE | BPF_X:
> + true_cond = COND_NE;
> + goto cond_branch;
> + case BPF_JMP | BPF_JSET | BPF_K:
> + case BPF_JMP | BPF_JSET | BPF_X:
> + true_cond = COND_NE;
> + /* Fall through */
> +
> +cond_branch:
> + switch (code) {
> + case BPF_JMP | BPF_JGT | BPF_X:
> + case BPF_JMP | BPF_JGE | BPF_X:
> + case BPF_JMP | BPF_JEQ | BPF_X:
> + case BPF_JMP | BPF_JNE | BPF_X:
> + /* unsigned comparison */
> + PPC_CMPLD(dst_reg, src_reg);
> + break;
> + case BPF_JMP | BPF_JSGT | BPF_X:
> + case BPF_JMP | BPF_JSGE | BPF_X:
> + /* signed comparison */
> + PPC_CMPD(dst_reg, src_reg);
> + break;
> + case BPF_JMP | BPF_JSET | BPF_X:
> + PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg);
> + break;
> + case BPF_JMP | BPF_JNE | BPF_K:
> + case BPF_JMP | BPF_JEQ | BPF_K:
> + case BPF_JMP | BPF_JGT | BPF_K:
> + case BPF_JMP | BPF_JGE | BPF_K:
> + /*
> + * Need sign-extended load, so only positive
> + * values can be used as imm in cmpldi
> + */
> + if (imm >= 0 && imm < 32768)
> + PPC_CMPLDI(dst_reg, imm);
> + else {
> + /* sign-extending load */
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + /* ... but unsigned comparison */
> + PPC_CMPLD(dst_reg, b2p[TMP_REG_1]);
> + }
> + break;
> + case BPF_JMP | BPF_JSGT | BPF_K:
> + case BPF_JMP | BPF_JSGE | BPF_K:
> + /*
> + * signed comparison, so any 16-bit value
> + * can be used in cmpdi
> + */
> + if (imm >= -32768 && imm < 32768)
> + PPC_CMPDI(dst_reg, imm);
> + else {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_CMPD(dst_reg, b2p[TMP_REG_1]);
> + }
> + break;
> + case BPF_JMP | BPF_JSET | BPF_K:
> + /* andi does not sign-extend the immediate */
> + if (imm >= 0 && imm < 32768)
> + /* PPC_ANDI is _only/always_ dot-form */
> + PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm);
> + else {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_AND_DOT(b2p[TMP_REG_1], dst_reg,
> + b2p[TMP_REG_1]);
> + }
> + break;
> + }
> + PPC_BCC(true_cond, addrs[i + 1 + off]);
> + break;
> +
> + /*
> + * Loads from packet header/data
> + * Assume 32-bit input value in imm and X (src_reg)
> + */
> +
> + /* Absolute loads */
> + case BPF_LD | BPF_W | BPF_ABS:
> + func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_word);
> + goto common_load_abs;
> + case BPF_LD | BPF_H | BPF_ABS:
> + func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_half);
> + goto common_load_abs;
> + case BPF_LD | BPF_B | BPF_ABS:
> + func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_byte);
> +common_load_abs:
> + /*
> + * Load from [imm]
> + * Load into r4, which can just be passed onto
> + * skb load helpers as the second parameter
> + */
> + PPC_LI32(4, imm);
> + goto common_load;
> +
> + /* Indirect loads */
> + case BPF_LD | BPF_W | BPF_IND:
> + func = (u8 *)sk_load_word;
> + goto common_load_ind;
> + case BPF_LD | BPF_H | BPF_IND:
> + func = (u8 *)sk_load_half;
> + goto common_load_ind;
> + case BPF_LD | BPF_B | BPF_IND:
> + func = (u8 *)sk_load_byte;
> +common_load_ind:
> + /*
> + * Load from [src_reg + imm]
> + * Treat src_reg as a 32-bit value
> + */
> + PPC_EXTSW(4, src_reg);
> + if (imm) {
> + if (imm >= -32768 && imm < 32768)
> + PPC_ADDI(4, 4, IMM_L(imm));
> + else {
> + PPC_LI32(b2p[TMP_REG_1], imm);
> + PPC_ADD(4, 4, b2p[TMP_REG_1]);
> + }
> + }
> +
> +common_load:
> + ctx->seen |= SEEN_SKB;
> + ctx->seen |= SEEN_FUNC;
> + bpf_jit_emit_func_call(image, ctx, (u64)func);
> +
> + /*
> + * Helper returns 'lt' condition on error, and an
> + * appropriate return value in BPF_REG_0
> + */
> + PPC_BCC(COND_LT, exit_addr);
> + break;
> +
> + /*
> + * TODO: Tail call
> + */
> + case BPF_JMP | BPF_CALL | BPF_X:
> +
> + default:
> + /*
> + * The filter contains something cruel & unusual.
