Re: [RFC PATCH 5/6] x86/alternatives: use temporary mm for text poking

From: Peter Zijlstra
Date: Wed Aug 29 2018 - 05:28:53 EST


On Wed, Aug 29, 2018 at 01:11:46AM -0700, Nadav Amit wrote:
> +static void text_poke_fixmap(void *addr, const void *opcode, size_t len,
> + struct page *pages[2])
> +{
> + u8 *vaddr;
> +
> + set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
> + if (pages[1])
> + set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
> + vaddr = (u8 *)fix_to_virt(FIX_TEXT_POKE0);
> + memcpy(vaddr + offset_in_page(addr), opcode, len);
> +
> + /*
> + * clear_fixmap() performs a TLB flush, so no additional TLB
> + * flush is needed.
> + */
> + clear_fixmap(FIX_TEXT_POKE0);
> + if (pages[1])
> + clear_fixmap(FIX_TEXT_POKE1);
> + sync_core();
> + /* Could also do a CLFLUSH here to speed up CPU recovery; but
> + that causes hangs on some VIA CPUs. */

Please take this opportunity to fix that comment style.

> +}
> +
> +__ro_after_init struct mm_struct *poking_mm;
> +__ro_after_init unsigned long poking_addr;
> +
> +/**
> + * text_poke_safe() - Pokes the text using a separate address space.
> + *
> + * This is the preferable way for patching the kernel after boot, as it does not
> + * allow other cores to accidentally or maliciously modify the code using the
> + * temporary PTEs.
> + */
> +static void text_poke_safe(void *addr, const void *opcode, size_t len,
> + struct page *pages[2])
> +{
> + temporary_mm_state_t prev;
> + pte_t pte, *ptep;
> + spinlock_t *ptl;
> +
> + /*
> + * The lock is not really needed, but this allows to avoid open-coding.
> + */
> + ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
> +
> + pte = mk_pte(pages[0], PAGE_KERNEL);
> + set_pte_at(poking_mm, poking_addr, ptep, pte);
> +
> + if (pages[1]) {
> + pte = mk_pte(pages[1], PAGE_KERNEL);
> + set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
> + }
> +
> + /*
> + * Loading the temporary mm behaves as a compiler barrier, which
> + * guarantees that the PTE will be set at the time memcpy() is done.
> + */
> + prev = use_temporary_mm(poking_mm);
> +
> + memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
> +
> + /*
> + * Ensure that the PTE is only cleared after copying is done by using a
> + * compiler barrier.
> + */
> + barrier();

I tripped over the use of 'done', because even with TSO the store isn't
done once the instruction retires.

All we want to ensure is that the pte_clear() store is issued after the
copy, and that is indeed guaranteed by this.

> + pte_clear(poking_mm, poking_addr, ptep);
> +
> + /*
> + * __flush_tlb_one_user() performs a redundant TLB flush when PTI is on,
> + * as it also flushes the corresponding "user" address spaces, which
> + * does not exist.
> + *
> + * Poking, however, is already very inefficient since it does not try to
> + * batch updates, so we ignore this problem for the time being.
> + *
> + * Since the PTEs do not exist in other kernel address-spaces, we do
> + * not use __flush_tlb_one_kernel(), which when PTI is on would cause
> + * more unwarranted TLB flushes.
> + */

yuck :-), but yeah.

> + __flush_tlb_one_user(poking_addr);
> + if (pages[1]) {
> + pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
> + __flush_tlb_one_user(poking_addr + PAGE_SIZE);
> + }
> + /*
> + * Loading the previous page-table hierarchy requires a serializing
> + * instruction that already allows the core to see the updated version.
> + * Xen-PV is assumed to serialize execution in a similar manner.
> + */
> + unuse_temporary_mm(prev);
> +
> + pte_unmap_unlock(ptep, ptl);
> +}