[PATCH] Documentation: seq_file: Convert seq_file to rst format
From: sayli karnik
Date: Mon Jun 05 2017 - 14:28:50 EST
Add seq_file.rst to a filesystems subsection in the docs tree.
Signed-off-by: sayli karnik <karniksayli1995@xxxxxxxxx>
---
Documentation/core-api/filesystems/seq_file.rst | 354 ++++++++++++++++++++++++
Documentation/core-api/index.rst | 1 +
2 files changed, 355 insertions(+)
create mode 100644 Documentation/core-api/filesystems/seq_file.rst
diff --git a/Documentation/core-api/filesystems/seq_file.rst b/Documentation/core-api/filesystems/seq_file.rst
new file mode 100644
index 0000000..a00004c
--- /dev/null
+++ b/Documentation/core-api/filesystems/seq_file.rst
@@ -0,0 +1,354 @@
+
+======================
+The seq_file interface
+======================
+
+ Copyright 2003 Jonathan Corbet <corbet@xxxxxxx>
+ This file is originally from the LWN.net Driver Porting series at
+ http://lwn.net/Articles/driver-porting/
+
+
+There are numerous ways for a device driver (or other kernel component) to
+provide information to the user or system administrator. One useful
+technique is the creation of virtual files, in debugfs, /proc or elsewhere.
+Virtual files can provide human-readable output that is easy to get at
+without any special utility programs; they can also make life easier for
+script writers. It is not surprising that the use of virtual files has
+grown over the years.
+
+Creating those files correctly has always been a bit of a challenge,
+however. It is not that hard to make a virtual file which returns a
+string. But life gets trickier if the output is long - anything greater
+than an application is likely to read in a single operation. Handling
+multiple reads (and seeks) requires careful attention to the reader's
+position within the virtual file - that position is, likely as not, in the
+middle of a line of output. The kernel has traditionally had a number of
+implementations that got this wrong.
+
+The 2.6 kernel contains a set of functions (implemented by Alexander Viro)
+which are designed to make it easy for virtual file creators to get it
+right.
+
+The ``seq_file`` interface is available via ``<linux/seq_file.h>``. There are
+three aspects to seq_file:
+
+ * An iterator interface which lets a virtual file implementation
+ step through the objects it is presenting.
+
+ * Some utility functions for formatting objects for output without
+ needing to worry about things like output buffers.
+
+ * A set of canned ``file_operations`` which implement most operations on
+ the virtual file.
+
+We'll look at the seq_file interface via an extremely simple example: a
+loadable module which creates a file called /proc/sequence. The file, when
+read, simply produces a set of increasing integer values, one per line. The
+sequence will continue until the user loses patience and finds something
+better to do. The file is seekable, in that one can do something like the
+following::
+
+ dd if=/proc/sequence of=out1 count=1
+ dd if=/proc/sequence skip=1 of=out2 count=1
+
+Then concatenate the output files out1 and out2 and get the right
+result. Yes, it is a thoroughly useless module, but the point is to show
+how the mechanism works without getting lost in other details. (Those
+wanting to see the full source for this module can find it at
+http://lwn.net/Articles/22359/).
+
+Deprecated ``create_proc_entry``
+--------------------------------
+
+Note that the above article uses create_proc_entry which was removed in
+kernel 3.10. Current versions require the following update::
+
+ - entry = create_proc_entry("sequence", 0, NULL);
+ - if (entry)
+ - entry->proc_fops = &ct_file_ops;
+ + entry = proc_create("sequence", 0, NULL, &ct_file_ops);
+
+The iterator interface
+----------------------
+
+Modules implementing a virtual file with seq_file must implement a simple
+iterator object that allows stepping through the data of interest.
+Iterators must be able to move to a specific position - like the file they
+implement - but the interpretation of that position is up to the iterator
+itself. A seq_file implementation that is formatting firewall rules, for
+example, could interpret position N as the Nth rule in the chain.
+Positioning can thus be done in whatever way makes the most sense for the
+generator of the data, which need not be aware of how a position translates
+to an offset in the virtual file. The one obvious exception is that a
+position of zero should indicate the beginning of the file.
+
+The /proc/sequence iterator just uses the count of the next number it
+will output as its position.
+
+Four functions must be implemented to make the iterator work. The first,
+called :c:func:`ct_seq_start()` takes a position as an argument and returns an
+iterator which will start reading at that position. For our simple sequence example,
+the start() function looks like::
+
+ static void *ct_seq_start(struct seq_file *s, loff_t *pos)
+ {
+ loff_t *spos = kmalloc(sizeof(loff_t), GFP_KERNEL);
+ if (! spos)
+ return NULL;
+ *spos = *pos;
+ return spos;
+ }
+
+The entire data structure for this iterator is a single :c:type:`loff_t` value
+holding the current position. There is no upper bound for the sequence
+iterator, but that will not be the case for most other seq_file
+implementations; in most cases the start() function should check for a
+"past end of file" condition and return NULL if need be.
