[HMM 03/16] mm/unaddressable-memory: new type of ZONE_DEVICE for unaddressable memory

From: JÃrÃme Glisse
Date: Wed Apr 05 2017 - 16:41:32 EST


HMM (heterogeneous memory management) need struct page to support migration
from system main memory to device memory. Reasons for HMM and migration to
device memory is explained with HMM core patch.

This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support different
types of memory.

A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory type.
There is a clear separation between what is expected from each memory type
and existing user of ZONE_DEVICE are un-affected by new requirement and new
use of the un-addressable type. All specific code path are protect with
test against the memory type.

Because memory is un-addressable we use a new special swap type for when
a page is migrated to device memory (this reduces the number of maximum
swap file).

The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which means
the page is free as ZONE_DEVICE page never reach a refcount of 0). This
allow device driver to manage its memory and associated struct page.

The second callback page_fault() happens when there is a CPU access to
an address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.

If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.

Signed-off-by: JÃrÃme Glisse <jglisse@xxxxxxxxxx>
Cc: Dan Williams <dan.j.williams@xxxxxxxxx>
Cc: Ross Zwisler <ross.zwisler@xxxxxxxxxxxxxxx>
---
fs/proc/task_mmu.c | 7 +++++
include/linux/ioport.h | 1 +
include/linux/memory_hotplug.h | 10 +++++++
include/linux/memremap.h | 57 ++++++++++++++++++++++++++++++++++-
include/linux/swap.h | 24 +++++++++++++--
include/linux/swapops.h | 68 ++++++++++++++++++++++++++++++++++++++++++
kernel/memremap.c | 42 +++++++++++++++++++++++++-
mm/Kconfig | 9 ++++++
mm/memory.c | 61 +++++++++++++++++++++++++++++++++++++
mm/memory_hotplug.c | 10 +++++--
mm/mprotect.c | 14 +++++++++
11 files changed, 296 insertions(+), 7 deletions(-)

diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
index 5c83597..a7f1ae4 100644
--- a/fs/proc/task_mmu.c
+++ b/fs/proc/task_mmu.c
@@ -541,6 +541,8 @@ static void smaps_pte_entry(pte_t *pte, unsigned long addr,
}
} else if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
+ else if (is_device_entry(swpent))
+ page = device_entry_to_page(swpent);
} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
&& pte_none(*pte))) {
page = find_get_entry(vma->vm_file->f_mapping,
@@ -703,6 +705,8 @@ static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,

if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
+ else if (is_device_entry(swpent))
+ page = device_entry_to_page(swpent);
}
if (page) {
int mapcount = page_mapcount(page);
@@ -1195,6 +1199,9 @@ static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
flags |= PM_SWAP;
if (is_migration_entry(entry))
page = migration_entry_to_page(entry);
+
+ if (is_device_entry(entry))
+ page = device_entry_to_page(entry);
}

if (page && !PageAnon(page))
diff --git a/include/linux/ioport.h b/include/linux/ioport.h
index 6230064..ec619dc 100644
--- a/include/linux/ioport.h
+++ b/include/linux/ioport.h
@@ -130,6 +130,7 @@ enum {
IORES_DESC_ACPI_NV_STORAGE = 3,
IORES_DESC_PERSISTENT_MEMORY = 4,
IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5,
+ IORES_DESC_DEVICE_MEMORY_UNADDRESSABLE = 6,
};

/* helpers to define resources */
diff --git a/include/linux/memory_hotplug.h b/include/linux/memory_hotplug.h
index c3999f2..e60f203 100644
--- a/include/linux/memory_hotplug.h
+++ b/include/linux/memory_hotplug.h
@@ -27,10 +27,20 @@ struct resource;
* to regular memory, in that the CPU can access it transparently. However,
* it is likely to have different bandwidth and latency than regular memory.
* See Documentation/nvdimm/nvdimm.txt for more information.
+ *
+ * MEMORY_DEVICE_UNADDRESSABLE:
+ * Device memory that is not directly addressable by the CPU: CPU can neither
+ * read nor write _UNADDRESSABLE memory. In this case, we do still have struct
+ * pages backing the device memory. Doing so simplifies the implementation, but
+ * it is important to remember that there are certain points at which the struct
+ * page must be treated as an opaque object, rather than a "normal" struct page.
+ * A more complete discussion of unaddressable memory may be found in
+ * include/linux/hmm.h and Documentation/vm/hmm.txt.
*/
enum memory_type {
MEMORY_NORMAL = 0,
MEMORY_DEVICE_PERSISTENT,
+ MEMORY_DEVICE_UNADDRESSABLE,
};

