Re: [RFC v5 1/1] ns: add binfmt_misc to the user namespace

From: Laurent Vivier
Date: Tue Oct 09 2018 - 12:58:29 EST


Le 09/10/2018 Ã 18:53, Jann Horn a ÃcritÂ:
> On Tue, Oct 9, 2018 at 6:45 PM Laurent Vivier <laurent@xxxxxxxxx> wrote:
>> Le 09/10/2018 Ã 18:15, Kirill Tkhai a Ãcrit :
>>> On 09.10.2018 13:37, Laurent Vivier wrote:
>>>> This patch allows to have a different binfmt_misc configuration
>>>> for each new user namespace. By default, the binfmt_misc configuration
>>>> is the one of the previous level, but if the binfmt_misc filesystem is
>>>> mounted in the new namespace a new empty binfmt instance is created and
>>>> used in this namespace.
>>>>
>>>> For instance, using "unshare" we can start a chroot of an another
>>>> architecture and configure the binfmt_misc interpreter without being root
>>>> to run the binaries in this chroot.
>>>>
>>>> Signed-off-by: Laurent Vivier <laurent@xxxxxxxxx>
>>>> ---
>>>> fs/binfmt_misc.c | 106 ++++++++++++++++++++++++---------
>>>> include/linux/user_namespace.h | 13 ++++
>>>> kernel/user.c | 13 ++++
>>>> kernel/user_namespace.c | 3 +
>>>> 4 files changed, 107 insertions(+), 28 deletions(-)
>>>>
>>>> diff --git a/fs/binfmt_misc.c b/fs/binfmt_misc.c
>>>> index aa4a7a23ff99..1e0029d097d9 100644
>>>> --- a/fs/binfmt_misc.c
>>>> +++ b/fs/binfmt_misc.c
>> ...
>>>> @@ -80,18 +74,32 @@ static int entry_count;
>>>> */
>>>> #define MAX_REGISTER_LENGTH 1920
>>>>
>>>> +static struct binfmt_namespace *binfmt_ns(struct user_namespace *ns)
>>>> +{
>>>> + struct binfmt_namespace *b_ns;
>>>> +
>>>> + while (ns) {
>>>> + b_ns = READ_ONCE(ns->binfmt_ns);
>>>> + if (b_ns)
>>>> + return b_ns;
>>>> + ns = ns->parent;
>>>> + }
>>>> + WARN_ON_ONCE(1);
>>>> + return NULL;
>>>> +}
>>>> +
>> ...
>>>> @@ -823,12 +847,34 @@ static const struct super_operations s_ops = {
>>>> static int bm_fill_super(struct super_block *sb, void *data, int silent)
>>>> {
>>>> int err;
>>>> + struct user_namespace *ns = sb->s_user_ns;
>>>> static const struct tree_descr bm_files[] = {
>>>> [2] = {"status", &bm_status_operations, S_IWUSR|S_IRUGO},
>>>> [3] = {"register", &bm_register_operations, S_IWUSR},
>>>> /* last one */ {""}
>>>> };
>>>>
>>>> + /* create a new binfmt namespace
>>>> + * if we are not in the first user namespace
>>>> + * but the binfmt namespace is the first one
>>>> + */
>>>> + if (READ_ONCE(ns->binfmt_ns) == NULL) {
>>>> + struct binfmt_namespace *new_ns;
>>>> +
>>>> + new_ns = kmalloc(sizeof(struct binfmt_namespace),
>>>> + GFP_KERNEL);
>>>> + if (new_ns == NULL)
>>>> + return -ENOMEM;
>>>> + INIT_LIST_HEAD(&new_ns->entries);
>>>> + new_ns->enabled = 1;
>>>> + rwlock_init(&new_ns->entries_lock);
>>>> + new_ns->bm_mnt = NULL;
>>>> + new_ns->entry_count = 0;
>>>> + /* ensure new_ns is completely initialized before sharing it */
>>>> + smp_wmb();
>>>
>>> (I haven't dived into patch logic, here just small barrier remark from quick sight).
>>> smp_wmb() has no sense without paired smp_rmb() on the read side. Possible,
>>> you want something like below in read hunk:
>>>
>>> + b_ns = READ_ONCE(ns->binfmt_ns);
>>> + if (b_ns) {
>>> + smp_rmb();
>>> + return b_ns;
>>> + }
>>>
>>>
>>
>> The write barrier is here to ensure the structure is fully written
>> before we set the pointer.
>>
>> I don't understand how read barrier can change something at this level,
>> IMHO the couple WRITE_ONCE()/READ_ONCE() should be enough to ensure we
>> have correctly initialized the pointer and the structure when we read
>> the pointer back.
>>
>> I think the pointer itself is the "barrier" to access the memory
>> modified before.
>
> Things don't work that way on alpha, but that's why READ_ONCE()
> includes an smp_read_barrier_depends():
>
> #define __READ_ONCE(x, check) \
> ({ \
> union { typeof(x) __val; char __c[1]; } __u; \
> if (check) \
> __read_once_size(&(x), __u.__c, sizeof(x)); \
> else \
> __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
> smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
> __u.__val; \
> })
> #define READ_ONCE(x) __READ_ONCE(x, 1)
>

So my questions are:

- do we need a smp_wmb() barrier if we use READ_ONCE() and WRITE_ONCE()?

- if we need an smp_wmb() barrier, do we need an smp_rmb() barrier as
the data we want to "protect" are behind an access to the pointer?

Thanks,
Laurent