RE: [PATCH net 1/2] r8152: fix the sw rx checksum is unavailable

From: Hayes Wang
Date: Thu Dec 08 2016 - 22:24:26 EST


Mark Lord <mlord@xxxxxxxxx>

I find an issue about autosuspend, and it may result in the same
problem with you. I don't sure if this is helpful to you, because
it only occurs when enabling the autosuspend.

Best Regards,
Hayes

/*
* Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*/

#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>

/* Information for net-next */
#define NETNEXT_VERSION "08"

/* Information for net */
#define NET_VERSION "2"

#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@xxxxxxxxxxx>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"

#define R8152_PHY_ID 32

#define PLA_IDR 0xc000
#define PLA_RCR 0xc010
#define PLA_RMS 0xc016
#define PLA_RXFIFO_CTRL0 0xc0a0
#define PLA_RXFIFO_CTRL1 0xc0a4
#define PLA_RXFIFO_CTRL2 0xc0a8
#define PLA_DMY_REG0 0xc0b0
#define PLA_FMC 0xc0b4
#define PLA_CFG_WOL 0xc0b6
#define PLA_TEREDO_CFG 0xc0bc
#define PLA_MAR 0xcd00
#define PLA_BACKUP 0xd000
#define PAL_BDC_CR 0xd1a0
#define PLA_TEREDO_TIMER 0xd2cc
#define PLA_REALWOW_TIMER 0xd2e8
#define PLA_LEDSEL 0xdd90
#define PLA_LED_FEATURE 0xdd92
#define PLA_PHYAR 0xde00
#define PLA_BOOT_CTRL 0xe004
#define PLA_GPHY_INTR_IMR 0xe022
#define PLA_EEE_CR 0xe040
#define PLA_EEEP_CR 0xe080
#define PLA_MAC_PWR_CTRL 0xe0c0
#define PLA_MAC_PWR_CTRL2 0xe0ca
#define PLA_MAC_PWR_CTRL3 0xe0cc
#define PLA_MAC_PWR_CTRL4 0xe0ce
#define PLA_WDT6_CTRL 0xe428
#define PLA_TCR0 0xe610
#define PLA_TCR1 0xe612
#define PLA_MTPS 0xe615
#define PLA_TXFIFO_CTRL 0xe618
#define PLA_RSTTALLY 0xe800
#define PLA_CR 0xe813
#define PLA_CRWECR 0xe81c
#define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5 0xe822
#define PLA_PHY_PWR 0xe84c
#define PLA_OOB_CTRL 0xe84f
#define PLA_CPCR 0xe854
#define PLA_MISC_0 0xe858
#define PLA_MISC_1 0xe85a
#define PLA_OCP_GPHY_BASE 0xe86c
#define PLA_TALLYCNT 0xe890
#define PLA_SFF_STS_7 0xe8de
#define PLA_PHYSTATUS 0xe908
#define PLA_BP_BA 0xfc26
#define PLA_BP_0 0xfc28
#define PLA_BP_1 0xfc2a
#define PLA_BP_2 0xfc2c
#define PLA_BP_3 0xfc2e
#define PLA_BP_4 0xfc30
#define PLA_BP_5 0xfc32
#define PLA_BP_6 0xfc34
#define PLA_BP_7 0xfc36
#define PLA_BP_EN 0xfc38

#define USB_USB2PHY 0xb41e
#define USB_SSPHYLINK2 0xb428
#define USB_U2P3_CTRL 0xb460
#define USB_CSR_DUMMY1 0xb464
#define USB_CSR_DUMMY2 0xb466
#define USB_DEV_STAT 0xb808
#define USB_CONNECT_TIMER 0xcbf8
#define USB_BURST_SIZE 0xcfc0
#define USB_USB_CTRL 0xd406
#define USB_PHY_CTRL 0xd408
#define USB_TX_AGG 0xd40a
#define USB_RX_BUF_TH 0xd40c
#define USB_USB_TIMER 0xd428
#define USB_RX_EARLY_TIMEOUT 0xd42c
#define USB_RX_EARLY_SIZE 0xd42e
#define USB_PM_CTRL_STATUS 0xd432
#define USB_TX_DMA 0xd434
#define USB_TOLERANCE 0xd490
#define USB_LPM_CTRL 0xd41a
#define USB_UPS_CTRL 0xd800
#define USB_MISC_0 0xd81a
#define USB_POWER_CUT 0xd80a
#define USB_AFE_CTRL2 0xd824
#define USB_WDT11_CTRL 0xe43c
#define USB_BP_BA 0xfc26
#define USB_BP_0 0xfc28
#define USB_BP_1 0xfc2a
#define USB_BP_2 0xfc2c
#define USB_BP_3 0xfc2e
#define USB_BP_4 0xfc30
#define USB_BP_5 0xfc32
#define USB_BP_6 0xfc34
#define USB_BP_7 0xfc36
#define USB_BP_EN 0xfc38

/* OCP Registers */
#define OCP_ALDPS_CONFIG 0x2010
#define OCP_EEE_CONFIG1 0x2080
#define OCP_EEE_CONFIG2 0x2092
#define OCP_EEE_CONFIG3 0x2094
#define OCP_BASE_MII 0xa400
#define OCP_EEE_AR 0xa41a
#define OCP_EEE_DATA 0xa41c
#define OCP_PHY_STATUS 0xa420
#define OCP_POWER_CFG 0xa430
#define OCP_EEE_CFG 0xa432
#define OCP_SRAM_ADDR 0xa436
#define OCP_SRAM_DATA 0xa438
#define OCP_DOWN_SPEED 0xa442
#define OCP_EEE_ABLE 0xa5c4
#define OCP_EEE_ADV 0xa5d0
#define OCP_EEE_LPABLE 0xa5d2
#define OCP_PHY_STATE 0xa708 /* nway state for 8153 */
#define OCP_ADC_CFG 0xbc06

/* SRAM Register */
#define SRAM_LPF_CFG 0x8012
#define SRAM_10M_AMP1 0x8080
#define SRAM_10M_AMP2 0x8082
#define SRAM_IMPEDANCE 0x8084

/* PLA_RCR */
#define RCR_AAP 0x00000001
#define RCR_APM 0x00000002
#define RCR_AM 0x00000004
#define RCR_AB 0x00000008
#define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)

/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL 0x00080002
#define RXFIFO_THR1_OOB 0x01800003

/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL 0x00000060
#define RXFIFO_THR2_HIGH 0x00000038
#define RXFIFO_THR2_OOB 0x0000004a
#define RXFIFO_THR2_NORMAL 0x00a0

/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL 0x00000078
#define RXFIFO_THR3_HIGH 0x00000048
#define RXFIFO_THR3_OOB 0x0000005a
#define RXFIFO_THR3_NORMAL 0x0110

/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL 0x00400008
#define TXFIFO_THR_NORMAL2 0x01000008

/* PLA_DMY_REG0 */
#define ECM_ALDPS 0x0002

/* PLA_FMC */
#define FMC_FCR_MCU_EN 0x0001

/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX 0x0002

/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE 0x0010

/* PLA_TCR0 */
#define TCR0_TX_EMPTY 0x0800
#define TCR0_AUTO_FIFO 0x0080

/* PLA_TCR1 */
#define VERSION_MASK 0x7cf0

/* PLA_MTPS */
#define MTPS_JUMBO (12 * 1024 / 64)
#define MTPS_DEFAULT (6 * 1024 / 64)

/* PLA_RSTTALLY */
#define TALLY_RESET 0x0001

/* PLA_CR */
#define CR_RST 0x10
#define CR_RE 0x08
#define CR_TE 0x04

/* PLA_CRWECR */
#define CRWECR_NORAML 0x00
#define CRWECR_CONFIG 0xc0

/* PLA_OOB_CTRL */
#define NOW_IS_OOB 0x80
#define TXFIFO_EMPTY 0x20
#define RXFIFO_EMPTY 0x10
#define LINK_LIST_READY 0x02
#define DIS_MCU_CLROOB 0x01
#define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY)

/* PLA_MISC_1 */
#define RXDY_GATED_EN 0x0008

/* PLA_SFF_STS_7 */
#define RE_INIT_LL 0x8000
#define MCU_BORW_EN 0x4000

/* PLA_CPCR */
#define CPCR_RX_VLAN 0x0040

/* PLA_CFG_WOL */
#define MAGIC_EN 0x0001

/* PLA_TEREDO_CFG */
#define TEREDO_SEL 0x8000
#define TEREDO_WAKE_MASK 0x7f00
#define TEREDO_RS_EVENT_MASK 0x00fe
#define OOB_TEREDO_EN 0x0001

/* PAL_BDC_CR */
#define ALDPS_PROXY_MODE 0x0001

/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN 0x0010
#define LINK_OFF_WAKE_EN 0x0008

/* PLA_CONFIG5 */
#define BWF_EN 0x0040
#define MWF_EN 0x0020
#define UWF_EN 0x0010
#define LAN_WAKE_EN 0x0002

/* PLA_LED_FEATURE */
#define LED_MODE_MASK 0x0700

/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN 0x0080
#define PFM_PWM_SWITCH 0x0040

/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN 0x00004000
#define MCU_CLK_RATIO 0x07010f07
#define MCU_CLK_RATIO_MASK 0x0f0f0f0f
#define ALDPS_SPDWN_RATIO 0x0f87

/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO 0x8007

/* PLA_MAC_PWR_CTRL3 */
#define PKT_AVAIL_SPDWN_EN 0x0100
#define SUSPEND_SPDWN_EN 0x0004
#define U1U2_SPDWN_EN 0x0002
#define L1_SPDWN_EN 0x0001

/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN 0x1000
#define RXDV_SPDWN_EN 0x0800
#define TX10MIDLE_EN 0x0100
#define TP100_SPDWN_EN 0x0020
#define TP500_SPDWN_EN 0x0010
#define TP1000_SPDWN_EN 0x0008
#define EEE_SPDWN_EN 0x0001

/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK 0x0001
#define SPEED_DOWN_MSK 0x0002
#define SPDWN_RXDV_MSK 0x0004
#define SPDWN_LINKCHG_MSK 0x0008