#ifdef CONFIG_MEMORY_HOTPLUG
diff --git a/include/linux/memremap.h b/include/linux/memremap.h
index 1f720f7..3a9494e 100644
--- a/include/linux/memremap.h
+++ b/include/linux/memremap.h
@@ -35,19 +35,62 @@ static inline struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
}
#endif

+/*
+ * For MEMORY_DEVICE_UNADDRESSABLE we use ZONE_DEVICE and extend it with two
+ * callbacks:
+ * page_fault()
+ * page_free()
+ *
+ * Additional notes about MEMORY_DEVICE_UNADDRESSABLE may be found in
+ * include/linux/hmm.h and Documentation/vm/hmm.txt. There is also a brief
+ * explanation in include/linux/memory_hotplug.h.
+ *
+ * The page_fault() callback must migrate page back, from device memory to
+ * system memory, so that the CPU can access it. This might fail for various
+ * reasons (device issues, device have been unplugged, ...). When such error
+ * conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
+ * set the CPU page table entry to "poisoned".
+ *
+ * Note that because memory cgroup charges are transferred to the device memory,
+ * this should never fail due to memory restrictions. However, allocation
+ * of a regular system page might still fail because we are out of memory. If
+ * that happens, the page_fault() callback must return VM_FAULT_OOM.
+ *
+ * The page_fault() callback can also try to migrate back multiple pages in one
+ * chunk, as an optimization. It must, however, prioritize the faulting address
+ * over all the others.
+ *
+ *
+ * The page_free() callback is called once the page refcount reaches 1
+ * (ZONE_DEVICE pages never reach 0 refcount unless there is a refcount bug.
+ * This allows the device driver to implement its own memory management.)
+ */
+typedef int (*dev_page_fault_t)(struct vm_area_struct *vma,
+ unsigned long addr,
+ struct page *page,
+ unsigned int flags,
+ pmd_t *pmdp);
+typedef void (*dev_page_free_t)(struct page *page, void *data);
+
/**
* struct dev_pagemap - metadata for ZONE_DEVICE mappings
+ * @page_fault: callback when CPU fault on an unaddressable device page
+ * @page_free: free page callback when page refcount reaches 1
* @altmap: pre-allocated/reserved memory for vmemmap allocations
* @res: physical address range covered by @ref
* @ref: reference count that pins the devm_memremap_pages() mapping
* @dev: host device of the mapping for debug
- * @type: memory type see MEMORY_* in memory_hotplug.h
+ * @data: private data pointer for page_free()
+ * @type: memory type: see MEMORY_* in memory_hotplug.h
*/
struct dev_pagemap {
+ dev_page_fault_t page_fault;
+ dev_page_free_t page_free;
struct vmem_altmap *altmap;
const struct resource *res;
struct percpu_ref *ref;
struct device *dev;
+ void *data;
enum memory_type type;
};

@@ -55,6 +98,13 @@ struct dev_pagemap {
void *devm_memremap_pages(struct device *dev, struct resource *res,
struct percpu_ref *ref, struct vmem_altmap *altmap);
struct dev_pagemap *find_dev_pagemap(resource_size_t phys);
+
+static inline bool is_device_unaddressable_page(const struct page *page)
+{
+ /* See MEMORY_DEVICE_UNADDRESSABLE in include/linux/memory_hotplug.h */
+ return ((page_zonenum(page) == ZONE_DEVICE) &&
+ (page->pgmap->type == MEMORY_DEVICE_UNADDRESSABLE));
+}
#else
static inline void *devm_memremap_pages(struct device *dev,
struct resource *res, struct percpu_ref *ref,
@@ -73,6 +123,11 @@ static inline struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
{
return NULL;
}
+
+static inline bool is_device_unaddressable_page(const struct page *page)
+{
+ return false;
+}
#endif

