Re: random.c: LFSR polynomials are not irreducible/primitive
From: Theodore Ts'o
Date: Tue Aug 15 2017 - 11:12:34 EST
On Tue, Aug 15, 2017 at 10:45:17AM +0200, Stephan Mueller wrote:
> Am Dienstag, 15. August 2017, 00:21:05 CEST schrieb Theodore Ts'o:
>
> Hi Theodore,
>
> > Have you looked at section 3.1.1 of the above cited paper?
> >
> > http://eprint.iacr.org/2012/251.pdf
>
> Thanks for the hint, but that does not seem to solve the mystery either.
>
> When I use magma with GF(2^32), I see that all polynomials are neither
> primitive nor irreducible:
I believe that assertion being made in that section is not that
modified P(X) is primitive, but that Q(X) is primitive
Q(X) = Î**3 (P(X) â 1) + 1
Where multiplication by Î**3 is done by a twist-table lookup.
Also of interest might be this paper, which I believe totally missed
when the authors made their proposal on the linux-crypto list in
September 2016 (I've added them to the cc list):
https://eprint.iacr.org/2017/726.pdf
The date on the paper is from just 3 weeks ago or so, and it was just
luck that I found it when Googling to find some other references in
response to your question. (Thanks for raising the question, BTW).
I don't have a huge amount invested in any of the mixing schemes,
because in practice we are *not* feeding large number of zero inputs
into mixing function. So while it is good to make the mixing function
to have as large a cyclic length as possible, it seems unlikely that
the weaknesses of the current polynomials can be leveraged into a
practical attack.
Stephan, if you have any comments on the proposal made by David
Fontaine and Olivier Vivolo, I'd appreciate hearing them!
- Ted