[PATCH 4/5] crypto: Add IV generation templates

From: Xiongfeng Wang
Date: Wed Jul 18 2018 - 03:42:50 EST


Currently, the IV generation algorithms are implemented in dm-crypt.c.
This patch implement these algorithms as template ciphers, so that
dm-crypt layer can be simplified, and also these algorithms can be
implemented in hardware for performance.

Synchronous crypto requests to encrypt/decrypt a sector are processed
sequentially. Asynchronous requests if processed in paralled, are freed
in the async callback.

Interface to the crypto layer - include/crypto/geniv.h

This patch is based on the patchset originally started by
Binoy Jayan <binoy.jayan@xxxxxxxxxx>
( crypto: Add IV generation algorithms
https://patchwork.kernel.org/patch/9803469/ )

Signed-off-by: Binoy Jayan <binoy.jayan@xxxxxxxxxx>
Signed-off-by: Xiongfeng Wang <wangxiongfeng2@xxxxxxxxxx>
---
crypto/Kconfig | 7 +
crypto/Makefile | 1 +
crypto/geniv.c | 2240 ++++++++++++++++++++++++++++++++++++++++++++++++
include/crypto/geniv.h | 47 +
4 files changed, 2295 insertions(+)
create mode 100644 crypto/geniv.c
create mode 100644 include/crypto/geniv.h

diff --git a/crypto/Kconfig b/crypto/Kconfig
index f3e40ac..98f025a 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -257,6 +257,13 @@ config CRYPTO_GLUE_HELPER_X86
config CRYPTO_ENGINE
tristate

+config CRYPTO_GENIV
+ tristate "IV Generator Template"
+ select CRYPTO_AEAD
+ select CRYPTO_BLKCIPHER
+ help
+ Support for IV generator template, so that dm-crypt can rely on it.
+
comment "Authenticated Encryption with Associated Data"

config CRYPTO_CCM
diff --git a/crypto/Makefile b/crypto/Makefile
index 6d1d40e..1077d2f 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -23,6 +23,7 @@ crypto_blkcipher-y += skcipher.o
obj-$(CONFIG_CRYPTO_BLKCIPHER2) += crypto_blkcipher.o
obj-$(CONFIG_CRYPTO_SEQIV) += seqiv.o
obj-$(CONFIG_CRYPTO_ECHAINIV) += echainiv.o
+obj-$(CONFIG_CRYPTO_GENIV) += geniv.o

crypto_hash-y += ahash.o
crypto_hash-y += shash.o
diff --git a/crypto/geniv.c b/crypto/geniv.c
new file mode 100644
index 0000000..55d1212
--- /dev/null
+++ b/crypto/geniv.c
@@ -0,0 +1,2240 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * geniv.c - crypto template for generating IV
+ *
+ * Copyright (C) 2018, Linaro
+ *
+ * This file adds a crypto template to generate IV, so the dm-crypt can rely
+ * on it and remove the existing generating IV code.
+ */
+
+#include <linux/completion.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/key.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/mempool.h>
+#include <linux/slab.h>
+#include <linux/crypto.h>
+#include <linux/atomic.h>
+#include <linux/scatterlist.h>
+#include <linux/ctype.h>
+#include <asm/page.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include <crypto/md5.h>
+#include <crypto/algapi.h>
+#include <crypto/skcipher.h>
+#include <crypto/aead.h>
+#include <crypto/authenc.h>
+#include <crypto/geniv.h>
+#include <crypto/internal/aead.h>
+#include <crypto/internal/skcipher.h>
+#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
+#include <keys/user-type.h>
+#include <linux/backing-dev.h>
+#include <linux/device-mapper.h>
+#include <linux/log2.h>
+
+#define DM_MSG_PREFIX "crypt"
+#define MIN_IOS 64
+#define IV_TYPE_NUM 8
+#define SECTOR_MASK ((1 << SECTOR_SHIFT) - 1)
+
+struct geniv_ctx;
+struct geniv_req_ctx;
+
+/* Sub request for each of the skcipher_request's for a segment */
+struct geniv_subreq {
+ struct scatterlist sg_in[4];
+ struct scatterlist sg_out[4];
+ sector_t iv_sector;
+ struct geniv_req_ctx *rctx;
+ union {
+ struct skcipher_request req;
+ struct aead_request req_aead;
+ } r CRYPTO_MINALIGN_ATTR;
+};
+
+/* used to iter the src scatterlist of the input parent request */
+struct scatterlist_iter {
+ /* current segment to be processed */
+ unsigned int seg_no;
+ /* bytes had been processed in current segment */
+ unsigned int done;
+ /* bytes to be processed in the next request */
+ unsigned int len;
+};
+
+/* contex of the input parent request */
+struct geniv_req_ctx {
+ struct geniv_subreq *subreq;
+ bool is_write;
+ bool is_aead_request;
+ sector_t cc_sector;
+ /* array size of src scatterlist of parent request */
+ unsigned int nents;
+ struct scatterlist_iter iter;
+ struct completion restart;
+ atomic_t req_pending;
+ u8 *integrity_metadata;
+ /* point to the input parent request */
+ union {
+ struct skcipher_request *req;
+ struct aead_request *req_aead;
+ } r;
+};
+
+struct crypt_iv_operations {
+ int (*ctr)(struct geniv_ctx *ctx);
+ void (*dtr)(struct geniv_ctx *ctx);
+ int (*init)(struct geniv_ctx *ctx);
+ int (*wipe)(struct geniv_ctx *ctx);
+ int (*generator)(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv);
+ int (*post)(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv);
+};
+
+struct geniv_essiv_private {
+ struct crypto_ahash *hash_tfm;
+ u8 *salt;
+};
+
+struct geniv_benbi_private {
+ int shift;
+};
+
+#define LMK_SEED_SIZE 64 /* hash + 0 */
+struct geniv_lmk_private {
+ struct crypto_shash *hash_tfm;
+ u8 *seed;
+};
+
+#define TCW_WHITENING_SIZE 16
+struct geniv_tcw_private {
+ struct crypto_shash *crc32_tfm;
+ u8 *iv_seed;
+ u8 *whitening;
+};
+
+/* context of geniv tfm */
+struct geniv_ctx {
+ unsigned int tfms_count;
+ union {
+ struct crypto_skcipher *tfm;
+ struct crypto_aead *tfm_aead;
+ } tfm_child;
+ union {
+ struct crypto_skcipher **tfms;
+ struct crypto_aead **tfms_aead;
+ } tfms;
+
+ char *ivmode;
+ unsigned int iv_size;
+ unsigned int iv_start;
+ unsigned int rctx_start;
+ sector_t iv_offset;
+ unsigned short int sector_size;
+ unsigned char sector_shift;
+ char *algname;
+ char *ivopts;
+ char *cipher;
+ char *ciphermode;
+ unsigned long cipher_flags;
+
+ const struct crypt_iv_operations *iv_gen_ops;
+ union {
+ struct geniv_essiv_private essiv;
+ struct geniv_benbi_private benbi;
+ struct geniv_lmk_private lmk;
+ struct geniv_tcw_private tcw;
+ } iv_gen_private;
+ void *iv_private;
+
+ mempool_t *subreq_pool;
+ unsigned int key_size;
+ unsigned int key_parts; /* independent parts in key buffer */
+ unsigned int key_extra_size; /* additional keys length */
+ unsigned int key_mac_size;
+
+ unsigned int integrity_tag_size;
+ unsigned int integrity_iv_size;
+ unsigned int on_disk_tag_size;
+
+ char *msg;
+ u8 *authenc_key; /* space for keys in authenc() format (if used) */
+ u8 *key;
+};
+
+static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
+ struct scatterlist *sg);
+
+static bool geniv_integrity_aead(struct geniv_ctx *ctx)
+{
+ return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &ctx->cipher_flags);
+}
+
+static bool geniv_integrity_hmac(struct geniv_ctx *ctx)
+{
+ return geniv_integrity_aead(ctx) && ctx->key_mac_size;
+}
+
+static struct geniv_req_ctx *geniv_skcipher_req_ctx(struct skcipher_request *req)
+{
+ return (void *)PTR_ALIGN((u8 *)skcipher_request_ctx(req), __alignof__(struct geniv_req_ctx));
+}
+
+static struct geniv_req_ctx *geniv_aead_req_ctx(struct aead_request *req)
+{
+ return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), __alignof__(struct geniv_req_ctx));
+}
+
+static u8 *iv_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ if (geniv_integrity_aead(ctx))
+ return (u8 *)ALIGN((unsigned long)((char *)subreq + ctx->iv_start),
+ crypto_aead_alignmask(crypto_aead_reqtfm(subreq->rctx->r.req_aead)) + 1);
+ else
+ return (u8 *)ALIGN((unsigned long)((char *)subreq + ctx->iv_start),
+ crypto_skcipher_alignmask(crypto_skcipher_reqtfm(subreq->rctx->r.req)) + 1);
+}
+
+/* Get sg containing data */
+static struct scatterlist *crypt_get_sg_data(struct geniv_ctx *ctx,
+ struct scatterlist *sg)
+{
+ if (unlikely(geniv_integrity_aead(ctx)))
+ return &sg[2];
+
+ return sg;
+}
+
+/*
+ * Different IV generation algorithms:
+ *
+ * plain: the initial vector is the 32-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64: the initial vector is the 64-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64be: the initial vector is the 64-bit big-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * essiv: "encrypted sector|salt initial vector", the sector number is
+ * encrypted with the bulk cipher using a salt as key. The salt
+ * should be derived from the bulk cipher's key via hashing.
+ *
+ * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
+ * (needed for LRW-32-AES and possible other narrow block modes)
+ *
+ * null: the initial vector is always zero. Provides compatibility with
+ * obsolete loop_fish2 devices. Do not use for new devices.