/**
diff --git a/include/linux/swap.h b/include/linux/swap.h
index 486494e..9174e67 100644
--- a/include/linux/swap.h
+++ b/include/linux/swap.h
@@ -51,6 +51,23 @@ static inline int current_is_kswapd(void)
*/

/*
+ * Unaddressable device memory support. See include/linux/hmm.h and
+ * Documentation/vm/hmm.txt. Short description is we need struct pages for
+ * device memory that is unaddressable (inaccessible) by CPU, so that we can
+ * migrate part of a process memory to device memory.
+ *
+ * When a page is migrated from CPU to device, we set the CPU page table entry
+ * to a special SWP_DEVICE_* entry.
+ */
+#ifdef CONFIG_DEVICE_UNADDRESSABLE
+#define SWP_DEVICE_NUM 2
+#define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM)
+#define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1)
+#else
+#define SWP_DEVICE_NUM 0
+#endif
+
+/*
* NUMA node memory migration support
*/
#ifdef CONFIG_MIGRATION
@@ -72,7 +89,8 @@ static inline int current_is_kswapd(void)
#endif

#define MAX_SWAPFILES \
- ((1 << MAX_SWAPFILES_SHIFT) - SWP_MIGRATION_NUM - SWP_HWPOISON_NUM)
+ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \
+ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM)

/*
* Magic header for a swap area. The first part of the union is
@@ -435,8 +453,8 @@ static inline void show_swap_cache_info(void)
{
}

-#define free_swap_and_cache(swp) is_migration_entry(swp)
-#define swapcache_prepare(swp) is_migration_entry(swp)
+#define free_swap_and_cache(e) (is_migration_entry(e) || is_device_entry(e))
+#define swapcache_prepare(e) (is_migration_entry(e) || is_device_entry(e))

static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask)
{
diff --git a/include/linux/swapops.h b/include/linux/swapops.h
index 5c3a5f3..960eb6b 100644
--- a/include/linux/swapops.h
+++ b/include/linux/swapops.h
@@ -100,6 +100,74 @@ static inline void *swp_to_radix_entry(swp_entry_t entry)
return (void *)(value | RADIX_TREE_EXCEPTIONAL_ENTRY);
}

+#if IS_ENABLED(CONFIG_DEVICE_UNADDRESSABLE)
+static inline swp_entry_t make_device_entry(struct page *page, bool write)
+{
+ return swp_entry(write ? SWP_DEVICE_WRITE : SWP_DEVICE_READ,
+ page_to_pfn(page));
+}
+
+static inline bool is_device_entry(swp_entry_t entry)
+{
+ int type = swp_type(entry);
+ return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
+}
+
+static inline void make_device_entry_read(swp_entry_t *entry)
+{
+ *entry = swp_entry(SWP_DEVICE_READ, swp_offset(*entry));
+}
+
+static inline bool is_write_device_entry(swp_entry_t entry)
+{
+ return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
+}
+
+static inline struct page *device_entry_to_page(swp_entry_t entry)
+{
+ return pfn_to_page(swp_offset(entry));
+}
+
+int device_entry_fault(struct vm_area_struct *vma,
+ unsigned long addr,
+ swp_entry_t entry,
+ unsigned int flags,
+ pmd_t *pmdp);
+#else /* CONFIG_DEVICE_UNADDRESSABLE */
+static inline swp_entry_t make_device_entry(struct page *page, bool write)
+{
+ return swp_entry(0, 0);
+}
+
+static inline void make_device_entry_read(swp_entry_t *entry)
+{
+}
+
+static inline bool is_device_entry(swp_entry_t entry)
+{
+ return false;
+}
+
+static inline bool is_write_device_entry(swp_entry_t entry)
+{
+ return false;
+}
+
+static inline struct page *device_entry_to_page(swp_entry_t entry)
+{
+ return NULL;
+}
+
+static inline int device_entry_fault(struct vm_area_struct *vma,
+ unsigned long addr,
+ swp_entry_t entry,
+ unsigned int flags,
+ pmd_t *pmdp)
+{
+ return VM_FAULT_SIGBUS;
+}
+#endif /* CONFIG_DEVICE_UNADDRESSABLE */
+
#ifdef CONFIG_MIGRATION
static inline swp_entry_t make_migration_entry(struct page *page, int write)
{
diff --git a/kernel/memremap.c b/kernel/memremap.c
index 0228a01..d98ba1f 100644
--- a/kernel/memremap.c
+++ b/kernel/memremap.c
@@ -18,6 +18,8 @@
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/memory_hotplug.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>

