[PATCH v2 1/2] mm, oom: do not rely on TIF_MEMDIE for memory reserves access

From: Michal Hocko
Date: Wed Aug 02 2017 - 04:29:24 EST


With the follow up changes based on Tetsuo review. I have dropped
Roman's Tested-by because at least the allocation exit for oom victim
behavior has changed.
---
commit b1cfab26a98d48d69dc106d0e0ab616728b04992
Author: Michal Hocko <mhocko@xxxxxxxx>
Date: Wed Jul 26 16:38:40 2017 +0200

mm, oom: do not rely on TIF_MEMDIE for memory reserves access

For ages we have been relying on TIF_MEMDIE thread flag to mark OOM
victims and then, among other things, to give these threads full
access to memory reserves. There are few shortcomings of this
implementation, though.

First of all and the most serious one is that the full access to memory
reserves is quite dangerous because we leave no safety room for the
system to operate and potentially do last emergency steps to move on.

Secondly this flag is per task_struct while the OOM killer operates
on mm_struct granularity so all processes sharing the given mm are
killed. Giving the full access to all these task_structs could lead to
a quick memory reserves depletion. We have tried to reduce this risk by
giving TIF_MEMDIE only to the main thread and the currently allocating
task but that doesn't really solve this problem while it surely opens up
a room for corner cases - e.g. GFP_NO{FS,IO} requests might loop inside
the allocator without access to memory reserves because a particular
thread was not the group leader.

Now that we have the oom reaper and that all oom victims are reapable
after 1b51e65eab64 ("oom, oom_reaper: allow to reap mm shared by the
kthreads") we can be more conservative and grant only partial access to
memory reserves because there are reasonable chances of the parallel
memory freeing. We still want some access to reserves because we do not
want other consumers to eat up the victim's freed memory. oom victims
will still contend with __GFP_HIGH users but those shouldn't be so
aggressive to starve oom victims completely.

Introduce ALLOC_OOM flag and give all tsk_is_oom_victim tasks access to
the half of the reserves. This makes the access to reserves independent
on which task has passed through mark_oom_victim. Also drop any
usage of TIF_MEMDIE from the page allocator proper and replace it by
tsk_is_oom_victim as well which will make page_alloc.c completely
TIF_MEMDIE free finally.

CONFIG_MMU=n doesn't have oom reaper so let's stick to the original
ALLOC_NO_WATERMARKS approach.

There is a demand to make the oom killer memcg aware which will imply
many tasks killed at once. This change will allow such a usecase without
worrying about complete memory reserves depletion.

Changes since v1
- do not play tricks with nommu and grant access to memory reserves as
long as TIF_MEMDIE is set
- break out from allocation properly for oom victims as per Tetsuo
- distinguish oom victims from other consumers of memory reserves in
__gfp_pfmemalloc_flags - per Tetsuo

Signed-off-by: Michal Hocko <mhocko@xxxxxxxx>

diff --git a/mm/internal.h b/mm/internal.h
index 24d88f084705..1ebcb1ed01b5 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -480,6 +480,17 @@ unsigned long reclaim_clean_pages_from_list(struct zone *zone,
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)

+/*
+ * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
+ * cannot assume a reduced access to memory reserves is sufficient for
+ * !MMU
+ */
+#ifdef CONFIG_MMU
+#define ALLOC_OOM 0x08
+#else
+#define ALLOC_OOM ALLOC_NO_WATERMARKS
+#endif
+
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 9e8b4f030c1c..c9f3569a76c7 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -824,7 +824,8 @@ static void oom_kill_process(struct oom_control *oc, const char *message)

/*
* If the task is already exiting, don't alarm the sysadmin or kill
- * its children or threads, just set TIF_MEMDIE so it can die quickly
+ * its children or threads, just give it access to memory reserves
+ * so it can die quickly
*/
task_lock(p);
if (task_will_free_mem(p)) {
@@ -889,9 +890,9 @@ static void oom_kill_process(struct oom_control *oc, const char *message)
count_memcg_event_mm(mm, OOM_KILL);