/* PLA_PHYAR */
#define PHYAR_FLAG 0x80000000

/* PLA_EEE_CR */
#define EEE_RX_EN 0x0001
#define EEE_TX_EN 0x0002

/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE 0x0002

/* USB_USB2PHY */
#define USB2PHY_SUSPEND 0x0001
#define USB2PHY_L1 0x0002

/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask 0x3ffe
#define pwd_dn_scale(x) ((x) << 1)

/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST 0x0001

/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC 0x0001

/* USB_DEV_STAT */
#define STAT_SPEED_MASK 0x0006
#define STAT_SPEED_HIGH 0x0000
#define STAT_SPEED_FULL 0x0002

/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD 0x03

/* USB_RX_BUF_TH */
#define RX_THR_SUPPER 0x0c350180
#define RX_THR_HIGH 0x7a120180
#define RX_THR_SLOW 0xffff0180

/* USB_TX_DMA */
#define TEST_MODE_DISABLE 0x00000001
#define TX_SIZE_ADJUST1 0x00000100

/* USB_UPS_CTRL */
#define POWER_CUT 0x0100

/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE 0x0001

/* USB_USB_CTRL */
#define RX_AGG_DISABLE 0x0010
#define RX_ZERO_EN 0x0080

/* USB_U2P3_CTRL */
#define U2P3_ENABLE 0x0001

/* USB_POWER_CUT */
#define PWR_EN 0x0001
#define PHASE2_EN 0x0008

/* USB_MISC_0 */
#define PCUT_STATUS 0x0001

/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER 85000U
#define COALESCE_HIGH 250000U
#define COALESCE_SLOW 524280U

/* USB_WDT11_CTRL */
#define TIMER11_EN 0x0001

/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK 0x0c
#define LPM_TIMER_500MS 0x04 /* 500 ms */
#define LPM_TIMER_500US 0x0c /* 500 us */
#define ROK_EXIT_LPM 0x02

/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK 0xf800
#define SEN_VAL_NORMAL 0xa000
#define SEL_RXIDLE 0x0100

/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE 0x8000
#define ENPDNPS 0x0200
#define LINKENA 0x0100
#define DIS_SDSAVE 0x0010

/* OCP_PHY_STATUS */
#define PHY_STAT_MASK 0x0007
#define PHY_STAT_LAN_ON 3
#define PHY_STAT_PWRDN 5

/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN 0x8000
#define EN_ALDPS 0x0004
#define EN_10M_PLLOFF 0x0001

/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP 0x8000
#define RG_MATCLR_EN 0x4000
#define EEE_10_CAP 0x2000
#define EEE_NWAY_EN 0x1000
#define TX_QUIET_EN 0x0200
#define RX_QUIET_EN 0x0100
#define sd_rise_time_mask 0x0070
#define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP 0x0008
#define SDFALLTIME 0x0007 /* bit 0 ~ 2 */

/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */
#define RG_DACQUIET_EN 0x0400
#define RG_LDVQUIET_EN 0x0200
#define RG_CKRSEL 0x0020
#define RG_EEEPRG_EN 0x0010

/* OCP_EEE_CONFIG3 */
#define fast_snr_mask 0xff80
#define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */
#define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */
#define MSK_PH 0x0006 /* bit 0 ~ 3 */

/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR 0x0000
#define FUN_DATA 0x4000
/* bit[4:0] device addr */

/* OCP_EEE_CFG */
#define CTAP_SHORT_EN 0x0040
#define EEE10_EN 0x0010

/* OCP_DOWN_SPEED */
#define EN_10M_BGOFF 0x0080

/* OCP_PHY_STATE */
#define TXDIS_STATE 0x01
#define ABD_STATE 0x02

/* OCP_ADC_CFG */
#define CKADSEL_L 0x0100
#define ADC_EN 0x0080
#define EN_EMI_L 0x0040

/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE 0x8000

/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL 0x0008

/* SRAM_10M_AMP2 */
#define AMP_DN 0x0200

/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK 0x6000

enum rtl_register_content {
_1000bps = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LINK_STATUS = 0x02,
FULL_DUP = 0x01,
};

#define RTL8152_MAX_TX 4
#define RTL8152_MAX_RX 10
#define INTBUFSIZE 2
#define CRC_SIZE 4
#define TX_ALIGN 4
#define RX_ALIGN 8

#define INTR_LINK 0x0004

#define RTL8152_REQT_READ 0xc0
#define RTL8152_REQT_WRITE 0x40
#define RTL8152_REQ_GET_REGS 0x05
#define RTL8152_REQ_SET_REGS 0x05

#define BYTE_EN_DWORD 0xff
#define BYTE_EN_WORD 0x33
#define BYTE_EN_BYTE 0x11
#define BYTE_EN_SIX_BYTES 0x3f
#define BYTE_EN_START_MASK 0x0f
#define BYTE_EN_END_MASK 0xf0

#define RTL8153_MAX_PACKET 9216 /* 9K */
#define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - VLAN_HLEN)
#define RTL8152_RMS (VLAN_ETH_FRAME_LEN + VLAN_HLEN)
#define RTL8153_RMS RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT (5 * HZ)
#define RTL8152_NAPI_WEIGHT 64

/* rtl8152 flags */
enum rtl8152_flags {
RTL8152_UNPLUG = 0,
RTL8152_SET_RX_MODE,
WORK_ENABLE,
RTL8152_LINK_CHG,
SELECTIVE_SUSPEND,
PHY_RESET,
SCHEDULE_NAPI,
};

/* Define these values to match your device */
#define VENDOR_ID_REALTEK 0x0bda
#define VENDOR_ID_SAMSUNG 0x04e8
#define VENDOR_ID_LENOVO 0x17ef
#define VENDOR_ID_NVIDIA 0x0955

#define MCU_TYPE_PLA 0x0100
#define MCU_TYPE_USB 0x0000

struct tally_counter {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
};

struct rx_desc {
__le32 opts1;
#define RX_LEN_MASK 0x7fff

__le32 opts2;
#define RD_UDP_CS BIT(23)
#define RD_TCP_CS BIT(22)
#define RD_IPV6_CS BIT(20)
#define RD_IPV4_CS BIT(19)

__le32 opts3;
#define IPF BIT(23) /* IP checksum fail */
#define UDPF BIT(22) /* UDP checksum fail */
#define TCPF BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG BIT(16)

__le32 opts4;
__le32 opts5;
__le32 opts6;
};

struct tx_desc {
__le32 opts1;
#define TX_FS BIT(31) /* First segment of a packet */
#define TX_LS BIT(30) /* Final segment of a packet */
#define GTSENDV4 BIT(28)
#define GTSENDV6 BIT(27)
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
#define TX_LEN_MAX 0x3ffffU

__le32 opts2;
#define UDP_CS BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT 17
#define MSS_MAX 0x7ffU
#define TCPHO_SHIFT 17
#define TCPHO_MAX 0x7ffU
#define TX_VLAN_TAG BIT(16)
};

struct r8152;

struct rx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
dma_addr_t transfer_dma;
void *buffer;
void *head;
};

struct tx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
u32 skb_num;
u32 skb_len;
};

struct r8152 {
unsigned long flags;
struct usb_device *udev;
struct napi_struct napi;
struct usb_interface *intf;
struct net_device *netdev;
struct urb *intr_urb;
struct tx_agg tx_info[RTL8152_MAX_TX];
struct rx_agg rx_info[RTL8152_MAX_RX];
struct list_head rx_done, tx_free;
struct sk_buff_head tx_queue, rx_queue;
spinlock_t rx_lock, tx_lock;
struct delayed_work schedule;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */

struct rtl_ops {
void (*init)(struct r8152 *);
int (*enable)(struct r8152 *);
void (*disable)(struct r8152 *);
void (*up)(struct r8152 *);
void (*down)(struct r8152 *);
void (*unload)(struct r8152 *);
int (*eee_get)(struct r8152 *, struct ethtool_eee *);
int (*eee_set)(struct r8152 *, struct ethtool_eee *);
bool (*in_nway)(struct r8152 *);
} rtl_ops;

int intr_interval;
u32 saved_wolopts;
u32 msg_enable;
u32 tx_qlen;
u32 coalesce;
u16 ocp_base;
u8 *intr_buff;
u8 version;
};

enum rtl_version {
RTL_VER_UNKNOWN = 0,
RTL_VER_01,
RTL_VER_02,
RTL_VER_03,
RTL_VER_04,
RTL_VER_05,
RTL_VER_06,
RTL_VER_MAX
};

enum tx_csum_stat {
TX_CSUM_SUCCESS = 0,
TX_CSUM_TSO,
TX_CSUM_NONE
};

/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The RTL chips use a 64 element hash table based on the Ethernet CRC.
*/
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;

#define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \
VLAN_ETH_HLEN - VLAN_HLEN)

static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;

tmp = kmalloc(size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;

ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
value, index, tmp, size, 500);

memcpy(data, tmp, size);
kfree(tmp);

return ret;
}

static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;

tmp = kmemdup(data, size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;

ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0),
RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
value, index, tmp, size, 500);

kfree(tmp);

return ret;
}

static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
void *data, u16 type)
{
u16 limit = 64;
int ret = 0;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;

if ((u32)index + (u32)size > 0xffff)
return -EPERM;

while (size) {
if (size > limit) {
ret = get_registers(tp, index, type, limit, data);
if (ret < 0)
break;

index += limit;
data += limit;
size -= limit;
} else {
ret = get_registers(tp, index, type, size, data);
if (ret < 0)
break;

index += size;
data += size;
size = 0;
break;
}
}

if (ret == -ENODEV)
set_bit(RTL8152_UNPLUG, &tp->flags);

return ret;
}

static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
u16 size, void *data, u16 type)
{
int ret;
u16 byteen_start, byteen_end, byen;
u16 limit = 512;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;

if ((u32)index + (u32)size > 0xffff)
return -EPERM;

byteen_start = byteen & BYTE_EN_START_MASK;
byteen_end = byteen & BYTE_EN_END_MASK;

byen = byteen_start | (byteen_start << 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;

index += 4;
data += 4;
size -= 4;

if (size) {
size -= 4;

while (size) {
if (size > limit) {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
limit, data);
if (ret < 0)
goto error1;

index += limit;
data += limit;
size -= limit;
} else {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
size, data);
if (ret < 0)
goto error1;

index += size;
data += size;
size = 0;
break;
}
}

byen = byteen_end | (byteen_end >> 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
}

error1:
if (ret == -ENODEV)
set_bit(RTL8152_UNPLUG, &tp->flags);

return ret;
}

static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}

static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}

static inline
int usb_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_USB);
}

static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}

static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
__le32 data;

generic_ocp_read(tp, index, sizeof(data), &data, type);

return __le32_to_cpu(data);
}

static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
__le32 tmp = __cpu_to_le32(data);

generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}

static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 2;

index &= ~3;

generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);

data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xffff;

return (u16)data;
}

static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xffff;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;

data &= mask;

if (index & 2) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}

tmp = __cpu_to_le32(data);

generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}

static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 3;

index &= ~3;

generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);

data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xff;

return (u8)data;
}

static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xff;
__le32 tmp;
u16 byen = BYTE_EN_BYTE;
u8 shift = index & 3;

data &= mask;

if (index & 3) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}

tmp = __cpu_to_le32(data);

generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}

static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
u16 ocp_base, ocp_index;

ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}

ocp_index = (addr & 0x0fff) | 0xb000;
return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}

static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
u16 ocp_base, ocp_index;

ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}

ocp_index = (addr & 0x0fff) | 0xb000;
ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}

static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}

static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}

static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
ocp_reg_write(tp, OCP_SRAM_DATA, data);
}

static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

if (phy_id != R8152_PHY_ID)
return -EINVAL;

ret = r8152_mdio_read(tp, reg);

return ret;
}

static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
struct r8152 *tp = netdev_priv(netdev);

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

if (phy_id != R8152_PHY_ID)
return;

r8152_mdio_write(tp, reg, val);
}

static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);

static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
struct r8152 *tp = netdev_priv(netdev);
struct sockaddr *addr = p;
int ret = -EADDRNOTAVAIL;

if (!is_valid_ether_addr(addr->sa_data))
goto out1;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out1;

mutex_lock(&tp->control);

memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);
out1:
return ret;
}

static int set_ethernet_addr(struct r8152 *tp)
{
struct net_device *dev = tp->netdev;
struct sockaddr sa;
int ret;

if (tp->version == RTL_VER_01)
ret = pla_ocp_read(tp, PLA_IDR, 8, sa.sa_data);
else
ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa.sa_data);

if (ret < 0) {
netif_err(tp, probe, dev, "Get ether addr fail\n");
} else if (!is_valid_ether_addr(sa.sa_data)) {
netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
sa.sa_data);
eth_hw_addr_random(dev);
ether_addr_copy(sa.sa_data, dev->dev_addr);
ret = rtl8152_set_mac_address(dev, &sa);
netif_info(tp, probe, dev, "Random ether addr %pM\n",
sa.sa_data);
} else {
if (tp->version == RTL_VER_01)
ether_addr_copy(dev->dev_addr, sa.sa_data);
else
ret = rtl8152_set_mac_address(dev, &sa);
}

return ret;
}

static void read_bulk_callback(struct urb *urb)
{
struct net_device *netdev;
int status = urb->status;
struct rx_agg *agg;
struct r8152 *tp;

agg = urb->context;
if (!agg)
return;

tp = agg->context;
if (!tp)
return;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

if (!test_bit(WORK_ENABLE, &tp->flags))
return;

netdev = tp->netdev;

/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(netdev))
return;

usb_mark_last_busy(tp->udev);

switch (status) {
case 0:
mb();
if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) {
printk(KERN_INFO "r8152_read_bulk_callback: actual_length (%u) too short\n", urb->actual_length);
break;
}

spin_lock(&tp->rx_lock);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock(&tp->rx_lock);
napi_schedule(&tp->napi);
return;
case -ESHUTDOWN:
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
return;
case -ENOENT:
return; /* the urb is in unlink state */
case -ETIME:
if (net_ratelimit())
netdev_warn(netdev, "maybe reset is needed?\n");
break;
default:
if (net_ratelimit())
netdev_warn(netdev, "Rx status %d\n", status);
break;
}

r8152_submit_rx(tp, agg, GFP_ATOMIC);
}

static void write_bulk_callback(struct urb *urb)
{
struct net_device_stats *stats;
struct net_device *netdev;
struct tx_agg *agg;
struct r8152 *tp;
int status = urb->status;

agg = urb->context;
if (!agg)
return;

tp = agg->context;
if (!tp)
return;

netdev = tp->netdev;
stats = &netdev->stats;
if (status) {
if (net_ratelimit())
netdev_warn(netdev, "Tx status %d\n", status);
stats->tx_errors += agg->skb_num;
} else {
stats->tx_packets += agg->skb_num;
stats->tx_bytes += agg->skb_len;
}

spin_lock(&tp->tx_lock);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock(&tp->tx_lock);

usb_autopm_put_interface_async(tp->intf);

if (!netif_carrier_ok(netdev))
return;

if (!test_bit(WORK_ENABLE, &tp->flags))
return;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

if (!skb_queue_empty(&tp->tx_queue))
napi_schedule(&tp->napi);
}

static void intr_callback(struct urb *urb)
{
struct r8152 *tp;
__le16 *d;
int status = urb->status;
int res;

tp = urb->context;
if (!tp)
return;

if (!test_bit(WORK_ENABLE, &tp->flags))
return;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

switch (status) {
case 0: /* success */
break;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN:
netif_device_detach(tp->netdev);
case -ENOENT:
case -EPROTO:
netif_info(tp, intr, tp->netdev,
"Stop submitting intr, status %d\n", status);
return;
case -EOVERFLOW:
netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
goto resubmit;
/* -EPIPE: should clear the halt */
default:
netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
goto resubmit;
}

d = urb->transfer_buffer;
if (INTR_LINK & __le16_to_cpu(d[0])) {
if (!netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
} else {
if (netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}

resubmit:
res = usb_submit_urb(urb, GFP_ATOMIC);
if (res == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
} else if (res) {
netif_err(tp, intr, tp->netdev,
"can't resubmit intr, status %d\n", res);
}
}

static inline void *rx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}

static inline void *tx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}

static void free_all_mem(struct r8152 *tp)
{
int i;

for (i = 0; i < RTL8152_MAX_RX; i++) {
usb_free_urb(tp->rx_info[i].urb);
tp->rx_info[i].urb = NULL;

usb_free_coherent(tp->udev, agg_buf_sz, tp->rx_info[i].buffer, tp->rx_info[i].transfer_dma);
tp->rx_info[i].buffer = NULL;
tp->rx_info[i].head = NULL;
}

for (i = 0; i < RTL8152_MAX_TX; i++) {
usb_free_urb(tp->tx_info[i].urb);
tp->tx_info[i].urb = NULL;

kfree(tp->tx_info[i].buffer);
tp->tx_info[i].buffer = NULL;
tp->tx_info[i].head = NULL;
}

usb_free_urb(tp->intr_urb);
tp->intr_urb = NULL;

kfree(tp->intr_buff);
tp->intr_buff = NULL;
}

static int alloc_all_mem(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct usb_interface *intf = tp->intf;
struct usb_host_interface *alt = intf->cur_altsetting;
struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
struct urb *urb;
int node, i;
u8 *buf;

node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;

spin_lock_init(&tp->rx_lock);
spin_lock_init(&tp->tx_lock);
INIT_LIST_HEAD(&tp->tx_free);
skb_queue_head_init(&tp->tx_queue);
skb_queue_head_init(&tp->rx_queue);

for (i = 0; i < RTL8152_MAX_RX; i++) {
dma_addr_t transfer_dma = 0;
buf = usb_alloc_coherent(tp->udev, agg_buf_sz, GFP_KERNEL, &transfer_dma);
if (!buf)
goto err1;

if (buf != rx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + RX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}

urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}

INIT_LIST_HEAD(&tp->rx_info[i].list);
tp->rx_info[i].context = tp;
tp->rx_info[i].urb = urb;
tp->rx_info[i].transfer_dma = transfer_dma;
tp->rx_info[i].buffer = buf;
tp->rx_info[i].head = rx_agg_align(buf);
}

for (i = 0; i < RTL8152_MAX_TX; i++) {
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;

if (buf != tx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}

urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}

INIT_LIST_HEAD(&tp->tx_info[i].list);
tp->tx_info[i].context = tp;
tp->tx_info[i].urb = urb;
tp->tx_info[i].buffer = buf;
tp->tx_info[i].head = tx_agg_align(buf);

list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
}

tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tp->intr_urb)
goto err1;

tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
if (!tp->intr_buff)
goto err1;

tp->intr_interval = (int)ep_intr->desc.bInterval;
usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3),
tp->intr_buff, INTBUFSIZE, intr_callback,
tp, tp->intr_interval);

return 0;

err1:
free_all_mem(tp);
return -ENOMEM;
}

static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
struct tx_agg *agg = NULL;
unsigned long flags;

if (list_empty(&tp->tx_free))
return NULL;

spin_lock_irqsave(&tp->tx_lock, flags);
if (!list_empty(&tp->tx_free)) {
struct list_head *cursor;

cursor = tp->tx_free.next;
list_del_init(cursor);
agg = list_entry(cursor, struct tx_agg, list);
}
spin_unlock_irqrestore(&tp->tx_lock, flags);

return agg;
}

/* r8152_csum_workaround()
* The hw limites the value the transport offset. When the offset is out of the
* range, calculate the checksum by sw.
*/
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
struct sk_buff_head *list)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->netdev->features;
struct sk_buff_head seg_list;
struct sk_buff *segs, *nskb;

features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;

__skb_queue_head_init(&seg_list);

do {
nskb = segs;
segs = segs->next;
nskb->next = NULL;
__skb_queue_tail(&seg_list, nskb);
} while (segs);

skb_queue_splice(&seg_list, list);
dev_kfree_skb(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;