#ifndef ioremap_cache
/* temporary while we convert existing ioremap_cache users to memremap */
@@ -194,12 +196,47 @@ void put_zone_device_page(struct page *page)
* ZONE_DEVICE page refcount should never reach 0 and never be freed
* to kernel memory allocator.
*/
- page_ref_dec(page);
+ int count = page_ref_dec_return(page);
+
+ /*
+ * If refcount is 1 then page is freed and refcount is stable as nobody
+ * holds a reference on the page.
+ */
+ if (page->pgmap->page_free && count == 1)
+ page->pgmap->page_free(page, page->pgmap->data);

put_dev_pagemap(page->pgmap);
}
EXPORT_SYMBOL(put_zone_device_page);

+#if IS_ENABLED(CONFIG_DEVICE_UNADDRESSABLE)
+int device_entry_fault(struct vm_area_struct *vma,
+ unsigned long addr,
+ swp_entry_t entry,
+ unsigned int flags,
+ pmd_t *pmdp)
+{
+ struct page *page = device_entry_to_page(entry);
+
+ /*
+ * The page_fault() callback must migrate page back to system memory
+ * so that CPU can access it. This might fail for various reasons
+ * (device issue, device was unsafely unplugged, ...). When such
+ * error conditions happen, the callback must return VM_FAULT_SIGBUS.
+ *
+ * Note that because memory cgroup charges are accounted to the device
+ * memory, this should never fail because of memory restrictions (but
+ * allocation of regular system page might still fail because we are
+ * out of memory).
+ *
+ * There is a more in-depth description of what that callback can and
+ * cannot do, in include/linux/memremap.h
+ */
+ return page->pgmap->page_fault(vma, addr, page, flags, pmdp);
+}
+EXPORT_SYMBOL(device_entry_fault);
+#endif /* CONFIG_DEVICE_UNADDRESSABLE */
+
static void pgmap_radix_release(struct resource *res)
{
resource_size_t key, align_start, align_size, align_end;
@@ -333,6 +370,9 @@ void *devm_memremap_pages(struct device *dev, struct resource *res,
pgmap->ref = ref;
pgmap->res = &page_map->res;
pgmap->type = MEMORY_DEVICE_PERSISTENT;
+ pgmap->page_fault = NULL;
+ pgmap->page_free = NULL;
+ pgmap->data = NULL;

mutex_lock(&pgmap_lock);
error = 0;
diff --git a/mm/Kconfig b/mm/Kconfig
index 9b8fccb..6208963 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -700,6 +700,15 @@ config ZONE_DEVICE

If FS_DAX is enabled, then say Y.