+ *
+ * lmk: Compatible implementation of the block chaining mode used
+ * by the Loop-AES block device encryption system
+ * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from the sector number, the data and
+ * optionally extra IV seed.
+ * This means that after decryption the first block
+ * of sector must be tweaked according to decrypted data.
+ * Loop-AES can use three encryption schemes:
+ * version 1: is plain aes-cbc mode
+ * version 2: uses 64 multikey scheme with lmk IV generator
+ * version 3: the same as version 2 with additional IV seed
+ * (it uses 65 keys, last key is used as IV seed)
+ *
+ * tcw: Compatible implementation of the block chaining mode used
+ * by the TrueCrypt device encryption system (prior to version 4.1).
+ * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from initial key and the sector number.
+ * In addition, whitening value is applied on every sector, whitening
+ * is calculated from initial key, sector number and mixed using CRC32.
+ * Note that this encryption scheme is vulnerable to watermarking attacks
+ * and should be used for old compatible containers access only.
+ *
+ * plumb: unimplemented, see:
+ * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
+ */
+
+static int crypt_iv_plain_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ memset(iv, 0, ctx->iv_size);
+ *(__le32 *)iv = cpu_to_le32(subreq->iv_sector & 0xffffffff);
+
+ return 0;
+}
+
+static int crypt_iv_plain64_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ memset(iv, 0, ctx->iv_size);
+ *(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_plain64be_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ memset(iv, 0, ctx->iv_size);
+ /* iv_size is at least of size u64; usually it is 16 bytes */
+ *(__be64 *)&iv[ctx->iv_size - sizeof(u64)] = cpu_to_be64(subreq->iv_sector);
+
+ return 0;
+}
+
+/* Initialise ESSIV - compute salt but no local memory allocations */
+static int crypt_iv_essiv_init(struct geniv_ctx *ctx)
+{
+ struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
+ AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
+ struct scatterlist sg;
+ struct crypto_cipher *essiv_tfm;
+ int err;
+
+ sg_init_one(&sg, ctx->key, ctx->key_size);
+ ahash_request_set_tfm(req, essiv->hash_tfm);
+ ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
+ ahash_request_set_crypt(req, &sg, essiv->salt, ctx->key_size);
+
+ err = crypto_ahash_digest(req);
+ ahash_request_zero(req);
+ if (err)
+ return err;
+
+ essiv_tfm = ctx->iv_private;
+
+ return crypto_cipher_setkey(essiv_tfm, essiv->salt,
+ crypto_ahash_digestsize(essiv->hash_tfm));
+}
+
+/* Wipe salt and reset key derived from volume key */
+static int crypt_iv_essiv_wipe(struct geniv_ctx *ctx)
+{
+ struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
+ unsigned int salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
+ struct crypto_cipher *essiv_tfm;
+
+ memset(essiv->salt, 0, salt_size);
+
+ essiv_tfm = ctx->iv_private;
+ return crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
+}
+
+/* Allocate the cipher for ESSIV */
+static struct crypto_cipher *alloc_essiv_cipher(struct geniv_ctx *ctx,
+ u8 *salt, unsigned int saltsize)
+{
+ struct crypto_cipher *essiv_tfm;
+ int err;
+
+ /* Setup the essiv_tfm with the given salt */
+ essiv_tfm = crypto_alloc_cipher(ctx->cipher, 0, CRYPTO_ALG_ASYNC);
+ if (IS_ERR(essiv_tfm)) {
+ DMERR("Error allocating crypto tfm for ESSIV\n");
+ return essiv_tfm;
+ }
+
+ if (crypto_cipher_blocksize(essiv_tfm) != ctx->iv_size) {
+ DMERR("Block size of ESSIV cipher does "
+ "not match IV size of block cipher\n");
+ crypto_free_cipher(essiv_tfm);
+ return ERR_PTR(-EINVAL);
+ }
+
+ err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
+ if (err) {
+ DMERR("Failed to set key for ESSIV cipher\n");
+ crypto_free_cipher(essiv_tfm);
+ return ERR_PTR(err);
+ }
+
+ return essiv_tfm;
+}
+
+static void crypt_iv_essiv_dtr(struct geniv_ctx *ctx)
+{
+ struct crypto_cipher *essiv_tfm;
+ struct geniv_essiv_private *essiv = &ctx->iv_gen_private.essiv;
+
+ crypto_free_ahash(essiv->hash_tfm);
+ essiv->hash_tfm = NULL;
+
+ kzfree(essiv->salt);
+ essiv->salt = NULL;
+
+ essiv_tfm = ctx->iv_private;
+
+ if (essiv_tfm)
+ crypto_free_cipher(essiv_tfm);
+
+ ctx->iv_private = NULL;
+}
+
+static int crypt_iv_essiv_ctr(struct geniv_ctx *ctx)
+{
+ struct crypto_cipher *essiv_tfm = NULL;
+ struct crypto_ahash *hash_tfm = NULL;
+ u8 *salt = NULL;
+ int err;
+
+ if (!ctx->ivopts) {
+ DMERR("Digest algorithm missing for ESSIV mode\n");
+ return -EINVAL;
+ }
+
+ /* Allocate hash algorithm */
+ hash_tfm = crypto_alloc_ahash(ctx->ivopts, 0, CRYPTO_ALG_ASYNC);
+ if (IS_ERR(hash_tfm)) {
+ DMERR("Error initializing ESSIV hash\n");
+ err = PTR_ERR(hash_tfm);
+ goto bad;
+ }
+
+ salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
+ if (!salt) {
+ DMERR("Error kmallocing salt storage in ESSIV\n");
+ err = -ENOMEM;
+ goto bad;
+ }
+
+ ctx->iv_gen_private.essiv.salt = salt;
+ ctx->iv_gen_private.essiv.hash_tfm = hash_tfm;
+
+ essiv_tfm = alloc_essiv_cipher(ctx, salt,
+ crypto_ahash_digestsize(hash_tfm));
+ if (IS_ERR(essiv_tfm)) {
+ crypt_iv_essiv_dtr(ctx);
+ return PTR_ERR(essiv_tfm);
+ }
+ ctx->iv_private = essiv_tfm;
+
+ return 0;
+
+bad:
+ if (hash_tfm && !IS_ERR(hash_tfm))
+ crypto_free_ahash(hash_tfm);
+ kfree(salt);
+ return err;
+}
+
+static int crypt_iv_essiv_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ struct crypto_cipher *essiv_tfm = ctx->iv_private;
+
+ memset(iv, 0, ctx->iv_size);
+ *(__le64 *)iv = cpu_to_le64(subreq->iv_sector);
+ crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
+
+ return 0;
+}
+
+static int crypt_iv_benbi_ctr(struct geniv_ctx *ctx)
+{
+ unsigned int bs = crypto_skcipher_blocksize(ctx->tfms.tfms[0]);
+ int log = ilog2(bs);
+
+ /* we need to calculate how far we must shift the sector count
+ * to get the cipher block count, we use this shift in _gen */
+
+ if (1 << log != bs) {
+ DMERR("cypher blocksize is not a power of 2\n");
+ return -EINVAL;
+ }
+
+ if (log > 9) {
+ DMERR("cypher blocksize is > 512\n");
+ return -EINVAL;
+ }
+
+ ctx->iv_gen_private.benbi.shift = 9 - log;
+
+ return 0;
+}
+
+static void crypt_iv_benbi_dtr(struct geniv_ctx *ctx)
+{
+}
+
+static int crypt_iv_benbi_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ __be64 val;
+
+ memset(iv, 0, ctx->iv_size - sizeof(u64)); /* rest is cleared below */
+
+ val = cpu_to_be64(((u64)subreq->iv_sector << ctx->iv_gen_private.benbi.shift) + 1);
+ put_unaligned(val, (__be64 *)(iv + ctx->iv_size - sizeof(u64)));
+
+ return 0;
+}
+
+static int crypt_iv_null_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ memset(iv, 0, ctx->iv_size);
+
+ return 0;
+}
+
+static void crypt_iv_lmk_dtr(struct geniv_ctx *ctx)
+{
+ struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
+
+ if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
+ crypto_free_shash(lmk->hash_tfm);
+ lmk->hash_tfm = NULL;
+
+ kzfree(lmk->seed);
+ lmk->seed = NULL;
+}
+
+static int crypt_iv_lmk_ctr(struct geniv_ctx *ctx)
+{
+ struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
+
+ if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
+ DMERR("Unsupported sector size for LMK\n");
+ return -EINVAL;
+ }
+
+ lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
+ if (IS_ERR(lmk->hash_tfm)) {
+ DMERR("Error initializing LMK hash, err=%ld\n",
+ PTR_ERR(lmk->hash_tfm));
+ return PTR_ERR(lmk->hash_tfm);
+ }
+
+ /* No seed in LMK version 2 */
+ if (ctx->key_parts == ctx->tfms_count) {
+ lmk->seed = NULL;
+ return 0;
+ }
+
+ lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
+ if (!lmk->seed) {
+ crypt_iv_lmk_dtr(ctx);
+ DMERR("Error kmallocing seed storage in LMK\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_lmk_init(struct geniv_ctx *ctx)
+{
+ struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
+ int subkey_size = ctx->key_size / ctx->key_parts;
+
+ /* LMK seed is on the position of LMK_KEYS + 1 key */
+ if (lmk->seed)
+ memcpy(lmk->seed, ctx->key + (ctx->tfms_count * subkey_size),
+ crypto_shash_digestsize(lmk->hash_tfm));
+
+ return 0;
+}
+
+static int crypt_iv_lmk_wipe(struct geniv_ctx *ctx)
+{
+ struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
+
+ if (lmk->seed)