__skb_queue_head(list, skb);
} else {
struct net_device_stats *stats;

drop:
stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb(skb);
}
}

/* msdn_giant_send_check()
* According to the document of microsoft, the TCP Pseudo Header excludes the
* packet length for IPv6 TCP large packets.
*/
static int msdn_giant_send_check(struct sk_buff *skb)
{
const struct ipv6hdr *ipv6h;
struct tcphdr *th;
int ret;

ret = skb_cow_head(skb, 0);
if (ret)
return ret;

ipv6h = ipv6_hdr(skb);
th = tcp_hdr(skb);

th->check = 0;
th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0);

return ret;
}

static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
if (skb_vlan_tag_present(skb)) {
u32 opts2;

opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
desc->opts2 |= cpu_to_le32(opts2);
}
}

static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);

if (opts2 & RX_VLAN_TAG)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & 0xffff));
}

static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
struct sk_buff *skb, u32 len, u32 transport_offset)
{
u32 mss = skb_shinfo(skb)->gso_size;
u32 opts1, opts2 = 0;
int ret = TX_CSUM_SUCCESS;

WARN_ON_ONCE(len > TX_LEN_MAX);

opts1 = len | TX_FS | TX_LS;

if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
ret = TX_CSUM_TSO;
goto unavailable;
}

switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts1 |= GTSENDV4;
break;

case htons(ETH_P_IPV6):
if (msdn_giant_send_check(skb)) {
ret = TX_CSUM_TSO;
goto unavailable;
}
opts1 |= GTSENDV6;
break;

default:
WARN_ON_ONCE(1);
break;
}

opts1 |= transport_offset << GTTCPHO_SHIFT;
opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;

if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x\n",
transport_offset);
ret = TX_CSUM_NONE;
goto unavailable;
}

switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts2 |= IPV4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;

case htons(ETH_P_IPV6):
opts2 |= IPV6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;

default:
ip_protocol = IPPROTO_RAW;
break;
}

if (ip_protocol == IPPROTO_TCP)
opts2 |= TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts2 |= UDP_CS;
else
WARN_ON_ONCE(1);

opts2 |= transport_offset << TCPHO_SHIFT;
}

desc->opts2 = cpu_to_le32(opts2);
desc->opts1 = cpu_to_le32(opts1);

unavailable:
return ret;
}

static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
int remain, ret;
u8 *tx_data;

__skb_queue_head_init(&skb_head);
spin_lock(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock(&tx_queue->lock);

tx_data = agg->head;
agg->skb_num = 0;
agg->skb_len = 0;
remain = agg_buf_sz;

while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
struct tx_desc *tx_desc;
struct sk_buff *skb;
unsigned int len;
u32 offset;

skb = __skb_dequeue(&skb_head);
if (!skb)
break;

len = skb->len + sizeof(*tx_desc);

if (len > remain) {
__skb_queue_head(&skb_head, skb);
break;
}

tx_data = tx_agg_align(tx_data);
tx_desc = (struct tx_desc *)tx_data;

offset = (u32)skb_transport_offset(skb);

if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
r8152_csum_workaround(tp, skb, &skb_head);
continue;
}

rtl_tx_vlan_tag(tx_desc, skb);

tx_data += sizeof(*tx_desc);

len = skb->len;
if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
struct net_device_stats *stats = &tp->netdev->stats;

stats->tx_dropped++;
dev_kfree_skb_any(skb);
tx_data -= sizeof(*tx_desc);
continue;
}

tx_data += len;
agg->skb_len += len;
agg->skb_num++;

dev_kfree_skb_any(skb);

remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
}

if (!skb_queue_empty(&skb_head)) {
spin_lock(&tx_queue->lock);
skb_queue_splice(&skb_head, tx_queue);
spin_unlock(&tx_queue->lock);
}

netif_tx_lock(tp->netdev);

if (netif_queue_stopped(tp->netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
netif_wake_queue(tp->netdev);

netif_tx_unlock(tp->netdev);

ret = usb_autopm_get_interface_async(tp->intf);
if (ret < 0)
goto out_tx_fill;

usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2),
agg->head, (int)(tx_data - (u8 *)agg->head),
(usb_complete_t)write_bulk_callback, agg);

ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
if (ret < 0)
usb_autopm_put_interface_async(tp->intf);

out_tx_fill:
return ret;
}

static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
u8 checksum = CHECKSUM_NONE;
u32 opts2, opts3;

if (tp->version == RTL_VER_01)
goto return_result;

opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);

if (opts2 & RD_IPV4_CS) {
if (opts3 & IPF)
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_UDP_CS) && (opts3 & UDPF))
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_TCP_CS) && (opts3 & TCPF))
checksum = CHECKSUM_NONE;
else
checksum = CHECKSUM_UNNECESSARY;
} else if (opts2 & RD_IPV6_CS) {
if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
}

return_result:
return checksum;
}

static void r8152_dump_rx_desc(struct rx_desc *rx_desc)
{
int rx_len = (le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK);

printk(KERN_INFO "%s: %08x %08x %08x %08x %08x %08x rx_len=%d\n",
__func__,
le32_to_cpu(rx_desc->opts1),
le32_to_cpu(rx_desc->opts2),
le32_to_cpu(rx_desc->opts3),
le32_to_cpu(rx_desc->opts4),
le32_to_cpu(rx_desc->opts5),
le32_to_cpu(rx_desc->opts6),
rx_len);
}

static int r8152_check_rx_desc(struct r8152 *tp, struct rx_desc *rx_desc)
{
u32 opts1, opts2, opts3, opts4, opts5, opts6;
int pkt_len;

if (tp->version == RTL_VER_01)
return 0; /* rx_desc looks okay */

opts1 = le32_to_cpu(rx_desc->opts1);
opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);
opts4 = le32_to_cpu(rx_desc->opts4);
opts5 = le32_to_cpu(rx_desc->opts5);
opts6 = le32_to_cpu(rx_desc->opts6);
pkt_len = (opts1 & RX_LEN_MASK) - CRC_SIZE;

if ( !opts1
|| ((opts1 & 0x0ff3f000) != 0x04400000 && (opts1 & 0xffff0000) != 0x00040000 && (opts1 & 0xffff0000) != 0x00080000)
|| (opts2 & ~(BIT(30)|RD_UDP_CS|RD_TCP_CS|RD_IPV6_CS|RD_IPV4_CS))
|| ((opts2 & RD_IPV6_CS) && (opts2 & RD_IPV4_CS))
|| ((opts3 & 0xffff0000) & ~(IPF|UDPF|TCPF|RX_VLAN_TAG)) // 0xff170000
|| (opts4 & 0x060cfff8) != 0x06000000
|| (opts5 | opts6)
|| pkt_len > (tp->netdev->mtu + 42)
){
printk(KERN_WARNING "%s: rx_desc looks bad.\n", __func__);
return -EIO; /* rx_desc looks bad */
}
return 0; /* rx_desc looks okay */
}

static int rx_bottom(struct r8152 *tp, int budget)
{
unsigned long flags;
struct list_head *cursor, *next, rx_queue;
int ret = 0, work_done = 0;

if (!skb_queue_empty(&tp->rx_queue)) {
while (work_done < budget) {
struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;

if (!skb)
break;

pkt_len = skb->len;
napi_gro_receive(&tp->napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
}

if (list_empty(&tp->rx_done))
goto out1;

INIT_LIST_HEAD(&rx_queue);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_done, &rx_queue);
spin_unlock_irqrestore(&tp->rx_lock, flags);

list_for_each_safe(cursor, next, &rx_queue) {
struct rx_desc *rx_desc;
struct rx_agg *agg;
int len_used = 0;
struct urb *urb;
u8 *rx_data;

list_del_init(cursor);

agg = list_entry(cursor, struct rx_agg, list);
urb = agg->urb;
if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) {
printk(KERN_WARNING "r8152_rx_bottom: URB too small: actual_length=%u\n", urb->actual_length);
goto submit;
}

rx_desc = agg->head;
rx_data = agg->head;

mb();
while (urb->actual_length > len_used) {
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
struct sk_buff *skb;

if ((len_used + sizeof(struct rx_desc)) > urb->actual_length) {
printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u too small for rx_desc\n",
len_used, urb->actual_length);
break;
}
len_used += sizeof(struct rx_desc);

if (r8152_check_rx_desc(tp, rx_desc)) {
printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u bad rx_desc\n",
len_used - sizeof(struct rx_desc), urb->actual_length);
r8152_dump_rx_desc(rx_desc);
}

pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
if (pkt_len < ETH_ZLEN) {
printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u pkt_len(%u) < ETH_ZLEN\n",
len_used, urb->actual_length, pkt_len);
r8152_dump_rx_desc(rx_desc);
break;
}

len_used += pkt_len;
if (urb->actual_length < len_used) {
printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u pkt_len(%u) exceeds buffer\n",
len_used - pkt_len, urb->actual_length, pkt_len);
r8152_dump_rx_desc(rx_desc);
break;
}

pkt_len -= CRC_SIZE;
rx_data += sizeof(struct rx_desc);

skb = netdev_alloc_skb_ip_align(netdev, pkt_len);
if (!skb) {
printk(KERN_WARNING "r8152_rx_bottom: netdev_alloc_skb_ip_align(%u) failed\n", pkt_len);
stats->rx_dropped++;
goto find_next_rx;
}

skb->ip_summed = r8152_rx_csum(tp, rx_desc);
memcpy(skb->data, rx_data, pkt_len);
skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, netdev);
rtl_rx_vlan_tag(rx_desc, skb);
if (work_done < budget) {
napi_gro_receive(&tp->napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
} else {
__skb_queue_tail(&tp->rx_queue, skb);
}

find_next_rx:
rx_data = rx_agg_align(rx_data + pkt_len + CRC_SIZE);
rx_desc = (struct rx_desc *)rx_data;
len_used = (int)(rx_data - (u8 *)agg->head);
}

submit:
if (!ret) {
ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
} else {
urb->actual_length = 0;
list_add_tail(&agg->list, next);
}
}

if (!list_empty(&rx_queue)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}

out1:
return work_done;
}

static void tx_bottom(struct r8152 *tp)
{
int res;

do {
struct tx_agg *agg;

if (skb_queue_empty(&tp->tx_queue))
break;

agg = r8152_get_tx_agg(tp);
if (!agg)
break;

res = r8152_tx_agg_fill(tp, agg);
if (res) {
struct net_device *netdev = tp->netdev;

if (res == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(netdev);
} else {
struct net_device_stats *stats = &netdev->stats;
unsigned long flags;

netif_warn(tp, tx_err, netdev,
"failed tx_urb %d\n", res);
stats->tx_dropped += agg->skb_num;

spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
}
}
} while (res == 0);
}

static void bottom_half(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

if (!test_bit(WORK_ENABLE, &tp->flags))
return;