+config DEVICE_UNADDRESSABLE
+ bool "Unaddressable device memory (GPU memory, ...)"
+ depends on ZONE_DEVICE
+
+ help
+ Allows creation of struct pages to represent unaddressable device memory;
+ i.e., memory that is only accessible from the device (or group of
+ devices).
+
config FRAME_VECTOR
bool

diff --git a/mm/memory.c b/mm/memory.c
index 9c82e25..d68c653 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -45,6 +45,7 @@
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
+#include <linux/memremap.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
@@ -923,6 +924,35 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte = pte_swp_mksoft_dirty(pte);
set_pte_at(src_mm, addr, src_pte, pte);
}
+ } else if (is_device_entry(entry)) {
+ page = device_entry_to_page(entry);
+
+ /*
+ * Update rss count even for unaddressable pages, as
+ * they should treated just like normal pages in this
+ * respect.
+ *
+ * We will likely want to have some new rss counters
+ * for unaddressable pages, at some point. But for now
+ * keep things as they are.
+ */
+ get_page(page);
+ rss[mm_counter(page)]++;
+ page_dup_rmap(page, false);
+
+ /*
+ * We do not preserve soft-dirty information, because so
+ * far, checkpoint/restore is the only feature that
+ * requires that. And checkpoint/restore does not work
+ * when a device driver is involved (you cannot easily
+ * save and restore device driver state).
+ */
+ if (is_write_device_entry(entry) &&
+ is_cow_mapping(vm_flags)) {
+ make_device_entry_read(&entry);
+ pte = swp_entry_to_pte(entry);
+ set_pte_at(src_mm, addr, src_pte, pte);
+ }
}
goto out_set_pte;
}
@@ -1239,6 +1269,29 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
}
continue;
}
+
+ entry = pte_to_swp_entry(ptent);
+ if (non_swap_entry(entry) && is_device_entry(entry)) {
+ struct page *page = device_entry_to_page(entry);
+
+ if (unlikely(details && details->check_mapping)) {
+ /*
+ * unmap_shared_mapping_pages() wants to
+ * invalidate cache without truncating:
+ * unmap shared but keep private pages.
+ */
+ if (details->check_mapping !=
+ page_rmapping(page))
+ continue;
+ }
+
+ pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
+ rss[mm_counter(page)]--;
+ page_remove_rmap(page, false);
+ put_page(page);
+ continue;
+ }
+
/* If details->check_mapping, we leave swap entries. */
if (unlikely(details))
continue;
@@ -2686,6 +2739,14 @@ int do_swap_page(struct vm_fault *vmf)
if (is_migration_entry(entry)) {
migration_entry_wait(vma->vm_mm, vmf->pmd,
vmf->address);
+ } else if (is_device_entry(entry)) {
+ /*
+ * For un-addressable device memory we call the pgmap
+ * fault handler callback. The callback must migrate
+ * the page back to some CPU accessible page.
+ */
+ ret = device_entry_fault(vma, vmf->address, entry,
+ vmf->flags, vmf->pmd);
} else if (is_hwpoison_entry(entry)) {
ret = VM_FAULT_HWPOISON;
} else {
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index d1a4326..62856c7 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -155,7 +155,7 @@ void mem_hotplug_done(void)
/* add this memory to iomem resource */
static struct resource *register_memory_resource(u64 start, u64 size)
{
- struct resource *res;
+ struct resource *res, *conflict;
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (!res)
return ERR_PTR(-ENOMEM);
@@ -164,7 +164,13 @@ static struct resource *register_memory_resource(u64 start, u64 size)
res->start = start;
res->end = start + size - 1;
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
- if (request_resource(&iomem_resource, res) < 0) {
+ conflict = request_resource_conflict(&iomem_resource, res);
+ if (conflict) {
+ if (conflict->desc == IORES_DESC_DEVICE_MEMORY_UNADDRESSABLE) {
+ pr_debug("Device unaddressable memory block "
+ "memory hotplug at %#010llx !\n",
+ (unsigned long long)start);
+ }
pr_debug("System RAM resource %pR cannot be added\n", res);
kfree(res);
return ERR_PTR(-EEXIST);
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 3e1a901..ccb45cd 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -126,6 +126,20 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,

pages++;
}
+
+ if (is_write_device_entry(entry)) {
+ pte_t newpte;
+
+ /*
+ * We do not preserve soft-dirtiness. See
+ * copy_one_pte() for explanation.
+ */
+ make_device_entry_read(&entry);
+ newpte = swp_entry_to_pte(entry);
+ set_pte_at(mm, addr, pte, newpte);
+
+ pages++;
+ }
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
--
2.9.3