+ memset(lmk->seed, 0, LMK_SEED_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_one(struct geniv_ctx *ctx, u8 *iv,
+ struct geniv_subreq *subreq, u8 *data)
+{
+ struct geniv_lmk_private *lmk = &ctx->iv_gen_private.lmk;
+ SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
+ struct md5_state md5state;
+ __le32 buf[4];
+ int i, r;
+
+ desc->tfm = lmk->hash_tfm;
+ desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+
+ r = crypto_shash_init(desc);
+ if (r)
+ return r;
+
+ if (lmk->seed) {
+ r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
+ if (r)
+ return r;
+ }
+
+ /* Sector is always 512B, block size 16, add data of blocks 1-31 */
+ r = crypto_shash_update(desc, data + 16, 16 * 31);
+ if (r)
+ return r;
+
+ /* Sector is cropped to 56 bits here */
+ buf[0] = cpu_to_le32(subreq->iv_sector & 0xFFFFFFFF);
+ buf[1] = cpu_to_le32((((u64)subreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
+ buf[2] = cpu_to_le32(4024);
+ buf[3] = 0;
+ r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
+ if (r)
+ return r;
+
+ /* No MD5 padding here */
+ r = crypto_shash_export(desc, &md5state);
+ if (r)
+ return r;
+
+ for (i = 0; i < MD5_HASH_WORDS; i++)
+ __cpu_to_le32s(&md5state.hash[i]);
+ memcpy(iv, &md5state.hash, ctx->iv_size);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ struct scatterlist *sg;
+ u8 *src;
+ int r = 0;
+
+ if (rctx->is_write) {
+ sg = crypt_get_sg_data(ctx, subreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(ctx, iv, subreq, src + sg->offset);
+ kunmap_atomic(src);
+ } else
+ memset(iv, 0, ctx->iv_size);
+
+ return r;
+}
+
+static int crypt_iv_lmk_post(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (rctx->is_write)
+ return 0;
+
+ sg = crypt_get_sg_data(ctx, subreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(ctx, iv, subreq, dst + sg->offset);
+
+ /* Tweak the first block of plaintext sector */
+ if (!r)
+ crypto_xor(dst + sg->offset, iv, ctx->iv_size);
+
+ kunmap_atomic(dst);
+ return r;
+}
+
+static void crypt_iv_tcw_dtr(struct geniv_ctx *ctx)
+{
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+
+ kzfree(tcw->iv_seed);
+ tcw->iv_seed = NULL;
+ kzfree(tcw->whitening);
+ tcw->whitening = NULL;
+
+ if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
+ crypto_free_shash(tcw->crc32_tfm);
+ tcw->crc32_tfm = NULL;
+}
+
+static int crypt_iv_tcw_ctr(struct geniv_ctx *ctx)
+{
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+
+ if (ctx->sector_size != (1 << SECTOR_SHIFT)) {
+ DMERR("Unsupported sector size for TCW\n");
+ return -EINVAL;
+ }
+
+ if (ctx->key_size <= (ctx->iv_size + TCW_WHITENING_SIZE)) {
+ DMERR("Wrong key size (%d) for TCW. Choose a value > %d bytes\n",
+ ctx->key_size, ctx->iv_size + TCW_WHITENING_SIZE);
+ return -EINVAL;
+ }
+
+ tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
+ if (IS_ERR(tcw->crc32_tfm)) {
+ DMERR("Error initializing CRC32 in TCW; err=%ld\n",
+ PTR_ERR(tcw->crc32_tfm));
+ return PTR_ERR(tcw->crc32_tfm);
+ }
+
+ tcw->iv_seed = kzalloc(ctx->iv_size, GFP_KERNEL);
+ tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
+ if (!tcw->iv_seed || !tcw->whitening) {
+ crypt_iv_tcw_dtr(ctx);
+ DMERR("Error allocating seed storage in TCW\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_tcw_init(struct geniv_ctx *ctx)
+{
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+ int key_offset = ctx->key_size - ctx->iv_size - TCW_WHITENING_SIZE;
+
+ memcpy(tcw->iv_seed, &ctx->key[key_offset], ctx->iv_size);
+ memcpy(tcw->whitening, &ctx->key[key_offset + ctx->iv_size],
+ TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_wipe(struct geniv_ctx *ctx)
+{
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+
+ memset(tcw->iv_seed, 0, ctx->iv_size);
+ memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_whitening(struct geniv_ctx *ctx,
+ struct geniv_subreq *subreq, u8 *data)
+{
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(subreq->iv_sector);
+ u8 buf[TCW_WHITENING_SIZE];
+ SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
+ int i, r;
+
+ /* xor whitening with sector number */
+ crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
+ crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
+
+ /* calculate crc32 for every 32bit part and xor it */
+ desc->tfm = tcw->crc32_tfm;
+ desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+ for (i = 0; i < 4; i++) {
+ r = crypto_shash_init(desc);
+ if (r)
+ goto out;
+ r = crypto_shash_update(desc, &buf[i * 4], 4);
+ if (r)
+ goto out;
+ r = crypto_shash_final(desc, &buf[i * 4]);
+ if (r)
+ goto out;
+ }
+ crypto_xor(&buf[0], &buf[12], 4);
+ crypto_xor(&buf[4], &buf[8], 4);
+
+ /* apply whitening (8 bytes) to whole sector */
+ for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
+ crypto_xor(data + i * 8, buf, 8);
+out:
+ memzero_explicit(buf, sizeof(buf));
+ return r;
+}
+
+static int crypt_iv_tcw_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ struct scatterlist *sg;
+ struct geniv_tcw_private *tcw = &ctx->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(subreq->iv_sector);
+ u8 *src;
+ int r = 0;
+
+ /* Remove whitening from ciphertext */
+ if (!rctx->is_write) {
+ sg = crypt_get_sg_data(ctx, subreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(ctx, subreq, src + sg->offset);
+ kunmap_atomic(src);
+ }
+
+ /* Calculate IV */
+ crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
+ if (ctx->iv_size > 8)
+ crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
+ ctx->iv_size - 8);
+
+ return r;
+}
+
+static int crypt_iv_tcw_post(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (!rctx->is_write)
+ return 0;
+
+ /* Apply whitening on ciphertext */
+ sg = crypt_get_sg_data(ctx, subreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(ctx, subreq, dst + sg->offset);
+ kunmap_atomic(dst);
+
+ return r;
+}
+
+static int crypt_iv_random_gen(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq, u8 *iv)
+{
+ /* Used only for writes, there must be an additional space to store IV */
+ get_random_bytes(iv, ctx->iv_size);
+ return 0;
+}
+
+static const struct crypt_iv_operations crypt_iv_plain_ops = {
+ .generator = crypt_iv_plain_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64_ops = {
+ .generator = crypt_iv_plain64_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
+ .generator = crypt_iv_plain64be_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_essiv_ops = {
+ .ctr = crypt_iv_essiv_ctr,
+ .dtr = crypt_iv_essiv_dtr,
+ .init = crypt_iv_essiv_init,
+ .wipe = crypt_iv_essiv_wipe,
+ .generator = crypt_iv_essiv_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_benbi_ops = {
+ .ctr = crypt_iv_benbi_ctr,
+ .dtr = crypt_iv_benbi_dtr,
+ .generator = crypt_iv_benbi_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_null_ops = {
+ .generator = crypt_iv_null_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_lmk_ops = {
+ .ctr = crypt_iv_lmk_ctr,
+ .dtr = crypt_iv_lmk_dtr,
+ .init = crypt_iv_lmk_init,
+ .wipe = crypt_iv_lmk_wipe,
+ .generator = crypt_iv_lmk_gen,
+ .post = crypt_iv_lmk_post
+};
+
+static const struct crypt_iv_operations crypt_iv_tcw_ops = {
+ .ctr = crypt_iv_tcw_ctr,
+ .dtr = crypt_iv_tcw_dtr,
+ .init = crypt_iv_tcw_init,
+ .wipe = crypt_iv_tcw_wipe,
+ .generator = crypt_iv_tcw_gen,
+ .post = crypt_iv_tcw_post
+};
+
+static struct crypt_iv_operations crypt_iv_random_ops = {
+ .generator = crypt_iv_random_gen
+};
+
+static int geniv_init_iv(struct geniv_ctx *ctx)
+{
+ int ret;
+
+ DMDEBUG("IV Generation algorithm : %s\n", ctx->ivmode);
+
+ if (ctx->ivmode == NULL)
+ ctx->iv_gen_ops = NULL;
+ else if (strcmp(ctx->ivmode, "plain") == 0)
+ ctx->iv_gen_ops = &crypt_iv_plain_ops;
+ else if (strcmp(ctx->ivmode, "plain64") == 0)
+ ctx->iv_gen_ops = &crypt_iv_plain64_ops;
+ else if (strcmp(ctx->ivmode, "essiv") == 0)
+ ctx->iv_gen_ops = &crypt_iv_essiv_ops;
+ else if (strcmp(ctx->ivmode, "benbi") == 0)
+ ctx->iv_gen_ops = &crypt_iv_benbi_ops;
+ else if (strcmp(ctx->ivmode, "null") == 0)
+ ctx->iv_gen_ops = &crypt_iv_null_ops;
+ else if (strcmp(ctx->ivmode, "lmk") == 0) {
+ ctx->iv_gen_ops = &crypt_iv_lmk_ops;
+ /*
+ * Version 2 and 3 is recognised according
+ * to length of provided multi-key string.
+ * If present (version 3), last key is used as IV seed.
+ * All keys (including IV seed) are always the same size.