/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(tp->netdev))
return;

clear_bit(SCHEDULE_NAPI, &tp->flags);

tx_bottom(tp);
}

static int r8152_poll(struct napi_struct *napi, int budget)
{
struct r8152 *tp = container_of(napi, struct r8152, napi);
int work_done;

work_done = rx_bottom(tp, budget);
bottom_half(tp);

if (work_done < budget) {
napi_complete(napi);
if (!list_empty(&tp->rx_done))
napi_schedule(napi);
}

return work_done;
}

static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
int ret;

/* The rx would be stopped, so skip submitting */
if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
!test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
return 0; /* FIXME: memory leak? */

usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1),
agg->head, agg_buf_sz,
(usb_complete_t)read_bulk_callback, agg);

agg->urb->transfer_dma = agg->transfer_dma;
agg->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
mb();
ret = usb_submit_urb(agg->urb, mem_flags);
if (ret == -ENODEV) {
set_bit(RTL8152_UNPLUG, &tp->flags);
netif_device_detach(tp->netdev);
} else if (ret) {
struct urb *urb = agg->urb;
unsigned long flags;

urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);

netif_err(tp, rx_err, tp->netdev,
"Couldn't submit rx[%p], ret = %d\n", agg, ret);

napi_schedule(&tp->napi);
}

return ret;
}

static void rtl_drop_queued_tx(struct r8152 *tp)
{
struct net_device_stats *stats = &tp->netdev->stats;
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
struct sk_buff *skb;

if (skb_queue_empty(tx_queue))
return;

__skb_queue_head_init(&skb_head);
spin_lock_bh(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock_bh(&tx_queue->lock);

while ((skb = __skb_dequeue(&skb_head))) {
dev_kfree_skb(skb);
stats->tx_dropped++;
}
}

static void rtl8152_tx_timeout(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);

netif_warn(tp, tx_err, netdev, "Tx timeout\n");

usb_queue_reset_device(tp->intf);
}

static void rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);

if (netif_carrier_ok(netdev)) {
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}

static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
u32 mc_filter[2]; /* Multicast hash filter */
__le32 tmp[2];
u32 ocp_data;

clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_data |= RCR_AB | RCR_APM;

if (netdev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
ocp_data |= RCR_AM | RCR_AAP;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
(netdev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
ocp_data |= RCR_AM;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;

mc_filter[1] = 0;
mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, netdev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;

mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
ocp_data |= RCR_AM;
}
}

tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));

pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
netif_wake_queue(netdev);
}

static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u32 mss = skb_shinfo(skb)->gso_size;
int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
int offset = skb_transport_offset(skb);

if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
features &= ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK);
else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
features &= ~NETIF_F_GSO_MASK;

return features;
}

static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);

skb_tx_timestamp(skb);

skb_queue_tail(&tp->tx_queue, skb);

if (!list_empty(&tp->tx_free)) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
set_bit(SCHEDULE_NAPI, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
} else {
usb_mark_last_busy(tp->udev);
napi_schedule(&tp->napi);
}
} else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
netif_stop_queue(netdev);
}

return NETDEV_TX_OK;
}

static void r8152b_reset_packet_filter(struct r8152 *tp)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
ocp_data &= ~FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
ocp_data |= FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}

static void rtl8152_nic_reset(struct r8152 *tp)
{
int i;

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);

for (i = 0; i < 1000; i++) {
if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
break;
usleep_range(100, 400);
}
}

static void set_tx_qlen(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;

tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + VLAN_HLEN +
sizeof(struct tx_desc));
}

static inline u8 rtl8152_get_speed(struct r8152 *tp)
{
return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}

static void rtl_set_eee_plus(struct r8152 *tp)
{
u32 ocp_data;
u8 speed;

speed = rtl8152_get_speed(tp);
if (speed & _10bps) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data |= EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
} else {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data &= ~EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
}
}

static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
if (enable)
ocp_data |= RXDY_GATED_EN;
else
ocp_data &= ~RXDY_GATED_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}

static int rtl_start_rx(struct r8152 *tp)
{
int i, ret = 0;

INIT_LIST_HEAD(&tp->rx_done);
for (i = 0; i < RTL8152_MAX_RX; i++) {
INIT_LIST_HEAD(&tp->rx_info[i].list);
ret = r8152_submit_rx(tp, &tp->rx_info[i], GFP_KERNEL);
if (ret)
break;
}

if (ret && ++i < RTL8152_MAX_RX) {
struct list_head rx_queue;
unsigned long flags;

INIT_LIST_HEAD(&rx_queue);

do {
struct rx_agg *agg = &tp->rx_info[i++];
struct urb *urb = agg->urb;

urb->actual_length = 0;
list_add_tail(&agg->list, &rx_queue);
} while (i < RTL8152_MAX_RX);

spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}

return ret;
}

static int rtl_stop_rx(struct r8152 *tp)
{
int i;

for (i = 0; i < RTL8152_MAX_RX; i++)
usb_kill_urb(tp->rx_info[i].urb);

while (!skb_queue_empty(&tp->rx_queue))
dev_kfree_skb(__skb_dequeue(&tp->rx_queue));

return 0;
}

static int rtl_enable(struct r8152 *tp)
{
u32 ocp_data;

r8152b_reset_packet_filter(tp);

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data |= CR_RE | CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);

rxdy_gated_en(tp, false);

return 0;
}

static int rtl8152_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

set_tx_qlen(tp);
rtl_set_eee_plus(tp);

return rtl_enable(tp);
}

static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
u32 ocp_data = tp->coalesce / 8;

ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, ocp_data);
}

static void r8153_set_rx_early_size(struct r8152 *tp)
{
u32 mtu = tp->netdev->mtu;
u32 ocp_data = (agg_buf_sz - mtu - VLAN_ETH_HLEN - VLAN_HLEN) / 4;

ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data);
}

static int rtl8153_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

usb_disable_lpm(tp->udev);
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
r8153_set_rx_early_timeout(tp);
r8153_set_rx_early_size(tp);

return rtl_enable(tp);
}

static void rtl_disable(struct r8152 *tp)
{
u32 ocp_data;
int i;

if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}

ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

rtl_drop_queued_tx(tp);

for (i = 0; i < RTL8152_MAX_TX; i++)
usb_kill_urb(tp->tx_info[i].urb);

rxdy_gated_en(tp, true);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
break;
usleep_range(1000, 2000);
}

for (i = 0; i < 1000; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
break;
usleep_range(1000, 2000);
}

rtl_stop_rx(tp);

rtl8152_nic_reset(tp);
}

static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
if (enable)
ocp_data |= POWER_CUT;
else
ocp_data &= ~POWER_CUT;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
ocp_data &= ~RESUME_INDICATE;
ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}

static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
if (enable)
ocp_data |= CPCR_RX_VLAN;
else
ocp_data &= ~CPCR_RX_VLAN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
}

static int rtl8152_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct r8152 *tp = netdev_priv(dev);
int ret;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rtl_rx_vlan_en(tp, true);
else
rtl_rx_vlan_en(tp, false);
}

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)

static u32 __rtl_get_wol(struct r8152 *tp)
{
u32 ocp_data;
u32 wolopts = 0;

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG5);
if (!(ocp_data & LAN_WAKE_EN))
return 0;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
if (ocp_data & LINK_ON_WAKE_EN)
wolopts |= WAKE_PHY;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
if (ocp_data & UWF_EN)
wolopts |= WAKE_UCAST;
if (ocp_data & BWF_EN)
wolopts |= WAKE_BCAST;
if (ocp_data & MWF_EN)
wolopts |= WAKE_MCAST;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
if (ocp_data & MAGIC_EN)
wolopts |= WAKE_MAGIC;

return wolopts;
}

static void __rtl_set_wol(struct r8152 *tp, u32 wolopts)
{
u32 ocp_data;

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_ON_WAKE_EN;
if (wolopts & WAKE_PHY)
ocp_data |= LINK_ON_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN | LAN_WAKE_EN);
if (wolopts & WAKE_UCAST)
ocp_data |= UWF_EN;
if (wolopts & WAKE_BCAST)
ocp_data |= BWF_EN;
if (wolopts & WAKE_MCAST)
ocp_data |= MWF_EN;
if (wolopts & WAKE_ANY)
ocp_data |= LAN_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data);

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
ocp_data &= ~MAGIC_EN;
if (wolopts & WAKE_MAGIC)
ocp_data |= MAGIC_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data);

if (wolopts & WAKE_ANY)
device_set_wakeup_enable(&tp->udev->dev, true);
else
device_set_wakeup_enable(&tp->udev->dev, false);
}

static void r8153_u1u2en(struct r8152 *tp, bool enable)
{
u8 u1u2[8];

if (enable)
memset(u1u2, 0xff, sizeof(u1u2));
else
memset(u1u2, 0x00, sizeof(u1u2));

usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2);
}

static void r8153_u2p3en(struct r8152 *tp, bool enable)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL);
if (enable && tp->version != RTL_VER_03 && tp->version != RTL_VER_04)
ocp_data |= U2P3_ENABLE;
else
ocp_data &= ~U2P3_ENABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data);
}

static void r8153_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~(PWR_EN | PHASE2_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}

static bool rtl_can_wakeup(struct r8152 *tp)
{
struct usb_device *udev = tp->udev;

return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP);
}

static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable)
{
if (enable) {
u32 ocp_data;

r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);

__rtl_set_wol(tp, WAKE_ANY);

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data |= LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
} else {
__rtl_set_wol(tp, tp->saved_wolopts);
r8153_u2p3en(tp, true);
r8153_u1u2en(tp, true);
}
}

static void rtl_phy_reset(struct r8152 *tp)
{
u16 data;
int i;

clear_bit(PHY_RESET, &tp->flags);

data = r8152_mdio_read(tp, MII_BMCR);