+
+For more complicated applications, the private field of the seq_file
+structure can be used. There is also a special value which can be returned
+by the start() function called :c:macro:`SEQ_START_TOKEN`; it can be used if you
+wish to instruct your :c:func:`ct_seq_show()` function (described below) to print a
+header at the top of the output. SEQ_START_TOKEN should only be used if the offset
+is zero, however.
+
+The next function to implement is called, amazingly, :c:func:`ct_seq_next()`;
+its job is to move the iterator forward to the next position in the sequence. The
+example module can simply increment the position by one; more useful
+modules will do what is needed to step through some data structure. The
+next() function returns a new iterator, or NULL if the sequence is
+complete. Here's the example version::
+
+ static void *ct_seq_next(struct seq_file *s, void *v, loff_t *pos)
+ {
+ loff_t *spos = v;
+ *pos = ++*spos;
+ return spos;
+ }
+
+The :c:func:`ct_seq_stop()` function is called when iteration is complete; its
+job, of course, is to clean up. If dynamic memory is allocated for the iterator,
+stop() is the place to free it.::
+
+ static void ct_seq_stop(struct seq_file *s, void *v)
+ {
+ kfree(v);
+ }
+
+Finally, the :c:func:`ct_seq_show()` function should format the object currently
+pointed to by the iterator for output. The example module's show() function is::
+
+ static int ct_seq_show(struct seq_file *s, void *v)
+ {
+ loff_t *spos = v;
+ seq_printf(s, "%lld\n", (long long)*spos);
+ return 0;
+ }
+
+If all is well, the show() function should return zero. A negative error
+code in the usual manner indicates that something went wrong; it will be
+passed back to user space. This function can also return :c:type:`SEQ_SKIP`, which
+causes the current item to be skipped; if the show() function has already
+generated output before returning SEQ_SKIP, that output will be dropped.
+
+We will look at :c:func:`seq_printf()` in a moment. But first, the definition of the
+seq_file iterator is finished by creating a :c:type:`seq_operations` structure with
+the four functions we have just defined::
+
+ static const struct seq_operations ct_seq_ops = {
+ .start = ct_seq_start,
+ .next = ct_seq_next,
+ .stop = ct_seq_stop,
+ .show = ct_seq_show
+ };
+
+This structure will be needed to tie our iterator to the /proc file in
+a little bit.
+
+It's worth noting that the iterator value returned by start() and
+manipulated by the other functions is considered to be completely opaque by
+the seq_file code. It can thus be anything that is useful in stepping
+through the data to be output. Counters can be useful, but it could also be
+a direct pointer into an array or linked list. Anything goes, as long as
+the programmer is aware that things can happen between calls to the
+iterator function. However, the seq_file code (by design) will not sleep
+between the calls to start() and stop(), so holding a lock during that time
+is a reasonable thing to do. The seq_file code will also avoid taking any
+other locks while the iterator is active.
+
+
+Formatted output
+----------------
+
+The seq_file code manages positioning within the output created by the
+iterator and getting it into the user's buffer. But, for that to work, that
+output must be passed to the seq_file code. Some utility functions have
+been defined which make this task easy.
+
+Most code will simply use :c:func:`seq_printf()`, which works pretty much like
+printk(), but which requires the seq_file pointer as an argument.
+
+For straight character output, the following functions may be used::
+
+ seq_putc(struct seq_file *m, char c);
+ seq_puts(struct seq_file *m, const char *s);
+ seq_escape(struct seq_file *m, const char *s, const char *esc);
+
+The first two output a single character and a string, just like one would
+expect. :c:func:`seq_escape()` is like :c:func:`seq_puts()`, except that any
+character in s which is in the string esc will be represented in octal form in
+the output.
+
+There are also a pair of functions for printing filenames::
+
+ int seq_path(struct seq_file *m, const struct path *path,
+ const char *esc);
+ int seq_path_root(struct seq_file *m, const struct path *path,
+ const struct path *root, const char *esc)
+
+Here, path indicates the file of interest, and esc is a set of characters
+which should be escaped in the output. A call to :c:func:`seq_path()` will
+output the path relative to the current process's filesystem root. If a
+different root is desired, it can be used with :c:func:`seq_path_root()`. If
+it turns out that path cannot be reached from root, seq_path_root() returns
+:c:macro:`SEQ_SKIP`.