+ */
+ if (ctx->key_size % ctx->key_parts) {
+ ctx->key_parts++;
+ ctx->key_extra_size = ctx->key_size / ctx->key_parts;
+ }
+ } else if (strcmp(ctx->ivmode, "tcw") == 0) {
+ ctx->iv_gen_ops = &crypt_iv_tcw_ops;
+ ctx->key_parts += 2; /* IV + whitening */
+ ctx->key_extra_size = ctx->iv_size + TCW_WHITENING_SIZE;
+ } else if (strcmp(ctx->ivmode, "random") == 0) {
+ ctx->iv_gen_ops = &crypt_iv_random_ops;
+ /* Need storage space in integrity fields. */
+ ctx->integrity_iv_size = ctx->iv_size;
+ } else {
+ DMERR("Invalid IV mode %s\n", ctx->ivmode);
+ return -EINVAL;
+ }
+
+ /* Allocate IV */
+ if (ctx->iv_gen_ops && ctx->iv_gen_ops->ctr) {
+ ret = ctx->iv_gen_ops->ctr(ctx);
+ if (ret < 0) {
+ DMERR("Error creating IV for %s\n", ctx->ivmode);
+ return ret;
+ }
+ }
+
+ /* Initialize IV (set keys for ESSIV etc) */
+ if (ctx->iv_gen_ops && ctx->iv_gen_ops->init) {
+ ret = ctx->iv_gen_ops->init(ctx);
+ if (ret < 0) {
+ DMERR("Error creating IV for %s\n", ctx->ivmode);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static void geniv_free_tfms_aead(struct geniv_ctx *ctx)
+{
+ if (!ctx->tfms.tfms_aead)
+ return;
+
+ if (ctx->tfms.tfms_aead[0] && IS_ERR(ctx->tfms.tfms_aead[0])) {
+ crypto_free_aead(ctx->tfms.tfms_aead[0]);
+ ctx->tfms.tfms_aead[0] = NULL;
+ }
+
+ kfree(ctx->tfms.tfms_aead);
+ ctx->tfms.tfms_aead = NULL;
+}
+
+static void geniv_free_tfms_skcipher(struct geniv_ctx *ctx)
+{
+ unsigned int i;
+
+ if (!ctx->tfms.tfms)
+ return;
+
+ for (i = 0; i < ctx->tfms_count; i++)
+ if (ctx->tfms.tfms[i] && IS_ERR(ctx->tfms.tfms[i])) {
+ crypto_free_skcipher(ctx->tfms.tfms[i]);
+ ctx->tfms.tfms[i] = NULL;
+ }
+
+ kfree(ctx->tfms.tfms);
+ ctx->tfms.tfms = NULL;
+}
+
+static void geniv_free_tfms(struct geniv_ctx *ctx)
+{
+ if (geniv_integrity_aead(ctx))
+ geniv_free_tfms_aead(ctx);
+ else
+ geniv_free_tfms_skcipher(ctx);
+}
+
+static int geniv_alloc_tfms_aead(struct crypto_aead *parent,
+ struct geniv_ctx *ctx)
+{
+ unsigned int reqsize, align;
+
+ ctx->tfms.tfms_aead = kcalloc(1, sizeof(struct crypto_aead *),
+ GFP_KERNEL);
+ if (!ctx->tfms.tfms_aead)
+ return -ENOMEM;
+
+ /* First instance is already allocated in geniv_init_tfm */
+ ctx->tfms.tfms_aead[0] = ctx->tfm_child.tfm_aead;
+
+ /* Setup the current cipher's request structure */
+ align = crypto_aead_alignmask(parent);
+ align &= ~(crypto_tfm_ctx_alignment() - 1);
+ reqsize = align + sizeof(struct geniv_req_ctx) +
+ crypto_aead_reqsize(ctx->tfms.tfms_aead[0]);
+
+ crypto_aead_set_reqsize(parent, reqsize);
+
+ return 0;
+}
+
+/* Allocate memory for the underlying cipher algorithm. Ex: cbc(aes)
+ */
+static int geniv_alloc_tfms_skcipher(struct crypto_skcipher *parent,
+ struct geniv_ctx *ctx)
+{
+ unsigned int i, reqsize, align, err;
+
+ ctx->tfms.tfms = kcalloc(ctx->tfms_count, sizeof(struct crypto_skcipher *),
+ GFP_KERNEL);
+ if (!ctx->tfms.tfms)
+ return -ENOMEM;
+
+ /* First instance is already allocated in geniv_init_tfm */
+ ctx->tfms.tfms[0] = ctx->tfm_child.tfm;
+ for (i = 1; i < ctx->tfms_count; i++) {
+ ctx->tfms.tfms[i] = crypto_alloc_skcipher(ctx->ciphermode, 0, 0);
+ if (IS_ERR(ctx->tfms.tfms[i])) {
+ err = PTR_ERR(ctx->tfms.tfms[i]);
+ geniv_free_tfms(ctx);
+ return err;
+ }
+
+ /* Setup the current cipher's request structure */
+ align = crypto_skcipher_alignmask(parent);
+ align &= ~(crypto_tfm_ctx_alignment() - 1);
+ reqsize = align + sizeof(struct geniv_req_ctx) +
+ crypto_skcipher_reqsize(ctx->tfms.tfms[i]);
+
+ crypto_skcipher_set_reqsize(parent, reqsize);
+ }
+
+ return 0;
+}
+
+static unsigned int geniv_authenckey_size(struct geniv_ctx *ctx)
+{
+ return ctx->key_size - ctx->key_extra_size +
+ RTA_SPACE(sizeof(struct crypto_authenc_key_param));
+}
+
+/* Initialize the cipher's context with the key, ivmode and other parameters.
+ * Also allocate IV generation template ciphers and initialize them.
+ */
+static int geniv_setkey_init(void *parent, struct geniv_key_info *info)
+{
+ struct geniv_ctx *ctx;
+ int ret;
+
+ if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
+ ctx = crypto_aead_ctx((struct crypto_aead *)parent);
+ else
+ ctx = crypto_skcipher_ctx((struct crypto_skcipher *)parent);
+
+ ctx->tfms_count = info->tfms_count;
+ ctx->key = info->key;
+ ctx->cipher_flags = info->cipher_flags;
+ ctx->ivopts = info->ivopts;
+ ctx->iv_offset = info->iv_offset;
+ ctx->sector_size = info->sector_size;
+ ctx->sector_shift = __ffs(ctx->sector_size) - SECTOR_SHIFT;
+
+ ctx->key_size = info->key_size;
+ ctx->key_parts = info->key_parts;
+ ctx->key_mac_size = info->key_mac_size;
+ ctx->on_disk_tag_size = info->on_disk_tag_size;
+
+ if (geniv_integrity_hmac(ctx)) {
+ ctx->authenc_key = kmalloc(geniv_authenckey_size(ctx), GFP_KERNEL);
+ if (!ctx->authenc_key)
+ return -ENOMEM;
+ }
+
+ if (geniv_integrity_aead(ctx))
+ ret = geniv_alloc_tfms_aead((struct crypto_aead *)parent, ctx);
+ else
+ ret = geniv_alloc_tfms_skcipher((struct crypto_skcipher *)parent, ctx);
+ if (ret)
+ return ret;
+
+ ret = geniv_init_iv(ctx);
+
+ if (geniv_integrity_aead(ctx))
+ ctx->integrity_tag_size = ctx->on_disk_tag_size - ctx->integrity_iv_size;
+
+ return ret;
+}
+
+/*
+ * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
+ * the key must be for some reason in special format.
+ * This function converts cc->key to this special format.
+ */
+static void crypt_copy_authenckey(char *p, const void *key,
+ unsigned int enckeylen, unsigned int authkeylen)
+{
+ struct crypto_authenc_key_param *param;
+ struct rtattr *rta;
+
+ rta = (struct rtattr *)p;
+ param = RTA_DATA(rta);
+ param->enckeylen = cpu_to_be32(enckeylen);
+ rta->rta_len = RTA_LENGTH(sizeof(*param));
+ rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
+ p += RTA_SPACE(sizeof(*param));
+ memcpy(p, key + enckeylen, authkeylen);
+ p += authkeylen;
+ memcpy(p, key, enckeylen);
+}
+
+static int geniv_setkey_tfms_aead(struct crypto_aead *parent, struct geniv_ctx *ctx,
+ struct geniv_key_info *info)
+{
+ unsigned int key_size;
+ unsigned int authenc_key_size;
+ struct crypto_aead *child_aead;
+ int ret = 0;
+
+ /* Ignore extra keys (which are used for IV etc) */
+ key_size = ctx->key_size - ctx->key_extra_size;
+ authenc_key_size = key_size + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
+
+ child_aead = ctx->tfms.tfms_aead[0];
+ crypto_aead_clear_flags(child_aead, CRYPTO_TFM_REQ_MASK);
+ crypto_aead_set_flags(child_aead, crypto_aead_get_flags(parent) & CRYPTO_TFM_REQ_MASK);
+
+ if (geniv_integrity_hmac(ctx)) {
+ if (key_size < ctx->key_mac_size)
+ return -EINVAL;
+
+ crypt_copy_authenckey(ctx->authenc_key, ctx->key, key_size - ctx->key_mac_size,