/* don't reset again before the previous one complete */
if (data & BMCR_RESET)
return;

data |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, data);

for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
break;
}
}

static void r8153_teredo_off(struct r8152 *tp)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK | OOB_TEREDO_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);

ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}

static void r8152b_disable_aldps(struct r8152 *tp)
{
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE);
msleep(20);
}

static inline void r8152b_enable_aldps(struct r8152 *tp)
{
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
}

static void rtl8152_disable(struct r8152 *tp)
{
r8152b_disable_aldps(tp);
rtl_disable(tp);
r8152b_enable_aldps(tp);
}

static void r8152b_hw_phy_cfg(struct r8152 *tp)
{
u16 data;

data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}

set_bit(PHY_RESET, &tp->flags);
}

static void r8152b_exit_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;

ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
r8152b_hw_phy_cfg(tp);

ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00);

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

rtl8152_nic_reset(tp);

/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);

if (tp->udev->speed == USB_SPEED_FULL ||
tp->udev->speed == USB_SPEED_LOW) {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_FULL);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_FULL);
} else {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_HIGH);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_HIGH);
}

/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL);

ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH);
ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA,
TEST_MODE_DISABLE | TX_SIZE_ADJUST1);

rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);

ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
}

static void r8152b_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB);

rtl_disable(tp);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);

rtl_rx_vlan_en(tp, true);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

rxdy_gated_en(tp, false);

ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}

static void r8153_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;

if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 ||
tp->version == RTL_VER_05)
ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L);

data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}

if (tp->version == RTL_VER_03) {
data = ocp_reg_read(tp, OCP_EEE_CFG);
data &= ~CTAP_SHORT_EN;
ocp_reg_write(tp, OCP_EEE_CFG, data);
}

data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);

data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_10M_BGOFF;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_10M_PLLOFF;
ocp_reg_write(tp, OCP_POWER_CFG, data);
sram_write(tp, SRAM_IMPEDANCE, 0x0b13);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);

/* Enable LPF corner auto tune */
sram_write(tp, SRAM_LPF_CFG, 0xf70f);

/* Adjust 10M Amplitude */
sram_write(tp, SRAM_10M_AMP1, 0x00af);
sram_write(tp, SRAM_10M_AMP2, 0x0208);

set_bit(PHY_RESET, &tp->flags);
}

static void r8153_first_init(struct r8152 *tp)
{
u32 ocp_data;
int i;

rxdy_gated_en(tp, true);
r8153_teredo_off(tp);

ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);

r8153_hw_phy_cfg(tp);

rtl8152_nic_reset(tp);

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);

ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);

rtl8152_nic_reset(tp);

/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL);
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2);

/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}

static void r8153_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
int i;

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

rtl_disable(tp);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);

for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}

ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~TEREDO_WAKE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);

rtl_rx_vlan_en(tp, true);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data);

ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);

rxdy_gated_en(tp, false);

ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}

static void r8153_disable_aldps(struct r8152 *tp)
{
u16 data;

data = ocp_reg_read(tp, OCP_POWER_CFG);
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
msleep(20);
}

static void r8153_enable_aldps(struct r8152 *tp)
{
u16 data;

data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
}

static void rtl8153_disable(struct r8152 *tp)
{
r8153_disable_aldps(tp);
rtl_disable(tp);
r8153_enable_aldps(tp);
usb_enable_lpm(tp->udev);
}

static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex)
{
u16 bmcr, anar, gbcr;
int ret = 0;

cancel_delayed_work_sync(&tp->schedule);
anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
if (tp->mii.supports_gmii) {
gbcr = r8152_mdio_read(tp, MII_CTRL1000);
gbcr &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
} else {
gbcr = 0;
}

if (autoneg == AUTONEG_DISABLE) {
if (speed == SPEED_10) {
bmcr = 0;
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
} else if (speed == SPEED_100) {
bmcr = BMCR_SPEED100;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
} else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
bmcr = BMCR_SPEED1000;
gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
} else {
ret = -EINVAL;
goto out;
}

if (duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
} else {
if (speed == SPEED_10) {
if (duplex == DUPLEX_FULL)
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
else
anar |= ADVERTISE_10HALF;
} else if (speed == SPEED_100) {
if (duplex == DUPLEX_FULL) {
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
} else {
anar |= ADVERTISE_10HALF;
anar |= ADVERTISE_100HALF;
}
} else if (speed == SPEED_1000 && tp->mii.supports_gmii) {
if (duplex == DUPLEX_FULL) {
anar |= ADVERTISE_10HALF | ADVERTISE_10FULL;
anar |= ADVERTISE_100HALF | ADVERTISE_100FULL;
gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
} else {
anar |= ADVERTISE_10HALF;
anar |= ADVERTISE_100HALF;
gbcr |= ADVERTISE_1000HALF;
}
} else {
ret = -EINVAL;
goto out;
}

bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
}

if (test_bit(PHY_RESET, &tp->flags))
bmcr |= BMCR_RESET;

if (tp->mii.supports_gmii)
r8152_mdio_write(tp, MII_CTRL1000, gbcr);

r8152_mdio_write(tp, MII_ADVERTISE, anar);
r8152_mdio_write(tp, MII_BMCR, bmcr);

if (test_bit(PHY_RESET, &tp->flags)) {
int i;

clear_bit(PHY_RESET, &tp->flags);
for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
break;
}
}

out:

return ret;
}

static void rtl8152_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

r8152b_disable_aldps(tp);
r8152b_exit_oob(tp);
r8152b_enable_aldps(tp);
}

static void rtl8152_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}

r8152_power_cut_en(tp, false);
r8152b_disable_aldps(tp);
r8152b_enter_oob(tp);
r8152b_enable_aldps(tp);
}

static void rtl8153_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

r8153_u1u2en(tp, false);
r8153_disable_aldps(tp);
r8153_first_init(tp);
r8153_enable_aldps(tp);
r8153_u2p3en(tp, true);
r8153_u1u2en(tp, true);
usb_enable_lpm(tp->udev);
}

static void rtl8153_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}

r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_power_cut_en(tp, false);
r8153_disable_aldps(tp);
r8153_enter_oob(tp);
r8153_enable_aldps(tp);
}

static bool rtl8152_in_nway(struct r8152 *tp)
{
u16 nway_state;

ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000);
tp->ocp_base = 0x2000;
ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */
nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a);

/* bit 15: TXDIS_STATE, bit 14: ABD_STATE */
if (nway_state & 0xc000)
return false;
else
return true;
}

static bool rtl8153_in_nway(struct r8152 *tp)
{
u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff;

if (phy_state == TXDIS_STATE || phy_state == ABD_STATE)
return false;
else
return true;
}

static void set_carrier(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
u8 speed;

clear_bit(RTL8152_LINK_CHG, &tp->flags);
speed = rtl8152_get_speed(tp);

if (speed & LINK_STATUS) {
if (!netif_carrier_ok(netdev)) {
tp->rtl_ops.enable(tp);
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
napi_disable(&tp->napi);
netif_carrier_on(netdev);
rtl_start_rx(tp);
napi_enable(&tp->napi);
}
} else {
if (netif_carrier_ok(netdev)) {
netif_carrier_off(netdev);
napi_disable(&tp->napi);
tp->rtl_ops.disable(tp);
napi_enable(&tp->napi);
}
}
}

static void rtl_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, schedule.work);

/* If the device is unplugged or !netif_running(), the workqueue
* doesn't need to wake the device, and could return directly.
*/
if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev))
return;

if (usb_autopm_get_interface(tp->intf) < 0)
return;

if (!test_bit(WORK_ENABLE, &tp->flags))
goto out1;

if (!mutex_trylock(&tp->control)) {
schedule_delayed_work(&tp->schedule, 0);
goto out1;
}

if (test_bit(RTL8152_LINK_CHG, &tp->flags))
set_carrier(tp);

if (test_bit(RTL8152_SET_RX_MODE, &tp->flags))
_rtl8152_set_rx_mode(tp->netdev);

/* don't schedule napi before linking */
if (test_bit(SCHEDULE_NAPI, &tp->flags) &&
netif_carrier_ok(tp->netdev)) {
clear_bit(SCHEDULE_NAPI, &tp->flags);
napi_schedule(&tp->napi);
}

if (test_bit(PHY_RESET, &tp->flags))
rtl_phy_reset(tp);

mutex_unlock(&tp->control);

out1:
usb_autopm_put_interface(tp->intf);
}

static int rtl8152_open(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;

res = alloc_all_mem(tp);
if (res)
goto out;

netif_carrier_off(netdev);

res = usb_autopm_get_interface(tp->intf);
if (res < 0) {
free_all_mem(tp);
goto out;
}

mutex_lock(&tp->control);

tp->rtl_ops.up(tp);

rtl8152_set_speed(tp, AUTONEG_ENABLE,
tp->mii.supports_gmii ? SPEED_1000 : SPEED_100,
DUPLEX_FULL);
netif_carrier_off(netdev);
netif_start_queue(netdev);
set_bit(WORK_ENABLE, &tp->flags);

res = usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (res) {
if (res == -ENODEV)
netif_device_detach(tp->netdev);
netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n",
res);
free_all_mem(tp);
} else {
napi_enable(&tp->napi);
}

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return res;
}

static int rtl8152_close(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;

napi_disable(&tp->napi);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
netif_stop_queue(netdev);

res = usb_autopm_get_interface(tp->intf);
if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
rtl_stop_rx(tp);
} else {
mutex_lock(&tp->control);

tp->rtl_ops.down(tp);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);
}

free_all_mem(tp);

return res;
}

static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg)
{
ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev);
ocp_reg_write(tp, OCP_EEE_DATA, reg);
ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev);
}

static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg)
{
u16 data;

r8152_mmd_indirect(tp, dev, reg);
data = ocp_reg_read(tp, OCP_EEE_DATA);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);

return data;
}

static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data)
{
r8152_mmd_indirect(tp, dev, reg);
ocp_reg_write(tp, OCP_EEE_DATA, data);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
}

static void r8152_eee_en(struct r8152 *tp, bool enable)
{
u16 config1, config2, config3;
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask;
config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2);
config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask;

if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN;
config1 |= sd_rise_time(1);
config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN;
config3 |= fast_snr(42);
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN |
RX_QUIET_EN);
config1 |= sd_rise_time(7);
config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN);
config3 |= fast_snr(511);
}

ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CONFIG1, config1);
ocp_reg_write(tp, OCP_EEE_CONFIG2, config2);
ocp_reg_write(tp, OCP_EEE_CONFIG3, config3);
}

static void r8152b_enable_eee(struct r8152 *tp)
{
r8152_eee_en(tp, true);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, MDIO_EEE_100TX);
}

static void r8153_eee_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
u16 config;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config = ocp_reg_read(tp, OCP_EEE_CFG);

if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config |= EEE10_EN;
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config &= ~EEE10_EN;
}

ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CFG, config);
}

static void r8153_enable_eee(struct r8152 *tp)
{
r8153_eee_en(tp, true);
ocp_reg_write(tp, OCP_EEE_ADV, MDIO_EEE_1000T | MDIO_EEE_100TX);
}

static void r8152b_enable_fc(struct r8152 *tp)
{
u16 anar;

anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
r8152_mdio_write(tp, MII_ADVERTISE, anar);
}

static void rtl_tally_reset(struct r8152 *tp)
{
u32 ocp_data;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY);
ocp_data |= TALLY_RESET;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data);
}

static void r8152b_init(struct r8152 *tp)
{
u32 ocp_data;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

r8152b_disable_aldps(tp);

if (tp->version == RTL_VER_01) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
}

r8152_power_cut_en(tp, false);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL);
ocp_data &= ~MCU_CLK_RATIO_MASK;
ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data);
ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK |
SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);

r8152b_enable_eee(tp);
r8152b_enable_aldps(tp);
r8152b_enable_fc(tp);
rtl_tally_reset(tp);

/* enable rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}

static void r8153_init(struct r8152 *tp)
{
u32 ocp_data;
int i;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

r8153_disable_aldps(tp);
r8153_u1u2en(tp, false);

for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
}

for (i = 0; i < 500; i++) {
ocp_data = ocp_reg_read(tp, OCP_PHY_STATUS) & PHY_STAT_MASK;
if (ocp_data == PHY_STAT_LAN_ON || ocp_data == PHY_STAT_PWRDN)
break;
msleep(20);
}

usb_disable_lpm(tp->udev);
r8153_u2p3en(tp, false);

if (tp->version == RTL_VER_04) {
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2);
ocp_data &= ~pwd_dn_scale_mask;
ocp_data |= pwd_dn_scale(96);
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data);

ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
} else if (tp->version == RTL_VER_05) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0);
ocp_data &= ~ECM_ALDPS;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data);

ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
} else if (tp->version == RTL_VER_06) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
}

ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2);
ocp_data |= EP4_FULL_FC;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL);
ocp_data &= ~TIMER11_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);

ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM;
if (tp->version == RTL_VER_04 && tp->udev->speed != USB_SPEED_SUPER)
ocp_data |= LPM_TIMER_500MS;
else
ocp_data |= LPM_TIMER_500US;
ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data);

ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2);
ocp_data &= ~SEN_VAL_MASK;
ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data);

ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001);

r8153_power_cut_en(tp, false);
r8153_u1u2en(tp, true);

ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ALDPS_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, EEE_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3,
PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN |
U1U2_SPDWN_EN | L1_SPDWN_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4,
PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN |
TP100_SPDWN_EN | TP500_SPDWN_EN | TP1000_SPDWN_EN |
EEE_SPDWN_EN);

r8153_enable_eee(tp);
r8153_enable_aldps(tp);
r8152b_enable_fc(tp);
rtl_tally_reset(tp);
r8153_u2p3en(tp, true);
}

static int rtl8152_pre_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;

if (!tp)
return 0;

netdev = tp->netdev;
if (!netif_running(netdev))
return 0;

napi_disable(&tp->napi);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
if (netif_carrier_ok(netdev)) {
netif_stop_queue(netdev);
mutex_lock(&tp->control);
tp->rtl_ops.disable(tp);
mutex_unlock(&tp->control);
}

return 0;
}

static int rtl8152_post_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;

if (!tp)
return 0;

netdev = tp->netdev;
if (!netif_running(netdev))
return 0;

set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.enable(tp);
rtl8152_set_rx_mode(netdev);
mutex_unlock(&tp->control);
netif_wake_queue(netdev);
}

napi_enable(&tp->napi);

return 0;
}

static bool delay_autosuspend(struct r8152 *tp)
{
bool sw_linking = !!netif_carrier_ok(tp->netdev);
bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS);

/* This means a linking change occurs and the driver doesn't detect it,
* yet. If the driver has disabled tx/rx and hw is linking on, the
* device wouldn't wake up by receiving any packet.
*/
if (work_busy(&tp->schedule.work) || sw_linking != hw_linking)
return true;

/* If the linking down is occurred by nway, the device may miss the
* linking change event. And it wouldn't wake when linking on.
*/
if (!sw_linking && tp->rtl_ops.in_nway(tp))
return true;
else
return false;
}

static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev = tp->netdev;
int ret = 0;
u32 rcr = 0;

mutex_lock(&tp->control);

if (PMSG_IS_AUTO(message)) {
u32 ocp_data;

if (netif_running(netdev) && delay_autosuspend(tp)) {
ret = -EBUSY;
goto out1;
}

rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr & ~RCR_ACPT_ALL);
rxdy_gated_en(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (!(ocp_data & RXFIFO_EMPTY)) {
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
ret = -EBUSY;
goto out1;
}

set_bit(SELECTIVE_SUSPEND, &tp->flags);
} else {
netif_device_detach(netdev);
}

if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
napi_disable(&tp->napi);
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
rtl_stop_rx(tp);
rtl_runtime_suspend_enable(tp, true);
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
} else {
cancel_delayed_work_sync(&tp->schedule);
tp->rtl_ops.down(tp);
}
napi_enable(&tp->napi);
}
out1:
mutex_unlock(&tp->control);

return ret;
}

static int rtl8152_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);

mutex_lock(&tp->control);

if (!test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
tp->rtl_ops.init(tp);
netif_device_attach(tp->netdev);
}

if (netif_running(tp->netdev) && tp->netdev->flags & IFF_UP) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
rtl_runtime_suspend_enable(tp, false);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
napi_disable(&tp->napi);
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(tp->netdev))
rtl_start_rx(tp);
napi_enable(&tp->napi);
} else {
tp->rtl_ops.up(tp);
rtl8152_set_speed(tp, AUTONEG_ENABLE,
tp->mii.supports_gmii ?
SPEED_1000 : SPEED_100,
DUPLEX_FULL);
netif_carrier_off(tp->netdev);
set_bit(WORK_ENABLE, &tp->flags);
}
usb_submit_urb(tp->intr_urb, GFP_KERNEL);
} else if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
if (tp->netdev->flags & IFF_UP)
rtl_runtime_suspend_enable(tp, false);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
}

mutex_unlock(&tp->control);

return 0;
}

static int rtl8152_reset_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);

clear_bit(SELECTIVE_SUSPEND, &tp->flags);
return rtl8152_resume(intf);
}

static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);

if (usb_autopm_get_interface(tp->intf) < 0)
return;

if (!rtl_can_wakeup(tp)) {
wol->supported = 0;
wol->wolopts = 0;
} else {
mutex_lock(&tp->control);
wol->supported = WAKE_ANY;
wol->wolopts = __rtl_get_wol(tp);
mutex_unlock(&tp->control);
}

usb_autopm_put_interface(tp->intf);
}

static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
int ret;

if (!rtl_can_wakeup(tp))
return -EOPNOTSUPP;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out_set_wol;

mutex_lock(&tp->control);

__rtl_set_wol(tp, wol->wolopts);
tp->saved_wolopts = wol->wolopts & WAKE_ANY;

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out_set_wol:
return ret;
}

static u32 rtl8152_get_msglevel(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);

return tp->msg_enable;
}

static void rtl8152_set_msglevel(struct net_device *dev, u32 value)
{
struct r8152 *tp = netdev_priv(dev);

tp->msg_enable = value;
}

static void rtl8152_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct r8152 *tp = netdev_priv(netdev);

strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info));
}

static
int rtl8152_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;

if (!tp->mii.mdio_read)
return -EOPNOTSUPP;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

ret = mii_ethtool_gset(&tp->mii, cmd);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

static int rtl8152_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct r8152 *tp = netdev_priv(dev);
int ret;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

ret = rtl8152_set_speed(tp, cmd->autoneg, cmd->speed, cmd->duplex);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"rx_unicast",
"rx_broadcast",
"rx_multicast",
"tx_aborted",
"tx_underrun",
};

static int rtl8152_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8152_gstrings);
default:
return -EOPNOTSUPP;
}
}

static void rtl8152_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct r8152 *tp = netdev_priv(dev);
struct tally_counter tally;

if (usb_autopm_get_interface(tp->intf) < 0)
return;

generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA);

usb_autopm_put_interface(tp->intf);

data[0] = le64_to_cpu(tally.tx_packets);
data[1] = le64_to_cpu(tally.rx_packets);
data[2] = le64_to_cpu(tally.tx_errors);
data[3] = le32_to_cpu(tally.rx_errors);
data[4] = le16_to_cpu(tally.rx_missed);
data[5] = le16_to_cpu(tally.align_errors);
data[6] = le32_to_cpu(tally.tx_one_collision);
data[7] = le32_to_cpu(tally.tx_multi_collision);
data[8] = le64_to_cpu(tally.rx_unicast);
data[9] = le64_to_cpu(tally.rx_broadcast);
data[10] = le32_to_cpu(tally.rx_multicast);
data[11] = le16_to_cpu(tally.tx_aborted);
data[12] = le16_to_cpu(tally.tx_underrun);
}

static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings));
break;
}
}

static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 ocp_data, lp, adv, supported = 0;
u16 val;

val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);

val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);

val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
ocp_data &= EEE_RX_EN | EEE_TX_EN;

eee->eee_enabled = !!ocp_data;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = adv;
eee->lp_advertised = lp;