> + * We don't handle it, but also there shouldn't be
> + * anything missing from our list.
> + */
> + pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
> + code, i);
> + return -ENOTSUPP;
> + }
> + }
> +
> + /* Set end-of-body-code address for exit. */
> + addrs[i] = ctx->idx * 4;
> +
> + return 0;
> +}
> +
> +void bpf_jit_compile(struct bpf_prog *fp) { }
> +
> +struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
> +{
> + u32 proglen;
> + u32 alloclen;
> + u32 *image = NULL;
> + u32 *code_base;
> + u32 *addrs;
> + struct codegen_context cgctx;
> + int pass;
> + int flen;
> + struct bpf_binary_header *bpf_hdr;
> +
> + if (!bpf_jit_enable)
> + return fp;
> +
> + if (!fp || !fp->len)
> + return fp;
> +
> + flen = fp->len;
> + addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
> + if (addrs == NULL)
> + return fp;
> +
> + cgctx.idx = 0;
> + cgctx.seen = 0;
> + /* Scouting faux-generate pass 0 */
> + if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
> + /* We hit something illegal or unsupported. */
> + goto out;
> +
> + /*
> + * Pretend to build prologue, given the features we've seen. This will
> + * update ctgtx.idx as it pretends to output instructions, then we can
> + * calculate total size from idx.
> + */
> + bpf_jit_build_prologue(0, &cgctx);
> + bpf_jit_build_epilogue(0, &cgctx);
> +
> + proglen = cgctx.idx * 4;
> + alloclen = proglen + FUNCTION_DESCR_SIZE;
> +
> + bpf_hdr = bpf_jit_binary_alloc(alloclen, (u8 **)&image, 4,
> + bpf_jit_fill_ill_insns);
> + if (!bpf_hdr)
> + goto out;
> +
> + code_base = image + (FUNCTION_DESCR_SIZE/4);
> +
> + /* Code generation passes 1-2 */
> + for (pass = 1; pass < 3; pass++) {
> + /* Now build the prologue, body code & epilogue for real. */
> + cgctx.idx = 0;
> + bpf_jit_build_prologue(code_base, &cgctx);
> + bpf_jit_build_body(fp, code_base, &cgctx, addrs);
> + bpf_jit_build_epilogue(code_base, &cgctx);
> +
> + if (bpf_jit_enable > 1)
> + pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
> + proglen - (cgctx.idx * 4), cgctx.seen);
> + }
> +
> + if (bpf_jit_enable > 1)
> + /*
> + * Note that we output the base address of the code_base
> + * rather than image, since opcodes are in code_base.
> + */
> + bpf_jit_dump(flen, proglen, pass, code_base);
> +
> + if (image) {
> + bpf_flush_icache(bpf_hdr, image + alloclen);
> +#ifdef PPC64_ELF_ABI_v1
> + /* Function descriptor nastiness: Address + TOC */
> + ((u64 *)image)[0] = (u64)code_base;
> + ((u64 *)image)[1] = local_paca->kernel_toc;
> +#endif
> + fp->bpf_func = (void *)image;
> + fp->jited = 1;
> + }
> +
> +out:
> + kfree(addrs);
> + return fp;
> +}
> +
> +void bpf_jit_free(struct bpf_prog *fp)
> +{
> + unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
> + struct bpf_binary_header *bpf_hdr = (void *)addr;
> +
> + if (fp->jited)
> + bpf_jit_binary_free(bpf_hdr);
> +
> + bpf_prog_unlock_free(fp);
> +}
> --
> 2.8.2
>