+ ctx->key_mac_size);
+ }
+
+ if (geniv_integrity_hmac(ctx))
+ ret = crypto_aead_setkey(child_aead, ctx->authenc_key, authenc_key_size);
+ else
+ ret = crypto_aead_setkey(child_aead, ctx->key, key_size);
+ if (ret) {
+ DMERR("Error setting key for tfms[0]\n");
+ goto out;
+ }
+
+ crypto_aead_set_flags(parent, crypto_aead_get_flags(child_aead) & CRYPTO_TFM_RES_MASK);
+
+out:
+ if (geniv_integrity_hmac(ctx))
+ memzero_explicit(ctx->authenc_key, authenc_key_size);
+
+ return ret;
+}
+
+static int geniv_setkey_tfms_skcipher(struct crypto_skcipher *parent, struct geniv_ctx *ctx,
+ struct geniv_key_info *info)
+{
+ unsigned int subkey_size;
+ char *subkey;
+ struct crypto_skcipher *child;
+ int ret, i;
+
+ /* Ignore extra keys (which are used for IV etc) */
+ subkey_size = (ctx->key_size - ctx->key_extra_size)
+ >> ilog2(ctx->tfms_count);
+
+ for (i = 0; i < ctx->tfms_count; i++) {
+ child = ctx->tfms.tfms[i];
+ crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_set_flags(child,
+ crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK);
+
+ subkey = ctx->key + (subkey_size) * i;
+
+ ret = crypto_skcipher_setkey(child, subkey, subkey_size);
+ if (ret) {
+ DMERR("Error setting key for tfms[%d]\n", i);
+ return ret;
+ }
+
+ crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
+ CRYPTO_TFM_RES_MASK);
+ }
+
+ return 0;
+}
+
+static int geniv_setkey_set(struct geniv_ctx *ctx)
+{
+ if (ctx->iv_gen_ops && ctx->iv_gen_ops->init)
+ return ctx->iv_gen_ops->init(ctx);
+ else
+ return 0;
+}
+
+static int geniv_setkey_wipe(struct geniv_ctx *ctx)
+{
+ int ret;
+
+ if (ctx->iv_gen_ops && ctx->iv_gen_ops->wipe) {
+ ret = ctx->iv_gen_ops->wipe(ctx);
+ if (ret)
+ return ret;
+ }
+
+ if (geniv_integrity_hmac(ctx))
+ kzfree(ctx->authenc_key);
+
+ return 0;
+}
+
+static int geniv_setkey(void *parent, const u8 *key, unsigned int keylen)
+{
+ int err = 0;
+ struct geniv_ctx *ctx;
+ struct geniv_key_info *info = (struct geniv_key_info *) key;
+
+ if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
+ ctx = crypto_aead_ctx((struct crypto_aead *)parent);
+ else
+ ctx = crypto_skcipher_ctx((struct crypto_skcipher *)parent);
+
+ DMDEBUG("SETKEY Operation : %d\n", info->keyop);
+
+ switch (info->keyop) {
+ case SETKEY_OP_INIT:
+ err = geniv_setkey_init(parent, info);
+ break;
+ case SETKEY_OP_SET:
+ err = geniv_setkey_set(ctx);
+ break;
+ case SETKEY_OP_WIPE:
+ err = geniv_setkey_wipe(ctx);
+ break;
+ }
+
+ if (err)
+ return err;
+
+ if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &info->cipher_flags))
+ return geniv_setkey_tfms_aead((struct crypto_aead *)parent, ctx, info);
+ else
+ return geniv_setkey_tfms_skcipher((struct crypto_skcipher *)parent, ctx, info);
+}
+
+static int geniv_aead_setkey(struct crypto_aead *parent,
+ const u8 *key, unsigned int keylen)
+{
+ return geniv_setkey(parent, key, keylen);
+}
+
+static int geniv_skcipher_setkey(struct crypto_skcipher *parent,
+ const u8 *key, unsigned int keylen)
+{
+ return geniv_setkey(parent, key, keylen);
+}
+
+static void geniv_async_done(struct crypto_async_request *async_req, int error);
+
+static int geniv_alloc_subreq_aead(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ u32 req_flags)
+{
+ struct aead_request *req;
+
+ if (!rctx->subreq) {
+ rctx->subreq = mempool_alloc(ctx->subreq_pool, GFP_NOIO);
+ if (!rctx->subreq)
+ return -ENOMEM;
+ }
+
+ req = &rctx->subreq->r.req_aead;
+ rctx->subreq->rctx = rctx;
+
+ aead_request_set_tfm(req, ctx->tfms.tfms_aead[0]);
+ aead_request_set_callback(req, req_flags,
+ geniv_async_done, rctx->subreq);
+
+ return 0;
+}
+
+/* req_flags: flags from parent request */
+static int geniv_alloc_subreq_skcipher(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ u32 req_flags)
+{
+ int key_index;
+ struct skcipher_request *req;
+
+ if (!rctx->subreq) {
+ rctx->subreq = mempool_alloc(ctx->subreq_pool, GFP_NOIO);
+ if (!rctx->subreq)
+ return -ENOMEM;
+ }
+
+ req = &rctx->subreq->r.req;
+ rctx->subreq->rctx = rctx;
+
+ key_index = rctx->cc_sector & (ctx->tfms_count - 1);
+
+ skcipher_request_set_tfm(req, ctx->tfms.tfms[key_index]);
+ skcipher_request_set_callback(req, req_flags,
+ geniv_async_done, rctx->subreq);
+
+ return 0;
+}
+
+/* Asynchronous IO completion callback for each sector in a segment. When all
+ * pending i/o are completed the parent cipher's async function is called.
+ */
+static void geniv_async_done(struct crypto_async_request *async_req, int error)
+{
+ struct geniv_subreq *subreq =
+ (struct geniv_subreq *) async_req->data;
+ struct geniv_req_ctx *rctx = subreq->rctx;
+ struct skcipher_request *req = NULL;
+ struct aead_request *req_aead = NULL;
+ struct geniv_ctx *ctx;
+ u8 *iv;
+
+ if (!rctx->is_aead_request) {
+ req = rctx->r.req;
+ ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
+ } else {
+ req_aead = rctx->r.req_aead;
+ ctx = crypto_aead_ctx(crypto_aead_reqtfm(req_aead));
+ }
+
+ /*
+ * A request from crypto driver backlog is going to be processed now,
+ * finish the completion and continue in crypt_convert().
+ * (Callback will be called for the second time for this request.)
+ */
+ if (error == -EINPROGRESS) {
+ complete(&rctx->restart);
+ return;
+ }
+
+ iv = iv_of_subreq(ctx, subreq);
+ if (!error && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
+ error = ctx->iv_gen_ops->post(ctx, rctx, subreq, iv);
+
+ mempool_free(subreq, ctx->subreq_pool);
+
+ /* req_pending needs to be checked before req->base.complete is called
+ * as we need 'req_pending' to be equal to 1 to ensure all subrequests
+ * are processed.
+ */
+ if (atomic_dec_and_test(&rctx->req_pending)) {
+ /* Call the parent cipher's completion function */
+ if (!rctx->is_aead_request)
+ skcipher_request_complete(req, error);
+ else
+ aead_request_complete(req_aead, error);
+
+ }
+}
+
+static unsigned int geniv_get_sectors(struct scatterlist *sg1,
+ struct scatterlist *sg2,
+ unsigned int segments)
+{
+ unsigned int i, n1, n2;
+
+ n1 = n2 = 0;
+ for (i = 0; i < segments ; i++) {
+ n1 += sg1[i].length >> SECTOR_SHIFT;
+ n1 += (sg1[i].length & SECTOR_MASK) ? 1 : 0;
+ }
+
+ for (i = 0; i < segments ; i++) {
+ n2 += sg2[i].length >> SECTOR_SHIFT;
+ n2 += (sg2[i].length & SECTOR_MASK) ? 1 : 0;
+ }
+
+ return n1 > n2 ? n1 : n2;
+}
+
+/* Iterate scatterlist of segments to retrieve the 512-byte sectors so that
+ * unique IVs could be generated for each 512-byte sector. This split may not
+ * be necessary e.g. when these ciphers are modelled in hardware, where it can
+ * make use of the hardware's IV generation capabilities.