+
+A function producing complicated output may want to check
+ bool seq_has_overflowed(struct seq_file *m);
+and avoid further seq_<output> calls if true is returned.
+
+A true return from :c:func:`seq_has_overflowed()` means that the seq_file buffer
+will be discarded and the seq_show function will attempt to allocate a larger
+buffer and retry printing.
+
+
+Making it all work
+------------------
+
+So far, we have a nice set of functions which can produce output within the
+seq_file system, but we have not yet turned them into a file that a user
+can see. Creating a file within the kernel requires, of course, the
+creation of a set of file_operations which implement the operations on that
+file. The seq_file interface provides a set of canned operations which do
+most of the work. The virtual file author still must implement the :c:func:`ct_open()`
+method, however, to hook everything up. The open function is often a single
+line, as in the example module::
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ return seq_open(file, &ct_seq_ops);
+ }
+
+Here, the call to seq_open() takes the seq_operations structure we created
+before, and gets set up to iterate through the virtual file.
+
+On a successful open, seq_open() stores the struct seq_file pointer in
+``file->private_data``. If you have an application where the same iterator can
+be used for more than one file, you can store an arbitrary pointer in the
+private field of the seq_file structure; that value can then be retrieved
+by the iterator functions.
+
+There is also a wrapper function to seq_open() called :c:func:`seq_open_private()`.
+It kmallocs a zero filled block of memory and stores a pointer to it in the
+private field of the seq_file structure, returning 0 on success. The
+block size is specified in a third parameter to the function, e.g.::
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ return seq_open_private(file, &ct_seq_ops,
+ sizeof(struct mystruct));
+ }
+
+There is also a variant function, :c:func:`__seq_open_private()`, which is
+functionally identical except that, if successful, it returns the pointer to the
+allocated memory block, allowing further initialisation e.g.::
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ struct mystruct *p =
+ __seq_open_private(file, &ct_seq_ops, sizeof(*p));
+
+ if (!p)
+ return -ENOMEM;
+
+ p->foo = bar; /* initialize my stuff */
+ ...
+ p->baz = true;
+
+ return 0;
+ }
+
+A corresponding close function, :c:func:`seq_release_private()` is available
+which frees the memory allocated in the corresponding open.
+
+The other operations of interest - read(), llseek(), and release() - are
+all implemented by the seq_file code itself. So a virtual file's
+file_operations structure will look like::
+
+ static const struct file_operations ct_file_ops = {
+ .owner = THIS_MODULE,
+ .open = ct_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release
+ };
+
+There is also a seq_release_private() which passes the contents of the
+seq_file private field to kfree() before releasing the structure.
+
+The final step is the creation of the /proc file itself. In the example
+code, that is done in the initialization code in the usual way::
+
+ static int ct_init(void)
+ {
+ struct proc_dir_entry *entry;
+
+ proc_create("sequence", 0, NULL, &ct_file_ops);
+ return 0;
+ }
+
+ module_init(ct_init);
+
+And that is pretty much it.
+
+
+seq_list
+--------
+
+If your file will be iterating through a linked list, you may find these
+routines useful::
+
+ struct list_head *seq_list_start(struct list_head *head,
+ loff_t pos);
+ struct list_head *seq_list_start_head(struct list_head *head,
+ loff_t pos);
+ struct list_head *seq_list_next(void *v, struct list_head *head,
+ loff_t *ppos);
+
+These helpers will interpret pos as a position within the list and iterate
+accordingly. Your start() and next() functions need only invoke the
+seq_list_* helpers with a pointer to the appropriate :c:func:`list_head` structure.
+
+
+The extra-simple version
+------------------------
+
+For extremely simple virtual files, there is an even easier interface. A
+module can define only the show() function, which should create all the
+output that the virtual file will contain. The file's open() method then
+calls::
+
+ int single_open(struct file *file,
+ int (*show)(struct seq_file *m, void *p),
+ void *data);
+
+When output time comes, the show() function will be called once. The data
+value given to :c:func:`single_open()` can be found in the private field of the
+seq_file structure. When using single_open(), the programmer should use
+single_release() instead of seq_release() in the file_operations structure
+to avoid a memory leak.
+
+Functions
+---------
+
+.. kernel-doc:: include/linux/seq_file.h
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
index 62abd36..9844ae0 100644
--- a/Documentation/core-api/index.rst
+++ b/Documentation/core-api/index.rst
@@ -19,6 +19,7 @@ Core utilities
workqueue
genericirq
flexible-arrays
+ filesystems/seq_file
Interfaces for kernel debugging
===============================
--
2.7.4