Re: [RFC][PATCH v3 2/2] cpufreq: schedutil: Avoid reducing frequency of busy CPUs prematurely

From: Sai Gurrappadi
Date: Thu Mar 23 2017 - 15:29:13 EST


Hi Rafael,

On 03/21/2017 04:08 PM, Rafael J. Wysocki wrote:
> From: Rafael J. Wysocki <rafael.j.wysocki@xxxxxxxxx>

<snip>

>
> That has been attributed to CPU utilization metric updates on task
> migration that cause the total utilization value for the CPU to be
> reduced by the utilization of the migrated task. If that happens,
> the schedutil governor may see a CPU utilization reduction and will
> attempt to reduce the CPU frequency accordingly right away. That
> may be premature, though, for example if the system is generally
> busy and there are other runnable tasks waiting to be run on that
> CPU already.
>
> This is unlikely to be an issue on systems where cpufreq policies are
> shared between multiple CPUs, because in those cases the policy
> utilization is computed as the maximum of the CPU utilization values
> over the whole policy and if that turns out to be low, reducing the
> frequency for the policy most likely is a good idea anyway. On

I have observed this issue even in the shared policy case (one clock domain for many CPUs). On migrate, the actual load update is split into two updates:

1. Add to removed_load on src_cpu (cpu_util(src_cpu) not updated yet)
2. Do wakeup on dst_cpu, add load to dst_cpu

Now if src_cpu manages to do a PELT update before 2. happens, ex: say a small periodic task woke up on src_cpu, it'll end up subtracting the removed_load from its utilization and issue a frequency update before 2. happens.

This causes a premature dip in frequency which doesn't get corrected until the next util update that fires after rate_limit_us. The dst_cpu freq. update from step 2. above gets rate limited in this scenario.


> systems with one CPU per policy, however, it may affect performance
> adversely and even lead to increased energy consumption in some cases.
>
> On those systems it may be addressed by taking another utilization
> metric into consideration, like whether or not the CPU whose
> frequency is about to be reduced has been idle recently, because if
> that's not the case, the CPU is likely to be busy in the near future
> and its frequency should not be reduced.
>
> To that end, use the counter of idle calls in the timekeeping code.
> Namely, make the schedutil governor look at that counter for the
> current CPU every time before its frequency is about to be reduced.
> If the counter has not changed since the previous iteration of the
> governor computations for that CPU, the CPU has been busy for all
> that time and its frequency should not be decreased, so if the new
> frequency would be lower than the one set previously, the governor
> will skip the frequency update.
>
> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@xxxxxxxxx>
> ---
> include/linux/tick.h | 1 +
> kernel/sched/cpufreq_schedutil.c | 27 +++++++++++++++++++++++++++
> kernel/time/tick-sched.c | 12 ++++++++++++
> 3 files changed, 40 insertions(+)
>
> Index: linux-pm/kernel/sched/cpufreq_schedutil.c
> ===================================================================
> --- linux-pm.orig/kernel/sched/cpufreq_schedutil.c
> +++ linux-pm/kernel/sched/cpufreq_schedutil.c
> @@ -61,6 +61,11 @@ struct sugov_cpu {
> unsigned long util;
> unsigned long max;
> unsigned int flags;
> +
> + /* The field below is for single-CPU policies only. */
> +#ifdef CONFIG_NO_HZ_COMMON
> + unsigned long saved_idle_calls;
> +#endif
> };
>
> static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
> @@ -192,6 +197,19 @@ static void sugov_iowait_boost(struct su
> sg_cpu->iowait_boost >>= 1;
> }
>
> +#ifdef CONFIG_NO_HZ_COMMON
> +static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
> +{
> + unsigned long idle_calls = tick_nohz_get_idle_calls();
> + bool ret = idle_calls == sg_cpu->saved_idle_calls;
> +
> + sg_cpu->saved_idle_calls = idle_calls;
> + return ret;
> +}

Hm, sorry I am a bit confused perhaps you could help me understand the problem/solution better :)

Say we have the this simple case of only a single periodic task running on one CPU, wouldn't the PELT update on wakeup cause a frequency update which updates the sg_cpu->saved_idle_calls value here? That would then cause the frequency update on idle entry to always skip dropping frequency right?

If I am reading this correctly, the PELT update on the dequeue for the periodic task (in the scenario above) happens _before_ the idle_calls++ which is in tick_nohz_idle_enter.

Thanks!
-Sai