+ */
+static int geniv_iter_block(void *req_in,
+ struct geniv_ctx *ctx, struct geniv_req_ctx *rctx)
+
+{
+ unsigned int rem;
+ struct scatterlist *src_org, *dst_org;
+ struct scatterlist *src1, *dst1;
+ struct scatterlist_iter *iter = &rctx->iter;
+ struct skcipher_request *req;
+ struct aead_request *req_aead;
+
+ if (unlikely(iter->seg_no >= rctx->nents))
+ return 0;
+
+ if (geniv_integrity_aead(ctx)) {
+ req_aead = (struct aead_request *)req_in;
+ src_org = &req_aead->src[0];
+ dst_org = &req_aead->dst[0];
+ } else {
+ req = (struct skcipher_request *)req_in;
+ src_org = &req->src[0];
+ dst_org = &req->dst[0];
+ }
+
+ src1 = &src_org[iter->seg_no];
+ dst1 = &dst_org[iter->seg_no];
+ iter->done += iter->len;
+
+ if (iter->done >= src1->length) {
+ iter->seg_no++;
+
+ if (iter->seg_no >= rctx->nents)
+ return 0;
+
+ src1 = &src_org[iter->seg_no];
+ dst1 = &dst_org[iter->seg_no];
+ iter->done = 0;
+ }
+
+ rem = src1->length - iter->done;
+
+ iter->len = rem > ctx->sector_size ? ctx->sector_size : rem;
+
+ DMDEBUG("segment:(%d/%u), done:%d, rem:%d\n",
+ iter->seg_no, rctx->nents, iter->done, rem);
+
+ return iter->len;
+}
+
+static u8 *org_iv_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ return iv_of_subreq(ctx, subreq) + ctx->iv_size;
+}
+
+static uint64_t *org_sector_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ u8 *ptr = iv_of_subreq(ctx, subreq) + ctx->iv_size + ctx->iv_size;
+
+ return (uint64_t *) ptr;
+}
+
+static unsigned int *org_tag_of_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ u8 *ptr = iv_of_subreq(ctx, subreq) + ctx->iv_size +
+ ctx->iv_size + sizeof(uint64_t);
+
+ return (unsigned int *)ptr;
+}
+
+static void *tag_from_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ return &subreq->rctx->integrity_metadata[*org_tag_of_subreq(ctx, subreq) *
+ ctx->on_disk_tag_size];
+}
+
+static void *iv_tag_from_subreq(struct geniv_ctx *ctx, struct geniv_subreq *subreq)
+{
+ return tag_from_subreq(ctx, subreq) + ctx->integrity_tag_size;
+}
+
+static int geniv_convert_block_aead(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq,
+ unsigned int tag_offset)
+{
+ struct scatterlist *sg_in, *sg_out;
+ u8 *iv, *org_iv, *tag_iv, *tag;
+ uint64_t *sector;
+ int r = 0;
+ struct scatterlist_iter *iter = &rctx->iter;
+ struct aead_request *req_aead;
+ struct aead_request *parent_req = rctx->r.req_aead;
+
+ BUG_ON(ctx->integrity_iv_size && ctx->integrity_iv_size != ctx->iv_size);
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(iter->len & (ctx->sector_size - 1)))
+ return -EIO;
+
+ subreq->iv_sector = rctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &ctx->cipher_flags))
+ subreq->iv_sector >>= ctx->sector_shift;
+
+ *org_tag_of_subreq(ctx, subreq) = tag_offset;
+
+ sector = org_sector_of_subreq(ctx, subreq);
+ *sector = cpu_to_le64(rctx->cc_sector - ctx->iv_offset);
+
+ iv = iv_of_subreq(ctx, subreq);
+ org_iv = org_iv_of_subreq(ctx, subreq);
+ tag = tag_from_subreq(ctx, subreq);
+ tag_iv = iv_tag_from_subreq(ctx, subreq);
+
+ sg_in = subreq->sg_in;
+ sg_out = subreq->sg_out;
+
+ /* AEAD request:
+ * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
+ * | (authenticated) | (auth+encryption) | |
+ * | sector_LE | IV | sector in/out | tag in/out |
+ */
+ sg_init_table(sg_in, 4);
+ sg_set_buf(&sg_in[0], sector, sizeof(uint64_t));
+ sg_set_buf(&sg_in[1], org_iv, ctx->iv_size);
+ sg_set_page(&sg_in[2], sg_page(&parent_req->src[iter->seg_no]),
+ iter->len, parent_req->src[iter->seg_no].offset + iter->done);
+ sg_set_buf(&sg_in[3], tag, ctx->integrity_tag_size);
+
+ sg_init_table(sg_out, 4);
+ sg_set_buf(&sg_out[0], sector, sizeof(uint64_t));
+ sg_set_buf(&sg_out[1], org_iv, ctx->iv_size);
+ sg_set_page(&sg_out[2], sg_page(&parent_req->dst[iter->seg_no]),
+ iter->len, parent_req->dst[iter->seg_no].offset + iter->done);
+ sg_set_buf(&sg_out[3], tag, ctx->integrity_tag_size);
+
+ if (ctx->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (ctx->integrity_iv_size && !rctx->is_write) {
+ memcpy(org_iv, tag_iv, ctx->iv_size);
+ } else {
+ r = ctx->iv_gen_ops->generator(ctx, rctx, subreq, org_iv);
+ if (r < 0)
+ return r;
+ /* Store generated IV in integrity metadata */
+ if (ctx->integrity_iv_size)
+ memcpy(tag_iv, org_iv, ctx->iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, ctx->iv_size);
+ }
+
+ req_aead = &subreq->r.req_aead;
+ aead_request_set_ad(req_aead, sizeof(uint64_t) + ctx->iv_size);
+ if (rctx->is_write) {
+ aead_request_set_crypt(req_aead, subreq->sg_in, subreq->sg_out,
+ ctx->sector_size, iv);
+ r = crypto_aead_encrypt(req_aead);
+ if (ctx->integrity_tag_size + ctx->integrity_iv_size != ctx->on_disk_tag_size)
+ memset(tag + ctx->integrity_tag_size + ctx->integrity_iv_size, 0,
+ ctx->on_disk_tag_size - (ctx->integrity_tag_size + ctx->integrity_iv_size));
+ } else {
+ aead_request_set_crypt(req_aead, subreq->sg_in, subreq->sg_out,
+ ctx->sector_size + ctx->integrity_tag_size, iv);
+ r = crypto_aead_decrypt(req_aead);
+ }
+
+ if (r == -EBADMSG)
+ DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
+ (unsigned long long)le64_to_cpu(*sector));
+
+ if (!r && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
+ r = ctx->iv_gen_ops->post(ctx, rctx, subreq, org_iv);
+
+ return r;
+}
+
+static int geniv_convert_block_skcipher(struct geniv_ctx *ctx,
+ struct geniv_req_ctx *rctx,
+ struct geniv_subreq *subreq,
+ unsigned int tag_offset)
+{
+ struct scatterlist *sg_in, *sg_out;
+ u8 *iv, *org_iv, *tag_iv;
+ uint64_t *sector;
+ int r = 0;
+ struct scatterlist_iter *iter = &rctx->iter;
+ struct skcipher_request *req;
+ struct skcipher_request *parent_req = rctx->r.req;
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(iter->len & (ctx->sector_size - 1)))
+ return -EIO;
+
+ subreq->iv_sector = rctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &ctx->cipher_flags))
+ subreq->iv_sector >>= ctx->sector_shift;
+
+ *org_tag_of_subreq(ctx, subreq) = tag_offset;
+
+ iv = iv_of_subreq(ctx, subreq);
+ org_iv = org_iv_of_subreq(ctx, subreq);
+ tag_iv = iv_tag_from_subreq(ctx, subreq);
+
+ sector = org_sector_of_subreq(ctx, subreq);
+ *sector = cpu_to_le64(rctx->cc_sector - ctx->iv_offset);
+
+ /* For skcipher we use only the first sg item */
+ sg_in = subreq->sg_in;
+ sg_out = subreq->sg_out;
+
+ sg_init_table(sg_in, 1);
+ sg_set_page(sg_in, sg_page(&parent_req->src[iter->seg_no]),
+ iter->len, parent_req->src[iter->seg_no].offset + iter->done);
+
+ sg_init_table(sg_out, 1);
+ sg_set_page(sg_out, sg_page(&parent_req->dst[iter->seg_no]),
+ iter->len, parent_req->dst[iter->seg_no].offset + iter->done);
+
+ if (ctx->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (ctx->integrity_iv_size && !rctx->is_write) {
+ memcpy(org_iv, tag_iv, ctx->integrity_iv_size);
+ } else {
+ r = ctx->iv_gen_ops->generator(ctx, rctx, subreq, org_iv);
+ if (r < 0)
+ return r;
+ /* Store generated IV in integrity metadata */
+ if (ctx->integrity_iv_size)
+ memcpy(tag_iv, org_iv, ctx->integrity_iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, ctx->iv_size);
+ }
+
+ req = &subreq->r.req;
+ skcipher_request_set_crypt(req, sg_in, sg_out, ctx->sector_size, iv);
+
+ if (rctx->is_write)
+ r = crypto_skcipher_encrypt(req);
+ else
+ r = crypto_skcipher_decrypt(req);
+
+ if (!r && ctx->iv_gen_ops && ctx->iv_gen_ops->post)
+ r = ctx->iv_gen_ops->post(ctx, rctx, subreq, org_iv);
+
+ return r;
+}
+
+/* Common encryt/decrypt function for geniv template cipher. Before the crypto
+ * operation, it splits the memory segments (in the scatterlist) into 512 byte
+ * sectors. The initialization vector(IV) used is based on a unique sector
+ * number which is generated here.
+ */
+static int geniv_crypt(struct geniv_ctx *ctx, void *parent_req, bool is_encrypt)
+{
+ struct skcipher_request *req = NULL;
+ struct aead_request *req_aead = NULL;
+ struct geniv_req_ctx *rctx;
+ struct geniv_req_info *rinfo;
+ int i, bytes, cryptlen, ret = 0;
+ unsigned int sectors;
+ unsigned int tag_offset = 0;
+ unsigned int sector_step = ctx->sector_size >> SECTOR_SHIFT;
+ char *str __maybe_unused = is_encrypt ? "encrypt" : "decrypt";
+
+ if (geniv_integrity_aead(ctx)) {
+ req_aead = (struct aead_request *)parent_req;
+ rctx = geniv_aead_req_ctx(req_aead);
+ rctx->r.req_aead = req_aead;
+ rinfo = (struct geniv_req_info *)req_aead->iv;
+ } else {
+ req = (struct skcipher_request *)parent_req;
+ rctx = geniv_skcipher_req_ctx(req);
+ rctx->r.req = req;
+ rinfo = (struct geniv_req_info *)req->iv;
+ }
+
+ /* Instance of 'struct geniv_req_info' is stored in IV ptr */
+ rctx->is_write = is_encrypt;
+ rctx->is_aead_request = geniv_integrity_aead(ctx);
+ rctx->cc_sector = rinfo->cc_sector;
+ rctx->nents = rinfo->nents;
+ rctx->integrity_metadata = rinfo->integrity_metadata;
+ rctx->subreq = NULL;
+ cryptlen = req->cryptlen;
+
+ rctx->iter.seg_no = 0;
+ rctx->iter.done = 0;
+ rctx->iter.len = 0;
+
+ DMDEBUG("geniv:%s: starting sector=%d, #segments=%u\n", str,
+ (unsigned int)rctx->cc_sector, rctx->nents);
+
+ if (geniv_integrity_aead(ctx))
+ sectors = geniv_get_sectors(req_aead->src, req_aead->dst, rctx->nents);
+ else
+ sectors = geniv_get_sectors(req->src, req->dst, rctx->nents);
+
+ init_completion(&rctx->restart);
+ atomic_set(&rctx->req_pending, 1);
+
+ for (i = 0; i < sectors; i++) {
+ struct geniv_subreq *subreq;
+
+ if (geniv_integrity_aead(ctx))
+ ret = geniv_alloc_subreq_aead(ctx, rctx, req_aead->base.flags);
+ else
+ ret = geniv_alloc_subreq_skcipher(ctx, rctx, req->base.flags);
+ if (ret)
+ return -ENOMEM;
+
+ subreq = rctx->subreq;
+
+ atomic_inc(&rctx->req_pending);
+
+ if (geniv_integrity_aead(ctx))
+ bytes = geniv_iter_block(req_aead, ctx, rctx);
+ else
+ bytes = geniv_iter_block(req, ctx, rctx);
+
+ if (bytes == 0)
+ break;
+
+ cryptlen -= bytes;
+
+ if (geniv_integrity_aead(ctx))
+ ret = geniv_convert_block_aead(ctx, rctx, subreq, tag_offset);
+ else
+ ret = geniv_convert_block_skcipher(ctx, rctx, subreq, tag_offset);
+
+ switch (ret) {
+ /*
+ * The request was queued by a crypto driver
+ * but the driver request queue is full, let's wait.