/*
- * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
- * the OOM victim from depleting the memory reserves from the user
- * space under its control.
+ * We should send SIGKILL before granting access to memory reserves
+ * in order to prevent the OOM victim from depleting the memory
+ * reserves from the user space under its control.
*/
do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
mark_oom_victim(victim);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 80e4adb4c360..7ae0f6d45614 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -2930,7 +2930,7 @@ bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
{
long min = mark;
int o;
- const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
+ const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));

/* free_pages may go negative - that's OK */
free_pages -= (1 << order) - 1;
@@ -2943,10 +2943,19 @@ bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
* the high-atomic reserves. This will over-estimate the size of the
* atomic reserve but it avoids a search.
*/
- if (likely(!alloc_harder))
+ if (likely(!alloc_harder)) {
free_pages -= z->nr_reserved_highatomic;
- else
- min -= min / 4;
+ } else {
+ /*
+ * OOM victims can try even harder than normal ALLOC_HARDER
+ * users
+ */
+ if (alloc_flags & ALLOC_OOM)
+ min -= min / 2;
+ else
+ min -= min / 4;
+ }
+

#ifdef CONFIG_CMA
/* If allocation can't use CMA areas don't use free CMA pages */
@@ -3184,7 +3193,7 @@ static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
* of allowed nodes.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
- if (test_thread_flag(TIF_MEMDIE) ||
+ if (tsk_is_oom_victim(current) ||
(current->flags & (PF_MEMALLOC | PF_EXITING)))
filter &= ~SHOW_MEM_FILTER_NODES;
if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
@@ -3603,21 +3612,46 @@ gfp_to_alloc_flags(gfp_t gfp_mask)
return alloc_flags;
}

-bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
+static bool oom_reserves_allowed(struct task_struct *tsk)
{
- if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
+ if (!tsk_is_oom_victim(tsk))
+ return false;
+
+ /*
+ * !MMU doesn't have oom reaper so give access to memory reserves
+ * only to the thread with TIF_MEMDIE set
+ */
+ if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
return false;

+ return true;
+}
+
+/*
+ * Distinguish requests which really need access to full memory
+ * reserves from oom victims which can live with a portion of it
+ */
+static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
+{
+ if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
+ return 0;
if (gfp_mask & __GFP_MEMALLOC)
- return true;
+ return ALLOC_NO_WATERMARKS;
if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
- return true;
- if (!in_interrupt() &&
- ((current->flags & PF_MEMALLOC) ||
- unlikely(test_thread_flag(TIF_MEMDIE))))
- return true;
+ return ALLOC_NO_WATERMARKS;
+ if (!in_interrupt()) {
+ if (current->flags & PF_MEMALLOC)
+ return ALLOC_NO_WATERMARKS;
+ else if (oom_reserves_allowed(current))
+ return ALLOC_OOM;
+ }

- return false;
+ return 0;
+}
+
+bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
+{
+ return __gfp_pfmemalloc_flags(gfp_mask) > 0;
}

/*
@@ -3770,6 +3804,7 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
unsigned long alloc_start = jiffies;
unsigned int stall_timeout = 10 * HZ;
unsigned int cpuset_mems_cookie;
+ int reserves;

/*
* In the slowpath, we sanity check order to avoid ever trying to
@@ -3875,15 +3910,16 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
wake_all_kswapds(order, ac);

- if (gfp_pfmemalloc_allowed(gfp_mask))
- alloc_flags = ALLOC_NO_WATERMARKS;
+ reserves = __gfp_pfmemalloc_flags(gfp_mask);
+ if (reserves)
+ alloc_flags = reserves;

/*
* Reset the zonelist iterators if memory policies can be ignored.
* These allocations are high priority and system rather than user
* orientated.
*/
- if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
+ if (!(alloc_flags & ALLOC_CPUSET) || reserves) {
ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
ac->high_zoneidx, ac->nodemask);
@@ -3960,8 +3996,8 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
goto got_pg;

/* Avoid allocations with no watermarks from looping endlessly */
- if (test_thread_flag(TIF_MEMDIE) &&
- (alloc_flags == ALLOC_NO_WATERMARKS ||
+ if (tsk_is_oom_victim(current) &&
+ (alloc_flags == ALLOC_OOM ||
(gfp_mask & __GFP_NOMEMALLOC)))
goto nopage;

--
Michal Hocko
SUSE Labs