return 0;
}

static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);

r8152_eee_en(tp, eee->eee_enabled);

if (!eee->eee_enabled)
val = 0;

r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);

return 0;
}

static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 ocp_data, lp, adv, supported = 0;
u16 val;

val = ocp_reg_read(tp, OCP_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);

val = ocp_reg_read(tp, OCP_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);

val = ocp_reg_read(tp, OCP_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
ocp_data &= EEE_RX_EN | EEE_TX_EN;

eee->eee_enabled = !!ocp_data;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = adv;
eee->lp_advertised = lp;

return 0;
}

static int r8153_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);

r8153_eee_en(tp, eee->eee_enabled);

if (!eee->eee_enabled)
val = 0;

ocp_reg_write(tp, OCP_EEE_ADV, val);

return 0;
}

static int
rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

ret = tp->rtl_ops.eee_get(tp, edata);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

static int
rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

ret = tp->rtl_ops.eee_set(tp, edata);
if (!ret)
ret = mii_nway_restart(&tp->mii);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

static int rtl8152_nway_reset(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
int ret;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;

mutex_lock(&tp->control);

ret = mii_nway_restart(&tp->mii);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

out:
return ret;
}

static int rtl8152_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);

switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
return -EOPNOTSUPP;
default:
break;
}

coalesce->rx_coalesce_usecs = tp->coalesce;

return 0;
}

static int rtl8152_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;

switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
return -EOPNOTSUPP;
default:
break;
}

if (coalesce->rx_coalesce_usecs > COALESCE_SLOW)
return -EINVAL;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;

mutex_lock(&tp->control);

if (tp->coalesce != coalesce->rx_coalesce_usecs) {
tp->coalesce = coalesce->rx_coalesce_usecs;

if (netif_running(tp->netdev) && netif_carrier_ok(netdev))
r8153_set_rx_early_timeout(tp);
}

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

return ret;
}

static struct ethtool_ops ops = {
.get_drvinfo = rtl8152_get_drvinfo,
.get_settings = rtl8152_get_settings,
.set_settings = rtl8152_set_settings,
.get_link = ethtool_op_get_link,
.nway_reset = rtl8152_nway_reset,
.get_msglevel = rtl8152_get_msglevel,
.set_msglevel = rtl8152_set_msglevel,
.get_wol = rtl8152_get_wol,
.set_wol = rtl8152_set_wol,
.get_strings = rtl8152_get_strings,
.get_sset_count = rtl8152_get_sset_count,
.get_ethtool_stats = rtl8152_get_ethtool_stats,
.get_coalesce = rtl8152_get_coalesce,
.set_coalesce = rtl8152_set_coalesce,
.get_eee = rtl_ethtool_get_eee,
.set_eee = rtl_ethtool_set_eee,
};

static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct r8152 *tp = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(rq);
int res;

if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;

res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out;

switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = R8152_PHY_ID; /* Internal PHY */
break;

case SIOCGMIIREG:
mutex_lock(&tp->control);
data->val_out = r8152_mdio_read(tp, data->reg_num);
mutex_unlock(&tp->control);
break;

case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN)) {
res = -EPERM;
break;
}
mutex_lock(&tp->control);
r8152_mdio_write(tp, data->reg_num, data->val_in);
mutex_unlock(&tp->control);
break;

default:
res = -EOPNOTSUPP;
}

usb_autopm_put_interface(tp->intf);

out:
return res;
}

static int rtl8152_change_mtu(struct net_device *dev, int new_mtu)
{
struct r8152 *tp = netdev_priv(dev);
int ret;

switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
return eth_change_mtu(dev, new_mtu);
default:
break;
}

if (new_mtu < 68 || new_mtu > RTL8153_MAX_MTU)
return -EINVAL;

ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;

mutex_lock(&tp->control);

dev->mtu = new_mtu;

if (netif_running(dev) && netif_carrier_ok(dev))
r8153_set_rx_early_size(tp);

mutex_unlock(&tp->control);

usb_autopm_put_interface(tp->intf);

return ret;
}

static const struct net_device_ops rtl8152_netdev_ops = {
.ndo_open = rtl8152_open,
.ndo_stop = rtl8152_close,
.ndo_do_ioctl = rtl8152_ioctl,
.ndo_start_xmit = rtl8152_start_xmit,
.ndo_tx_timeout = rtl8152_tx_timeout,
.ndo_set_features = rtl8152_set_features,
.ndo_set_rx_mode = rtl8152_set_rx_mode,
.ndo_set_mac_address = rtl8152_set_mac_address,
.ndo_change_mtu = rtl8152_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_features_check = rtl8152_features_check,
};

static void r8152b_get_version(struct r8152 *tp)
{
u32 ocp_data;
u16 version;

ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR1);
version = (u16)(ocp_data & VERSION_MASK);

switch (version) {
case 0x4c00:
tp->version = RTL_VER_01;
break;
case 0x4c10:
tp->version = RTL_VER_02;
break;
case 0x5c00:
tp->version = RTL_VER_03;
tp->mii.supports_gmii = 1;
break;
case 0x5c10:
tp->version = RTL_VER_04;
tp->mii.supports_gmii = 1;
break;
case 0x5c20:
tp->version = RTL_VER_05;
tp->mii.supports_gmii = 1;
break;
case 0x5c30:
tp->version = RTL_VER_06;
tp->mii.supports_gmii = 1;
break;
default:
netif_info(tp, probe, tp->netdev,
"Unknown version 0x%04x\n", version);
break;
}
}

static void rtl8152_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

if (tp->version != RTL_VER_01)
r8152_power_cut_en(tp, true);
}

static void rtl8153_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;

r8153_power_cut_en(tp, false);
}

static int rtl_ops_init(struct r8152 *tp)
{
struct rtl_ops *ops = &tp->rtl_ops;
int ret = 0;

switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
ops->init = r8152b_init;
ops->enable = rtl8152_enable;
ops->disable = rtl8152_disable;
ops->up = rtl8152_up;
ops->down = rtl8152_down;
ops->unload = rtl8152_unload;
ops->eee_get = r8152_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8152_in_nway;
break;

case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ops->init = r8153_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153_up;
ops->down = rtl8153_down;
ops->unload = rtl8153_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8153_set_eee;
ops->in_nway = rtl8153_in_nway;
break;

default:
ret = -ENODEV;
netif_err(tp, probe, tp->netdev, "Unknown Device\n");
break;
}

return ret;
}

static int rtl8152_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct r8152 *tp;
struct net_device *netdev;
int ret;

if (udev->actconfig->desc.bConfigurationValue != 1) {
usb_driver_set_configuration(udev, 1);
return -ENODEV;
}

usb_reset_device(udev);
netdev = alloc_etherdev(sizeof(struct r8152));
if (!netdev) {
dev_err(&intf->dev, "Out of memory\n");
return -ENOMEM;
}

SET_NETDEV_DEV(netdev, &intf->dev);
tp = netdev_priv(netdev);
tp->msg_enable = 0x7FFF;

tp->udev = udev;
tp->netdev = netdev;
tp->intf = intf;

r8152b_get_version(tp);
ret = rtl_ops_init(tp);
if (ret)
goto out;

mutex_init(&tp->control);
INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t);

netdev->netdev_ops = &rtl8152_netdev_ops;
netdev->watchdog_timeo = RTL8152_TX_TIMEOUT;

netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM |
NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6;

netdev->ethtool_ops = &ops;
netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE);

tp->mii.dev = netdev;
tp->mii.mdio_read = read_mii_word;
tp->mii.mdio_write = write_mii_word;
tp->mii.phy_id_mask = 0x3f;
tp->mii.reg_num_mask = 0x1f;
tp->mii.phy_id = R8152_PHY_ID;

switch (udev->speed) {
case USB_SPEED_SUPER:
tp->coalesce = COALESCE_SUPER;
break;
case USB_SPEED_HIGH:
tp->coalesce = COALESCE_HIGH;
break;
default:
tp->coalesce = COALESCE_SLOW;
break;
}

intf->needs_remote_wakeup = 1;

tp->rtl_ops.init(tp);
set_ethernet_addr(tp);

usb_set_intfdata(intf, tp);
netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT);

ret = register_netdev(netdev);
if (ret != 0) {
netif_err(tp, probe, netdev, "couldn't register the device\n");
goto out1;
}

if (!rtl_can_wakeup(tp))
__rtl_set_wol(tp, 0);

tp->saved_wolopts = __rtl_get_wol(tp);
if (tp->saved_wolopts)
device_set_wakeup_enable(&udev->dev, true);
else
device_set_wakeup_enable(&udev->dev, false);

netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION);

return 0;

out1:
netif_napi_del(&tp->napi);
usb_set_intfdata(intf, NULL);
out:
free_netdev(netdev);
return ret;
}

static void rtl8152_disconnect(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);

usb_set_intfdata(intf, NULL);
if (tp) {
struct usb_device *udev = tp->udev;

if (udev->state == USB_STATE_NOTATTACHED)
set_bit(RTL8152_UNPLUG, &tp->flags);

netif_napi_del(&tp->napi);
unregister_netdev(tp->netdev);
tp->rtl_ops.unload(tp);
free_netdev(tp->netdev);
}
}

#define REALTEK_USB_DEVICE(vend, prod) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_VENDOR_SPEC \
}, \
{ \
.match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \
USB_DEVICE_ID_MATCH_DEVICE, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_COMM, \
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \
.bInterfaceProtocol = USB_CDC_PROTO_NONE

/* table of devices that work with this driver */
static struct usb_device_id rtl8152_table[] = {
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)},
{REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)},
{REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)},
{}
};

MODULE_DEVICE_TABLE(usb, rtl8152_table);

static struct usb_driver rtl8152_driver = {
.name = MODULENAME,
.id_table = rtl8152_table,
.probe = rtl8152_probe,
.disconnect = rtl8152_disconnect,
.suspend = rtl8152_suspend,
.resume = rtl8152_resume,
.reset_resume = rtl8152_reset_resume,
.pre_reset = rtl8152_pre_reset,
.post_reset = rtl8152_post_reset,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};

module_usb_driver(rtl8152_driver);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");