+ */
+ case -EBUSY:
+ wait_for_completion(&rctx->restart);
+ reinit_completion(&rctx->restart);
+ /* fall through */
+ /*
+ * The request is queued and processed asynchronously,
+ * completion function geniv_async_done() is called.
+ */
+ case -EINPROGRESS:
+ /* Marking this NULL lets the creation of a new sub-
+ * request when 'geniv_alloc_subreq' is called.
+ */
+ rctx->subreq = NULL;
+ rctx->cc_sector += sector_step;
+ tag_offset++;
+ cond_resched();
+ break;
+ /*
+ * The request was already processed (synchronously).
+ */
+ case 0:
+ atomic_dec(&rctx->req_pending);
+ rctx->cc_sector += sector_step;
+ tag_offset++;
+ cond_resched();
+ continue;
+
+ /* There was an error while processing the request. */
+ default:
+ atomic_dec(&rctx->req_pending);
+ mempool_free(rctx->subreq, ctx->subreq_pool);
+ atomic_dec(&rctx->req_pending);
+ return ret;
+ }
+ }
+
+ if (rctx->subreq)
+ mempool_free(rctx->subreq, ctx->subreq_pool);
+
+ if (atomic_dec_and_test(&rctx->req_pending))
+ return 0;
+ else
+ return -EINPROGRESS;
+}
+
+static int geniv_skcipher_encrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
+
+ return geniv_crypt(ctx, req, true);
+}
+
+static int geniv_skcipher_decrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
+
+ return geniv_crypt(ctx, req, false);
+}
+
+static int geniv_aead_encrypt(struct aead_request *req)
+{
+ struct crypto_aead *tfm = crypto_aead_reqtfm(req);
+ struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
+
+ return geniv_crypt(ctx, req, true);
+}
+
+static int geniv_aead_decrypt(struct aead_request *req)
+{
+ struct crypto_aead *tfm = crypto_aead_reqtfm(req);
+ struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
+
+ return geniv_crypt(ctx, req, false);
+}
+
+/*
+ * Workaround to parse cipher algorithm from crypto API spec.
+ * The ctx->cipher is currently used only in ESSIV.
+ * This should be probably done by crypto-api calls (once available...)
+ */
+static int geniv_blkdev_cipher(struct geniv_ctx *ctx, bool is_crypto_aead)
+{
+ const char *alg_name = NULL;
+ char *start, *end;
+
+ alg_name = ctx->ciphermode;
+ if (!alg_name)
+ return -EINVAL;
+
+ if (is_crypto_aead) {
+ alg_name = strchr(alg_name, ',');
+ if (!alg_name)
+ alg_name = ctx->ciphermode;
+ alg_name++;
+ }
+
+ start = strchr(alg_name, '(');
+ end = strchr(alg_name, ')');
+
+ if (!start && !end) {
+ ctx->cipher = kstrdup(alg_name, GFP_KERNEL);
+ return ctx->cipher ? 0 : -ENOMEM;
+ }
+
+ if (!start || !end || ++start >= end)
+ return -EINVAL;
+
+ ctx->cipher = kzalloc(end - start + 1, GFP_KERNEL);
+ if (!ctx->cipher)
+ return -ENOMEM;
+
+ strncpy(ctx->cipher, start, end - start);
+
+ return 0;
+}
+
+static int geniv_init_tfm(void *tfm_tmp, bool is_crypto_aead)
+{
+ struct geniv_ctx *ctx;
+ struct crypto_skcipher *tfm;
+ struct crypto_aead *tfm_aead;
+ unsigned int reqsize;
+ size_t iv_size_padding;
+ char *algname;
+ int psize, ret;
+
+ if (is_crypto_aead) {
+ tfm_aead = (struct crypto_aead *)tfm_tmp;
+ ctx = crypto_aead_ctx(tfm_aead);
+ algname = (char *) crypto_tfm_alg_name(crypto_aead_tfm(tfm_aead));
+ } else {
+ tfm = (struct crypto_skcipher *)tfm_tmp;
+ ctx = crypto_skcipher_ctx(tfm);
+ algname = (char *) crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
+ }
+
+ ctx->ciphermode = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
+ if (!ctx->ciphermode)
+ return -ENOMEM;
+
+ ctx->algname = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
+ if (!ctx->algname) {
+ ret = -ENOMEM;
+ goto free_ciphermode;
+ }
+
+ strlcpy(ctx->algname, algname, CRYPTO_MAX_ALG_NAME);
+ algname = ctx->algname;
+
+ /* Parse the algorithm name 'ivmode(ciphermode)' */
+ ctx->ivmode = strsep(&algname, "(");
+ strlcpy(ctx->ciphermode, algname, CRYPTO_MAX_ALG_NAME);
+ ctx->ciphermode[strlen(algname) - 1] = '\0';
+
+ DMDEBUG("ciphermode=%s, ivmode=%s\n", ctx->ciphermode, ctx->ivmode);
+
+ /*
+ * Usually the underlying cipher instances are spawned here, but since
+ * the value of tfms_count (which is equal to the key_count) is not
+ * known yet, create only one instance and delay the creation of the
+ * rest of the instances of the underlying cipher 'cbc(aes)' until
+ * the setkey operation is invoked.
+ * The first instance created i.e. ctx->child will later be assigned as
+ * the 1st element in the array ctx->tfms. Creation of atleast one
+ * instance of the cipher is necessary to be created here to uncover
+ * any errors earlier than during the setkey operation later where the
+ * remaining instances are created.
+ */
+ if (is_crypto_aead)
+ ctx->tfm_child.tfm_aead = crypto_alloc_aead(ctx->ciphermode, 0, 0);
+ else
+ ctx->tfm_child.tfm = crypto_alloc_skcipher(ctx->ciphermode, 0, 0);
+ if (IS_ERR(ctx->tfm_child.tfm)) {
+ ret = PTR_ERR(ctx->tfm_child.tfm);
+ DMERR("Failed to create cipher %s. err %d\n",
+ ctx->ciphermode, ret);
+ goto free_algname;
+ }
+
+ /* Setup the current cipher's request structure */
+ if (is_crypto_aead) {
+ reqsize = sizeof(struct geniv_req_ctx) + __alignof__(struct geniv_req_ctx);
+ crypto_aead_set_reqsize(tfm_aead, reqsize);
+
+ ctx->iv_start = sizeof(struct geniv_subreq);
+ ctx->iv_start += crypto_aead_reqsize(ctx->tfm_child.tfm_aead);
+
+ ctx->iv_size = crypto_aead_ivsize(tfm_aead);
+ } else {
+ reqsize = sizeof(struct geniv_req_ctx) + __alignof__(struct geniv_req_ctx);
+ crypto_skcipher_set_reqsize(tfm, reqsize);
+
+ ctx->iv_start = sizeof(struct geniv_subreq);
+ ctx->iv_start += crypto_skcipher_reqsize(ctx->tfm_child.tfm);
+
+ ctx->iv_size = crypto_skcipher_ivsize(tfm);
+ }
+ /* at least a 64 bit sector number should fit in our buffer */
+ if (ctx->iv_size)
+ ctx->iv_size = max(ctx->iv_size,
+ (unsigned int)(sizeof(u64) / sizeof(u8)));
+
+ if (is_crypto_aead) {
+ if (crypto_aead_alignmask(tfm_aead) < CRYPTO_MINALIGN) {
+ /* Allocate the padding exactly */
+ iv_size_padding = -ctx->iv_start
+ & crypto_aead_alignmask(ctx->tfm_child.tfm_aead);
+ } else {
+ /*
+ * If the cipher requires greater alignment than kmalloc
+ * alignment, we don't know the exact position of the
+ * initialization vector. We must assume worst case.
