[PATCH 4.14 12/38] btrfs: fix refcount_t usage when deleting btrfs_delayed_nodes
From: Greg Kroah-Hartman
Date: Mon Jan 08 2018 - 07:59:53 EST
4.14-stable review patch. If anyone has any objections, please let me know.
------------------
From: Chris Mason <clm@xxxxxx>
commit ec35e48b286959991cdbb886f1bdeda4575c80b4 upstream.
refcounts have a generic implementation and an asm optimized one. The
generic version has extra debugging to make sure that once a refcount
goes to zero, refcount_inc won't increase it.
The btrfs delayed inode code wasn't expecting this, and we're tripping
over the warnings when the generic refcounts are used. We ended up with
this race:
Process A Process B
btrfs_get_delayed_node()
spin_lock(root->inode_lock)
radix_tree_lookup()
__btrfs_release_delayed_node()
refcount_dec_and_test(&delayed_node->refs)
our refcount is now zero
refcount_add(2) <---
warning here, refcount
unchanged
spin_lock(root->inode_lock)
radix_tree_delete()
With the generic refcounts, we actually warn again when process B above
tries to release his refcount because refcount_add() turned into a
no-op.
We saw this in production on older kernels without the asm optimized
refcounts.
The fix used here is to use refcount_inc_not_zero() to detect when the
object is in the middle of being freed and return NULL. This is almost
always the right answer anyway, since we usually end up pitching the
delayed_node if it didn't have fresh data in it.
This also changes __btrfs_release_delayed_node() to remove the extra
check for zero refcounts before radix tree deletion.
btrfs_get_delayed_node() was the only path that was allowing refcounts
to go from zero to one.
Fixes: 6de5f18e7b0da ("btrfs: fix refcount_t usage when deleting btrfs_delayed_node")
Signed-off-by: Chris Mason <clm@xxxxxx>
Reviewed-by: Liu Bo <bo.li.liu@xxxxxxxxxx>
Signed-off-by: David Sterba <dsterba@xxxxxxxx>
Signed-off-by: Greg Kroah-Hartman <gregkh@xxxxxxxxxxxxxxxxxxx>
---
fs/btrfs/delayed-inode.c | 45 ++++++++++++++++++++++++++++++++++-----------
1 file changed, 34 insertions(+), 11 deletions(-)
--- a/fs/btrfs/delayed-inode.c
+++ b/fs/btrfs/delayed-inode.c
@@ -87,6 +87,7 @@ static struct btrfs_delayed_node *btrfs_
spin_lock(&root->inode_lock);
node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
+
if (node) {
if (btrfs_inode->delayed_node) {
refcount_inc(&node->refs); /* can be accessed */
@@ -94,9 +95,30 @@ static struct btrfs_delayed_node *btrfs_
spin_unlock(&root->inode_lock);
return node;
}
- btrfs_inode->delayed_node = node;
- /* can be accessed and cached in the inode */
- refcount_add(2, &node->refs);
+
+ /*
+ * It's possible that we're racing into the middle of removing
+ * this node from the radix tree. In this case, the refcount
+ * was zero and it should never go back to one. Just return
+ * NULL like it was never in the radix at all; our release
+ * function is in the process of removing it.
+ *
+ * Some implementations of refcount_inc refuse to bump the
+ * refcount once it has hit zero. If we don't do this dance
+ * here, refcount_inc() may decide to just WARN_ONCE() instead
+ * of actually bumping the refcount.
+ *
+ * If this node is properly in the radix, we want to bump the
+ * refcount twice, once for the inode and once for this get
+ * operation.
+ */
+ if (refcount_inc_not_zero(&node->refs)) {
+ refcount_inc(&node->refs);
+ btrfs_inode->delayed_node = node;
+ } else {
+ node = NULL;
+ }
+
spin_unlock(&root->inode_lock);
return node;
}
@@ -254,17 +276,18 @@ static void __btrfs_release_delayed_node
mutex_unlock(&delayed_node->mutex);
if (refcount_dec_and_test(&delayed_node->refs)) {
- bool free = false;
struct btrfs_root *root = delayed_node->root;
+
spin_lock(&root->inode_lock);
- if (refcount_read(&delayed_node->refs) == 0) {
- radix_tree_delete(&root->delayed_nodes_tree,
- delayed_node->inode_id);
- free = true;
- }
+ /*
+ * Once our refcount goes to zero, nobody is allowed to bump it
+ * back up. We can delete it now.
+ */
+ ASSERT(refcount_read(&delayed_node->refs) == 0);
+ radix_tree_delete(&root->delayed_nodes_tree,
+ delayed_node->inode_id);
spin_unlock(&root->inode_lock);
- if (free)
- kmem_cache_free(delayed_node_cache, delayed_node);
+ kmem_cache_free(delayed_node_cache, delayed_node);
}
}