+ */
+ iv_size_padding = crypto_aead_alignmask(ctx->tfm_child.tfm_aead);
+ }
+ } else {
+ if (crypto_skcipher_alignmask(tfm) < CRYPTO_MINALIGN) {
+ iv_size_padding = -ctx->iv_start
+ & crypto_skcipher_alignmask(ctx->tfm_child.tfm);
+ } else {
+ iv_size_padding = crypto_skcipher_alignmask(ctx->tfm_child.tfm);
+ }
+ }
+
+ /* create memory pool for sub-request structure
+ * ...| IV + padding | original IV | original sec. number | bio tag offset |
+ */
+ psize = ctx->iv_start + iv_size_padding + ctx->iv_size + ctx->iv_size +
+ sizeof(uint64_t) + sizeof(unsigned int);
+
+ ctx->subreq_pool = mempool_create_kmalloc_pool(MIN_IOS, psize);
+ if (!ctx->subreq_pool) {
+ ret = -ENOMEM;
+ DMERR("Could not allocate crypt sub-request mempool\n");
+ goto free_tfm;
+ }
+
+ ret = geniv_blkdev_cipher(ctx, is_crypto_aead);
+ if (ret < 0) {
+ ret = -ENOMEM;
+ DMERR("Cannot allocate cipher string\n");
+ goto free_tfm;
+ }
+
+ return 0;
+
+free_tfm:
+ if (is_crypto_aead)
+ crypto_free_aead(ctx->tfm_child.tfm_aead);
+ else
+ crypto_free_skcipher(ctx->tfm_child.tfm);
+free_algname:
+ kfree(ctx->algname);
+free_ciphermode:
+ kfree(ctx->ciphermode);
+ return ret;
+}
+
+static int geniv_skcipher_init_tfm(struct crypto_skcipher *tfm)
+{
+ return geniv_init_tfm(tfm, 0);
+}
+
+static int geniv_aead_init_tfm(struct crypto_aead *tfm)
+{
+ return geniv_init_tfm(tfm, 1);
+}
+
+static void geniv_exit_tfm(struct geniv_ctx *ctx)
+{
+ if (ctx->iv_gen_ops && ctx->iv_gen_ops->dtr)
+ ctx->iv_gen_ops->dtr(ctx);
+
+ mempool_destroy(ctx->subreq_pool);
+ geniv_free_tfms(ctx);
+ kzfree(ctx->ciphermode);
+ kzfree(ctx->algname);
+ kzfree(ctx->cipher);
+}
+
+static void geniv_skcipher_exit_tfm(struct crypto_skcipher *tfm)
+{
+ struct geniv_ctx *ctx = crypto_skcipher_ctx(tfm);
+
+ geniv_exit_tfm(ctx);
+}
+
+static void geniv_aead_exit_tfm(struct crypto_aead *tfm)
+{
+ struct geniv_ctx *ctx = crypto_aead_ctx(tfm);
+
+ geniv_exit_tfm(ctx);
+}
+
+static void geniv_skcipher_free(struct skcipher_instance *inst)
+{
+ struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
+
+ crypto_drop_skcipher(spawn);
+ kfree(inst);
+}
+
+static void geniv_aead_free(struct aead_instance *inst)
+{
+ struct crypto_aead_spawn *spawn = aead_instance_ctx(inst);
+
+ crypto_drop_aead(spawn);
+ kfree(inst);
+}
+
+static int geniv_skcipher_create(struct crypto_template *tmpl,
+ struct rtattr **tb, char *algname)
+{
+ struct crypto_attr_type *algt;
+ struct skcipher_instance *inst;
+ struct skcipher_alg *alg;
+ struct crypto_skcipher_spawn *spawn;
+ const char *cipher_name;
+ int err;
+
+ algt = crypto_get_attr_type(tb);
+
+ cipher_name = crypto_attr_alg_name(tb[1]);
+
+ if (IS_ERR(cipher_name))
+ return PTR_ERR(cipher_name);
+
+ inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
+ if (!inst)
+ return -ENOMEM;
+
+ spawn = skcipher_instance_ctx(inst);
+
+ crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
+ err = crypto_grab_skcipher(spawn, cipher_name, 0,
+ crypto_requires_sync(algt->type,
+ algt->mask));
+
+ if (err)
+ goto err_free_inst;
+
+ alg = crypto_spawn_skcipher_alg(spawn);
+
+ err = -EINVAL;
+
+ /* Only support blocks of size which is of a power of 2 */
+ if (!is_power_of_2(alg->base.cra_blocksize))
+ goto err_drop_spawn;
+
+ /* algname: essiv, base.cra_name: cbc(aes) */
+ err = -ENAMETOOLONG;
+ if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
+ algname, alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
+ goto err_drop_spawn;
+ if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
+ "%s(%s)", algname, alg->base.cra_driver_name) >=
+ CRYPTO_MAX_ALG_NAME)
+ goto err_drop_spawn;
+
+ inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
+ inst->alg.base.cra_priority = alg->base.cra_priority;
+ inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
+ inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
+ inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
+ inst->alg.ivsize = alg->base.cra_blocksize;
+ inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
+ inst->alg.min_keysize = sizeof(struct geniv_key_info);
+ inst->alg.max_keysize = sizeof(struct geniv_key_info);
+
+ inst->alg.setkey = geniv_skcipher_setkey;
+ inst->alg.encrypt = geniv_skcipher_encrypt;
+ inst->alg.decrypt = geniv_skcipher_decrypt;
+
+ inst->alg.base.cra_ctxsize = sizeof(struct geniv_ctx);
+
+ inst->alg.init = geniv_skcipher_init_tfm;
+ inst->alg.exit = geniv_skcipher_exit_tfm;
+
+ inst->free = geniv_skcipher_free;
+
+ err = skcipher_register_instance(tmpl, inst);
+ if (err)
+ goto err_drop_spawn;
+
+out:
+ return err;
+
+err_drop_spawn:
+ crypto_drop_skcipher(spawn);
+err_free_inst:
+ kfree(inst);
+ goto out;
+}
+
+
+static int geniv_aead_create(struct crypto_template *tmpl,
+ struct rtattr **tb, char *algname)
+{
+ struct crypto_attr_type *algt;
+ struct aead_instance *inst;
+ struct aead_alg *alg;
+ struct crypto_aead_spawn *spawn;
+ const char *cipher_name;
+ int err;
+
+ algt = crypto_get_attr_type(tb);
+
+ cipher_name = crypto_attr_alg_name(tb[1]);
+ if (IS_ERR(cipher_name))
+ return PTR_ERR(cipher_name);
+
+ inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
+ if (!inst)
+ return -ENOMEM;
+
+ spawn = aead_instance_ctx(inst);
+
+ crypto_set_aead_spawn(spawn, aead_crypto_instance(inst));
+ err = crypto_grab_aead(spawn, cipher_name, 0,
+ crypto_requires_sync(algt->type,
+ algt->mask));
+ if (err)
+ goto err_free_inst;
+
+ alg = crypto_spawn_aead_alg(spawn);
+
+ /* Only support blocks of size which is of a power of 2 */
+ if (!is_power_of_2(alg->base.cra_blocksize)) {
+ err = -EINVAL;
+ goto err_drop_spawn;
+ }
+
+ /* algname: essiv, base.cra_name: cbc(aes) */
+ if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
+ algname, alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) {
+ err = -ENAMETOOLONG;
+ goto err_drop_spawn;
+ }
+
+ if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
+ "%s(%s)", algname, alg->base.cra_driver_name) >=
+ CRYPTO_MAX_ALG_NAME) {
+ err = -ENAMETOOLONG;
+ goto err_drop_spawn;
+ }
+
+ inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
+ inst->alg.base.cra_priority = alg->base.cra_priority;
+ inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
+ inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
+ inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
+ inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
+ inst->alg.chunksize = crypto_aead_alg_chunksize(alg);
+ inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
+
+ inst->alg.setkey = geniv_aead_setkey;
+ inst->alg.encrypt = geniv_aead_encrypt;
+ inst->alg.decrypt = geniv_aead_decrypt;
+
+ inst->alg.base.cra_ctxsize = sizeof(struct geniv_ctx);
+
+ inst->alg.init = geniv_aead_init_tfm;
+ inst->alg.exit = geniv_aead_exit_tfm;
+
+ inst->free = geniv_aead_free;
+
+ err = aead_register_instance(tmpl, inst);
+ if (err)
+ goto err_drop_spawn;
+
+ return 0;
+
+err_drop_spawn:
+ crypto_drop_aead(spawn);
+err_free_inst:
+ kfree(inst);
+ return err;
+}
+
+static int geniv_create(struct crypto_template *tmpl,
+ struct rtattr **tb, char *algname)
+{
+ if (!crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER))
+ return geniv_skcipher_create(tmpl, tb, algname);
+ else if (!crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AEAD))
+ return geniv_aead_create(tmpl, tb, algname);
+ else
+ return -EINVAL;
+}
+
+static int geniv_template_create(struct crypto_template *tmpl,
+ struct rtattr **tb)
+{
+ return geniv_create(tmpl, tb, tmpl->name);
+}
+
+#define DEFINE_CRYPTO_TEMPLATE(type) \
+ { .name = type, \
+ .create = geniv_template_create, \
+ .module = THIS_MODULE, },
+
+static struct crypto_template geniv_tmpl[IV_TYPE_NUM] = {
+ DEFINE_CRYPTO_TEMPLATE("plain")
+ DEFINE_CRYPTO_TEMPLATE("plain64")
+ DEFINE_CRYPTO_TEMPLATE("essiv")
+ DEFINE_CRYPTO_TEMPLATE("benbi")
+ DEFINE_CRYPTO_TEMPLATE("null")
+ DEFINE_CRYPTO_TEMPLATE("lmk")
+ DEFINE_CRYPTO_TEMPLATE("tcw")
+ DEFINE_CRYPTO_TEMPLATE("random")
+};
+
+static int __init geniv_init(void)
+{
+ return crypto_register_template_array(geniv_tmpl, IV_TYPE_NUM);
+}
+
+static void __exit geniv_exit(void)
+{
+ crypto_unregister_template_array(geniv_tmpl, IV_TYPE_NUM);
+}
+
+module_init(geniv_init);
+module_exit(geniv_exit);
+
+MODULE_AUTHOR("Xiongfeng Wang <xiongfeng.wang@xxxxxxxxxx>");
+MODULE_DESCRIPTION(DM_NAME " IV Generation Template ");
+MODULE_LICENSE("GPL");
diff --git a/include/crypto/geniv.h b/include/crypto/geniv.h
new file mode 100644
index 0000000..d8084fc
--- /dev/null
+++ b/include/crypto/geniv.h
@@ -0,0 +1,47 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * geniv.h: common interface for IV generation algorithms
+ *
+ * Copyright (C) 2018, Linaro
+ *
+ * This file define the data structure the user should pass to the template.
+ */
+
+#ifndef _CRYPTO_GENIV_H
+#define _CRYPTO_GENIV_H
+
+#include <linux/types.h>
+
+enum cipher_flags {
+ CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
+ CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
+};
+
+enum setkey_op {
+ SETKEY_OP_INIT,
+ SETKEY_OP_SET,
+ SETKEY_OP_WIPE,
+};
+
+struct geniv_key_info {
+ enum setkey_op keyop;
+ unsigned int tfms_count;
+ u8 *key;
+ char *ivopts;
+ sector_t iv_offset;
+ unsigned long cipher_flags;
+
+ unsigned short int sector_size;
+ unsigned int key_size;
+ unsigned int key_parts;
+ unsigned int key_mac_size;
+ unsigned int on_disk_tag_size;
+};
+
+struct geniv_req_info {
+ sector_t cc_sector;
+ unsigned int nents;
+ u8 *integrity_metadata;
+};
+
+#endif
--
1.7.12.4