[PATCH 08/18] soc: qcom: ipa: the generic software interface
From: Alex Elder
Date: Sat May 11 2019 - 21:28:01 EST
This patch includes "gsi.c", which implements the generic software
interface (GSI) for IPA. The generic software interface abstracts
channels, which provide a means of transferring data either from the
AP to the IPA, or from the IPA to the AP. A ring buffer of "transfer
elements" (TREs) is used to describe data transfers to perform. The
AP writes a doorbell register associated with a channel to let it know
it has added new entries (for an AP->IPA channel) or has finished
processing entries (for an IPA->AP channel).
Each channel also has an event ring buffer, used by the IPA to
communicate information about events related to a channel (for
example, the completion of TREs). The IPA writes its own doorbell
register, which triggers an interrupt on the AP, to signal that
new event information has arrived.
Signed-off-by: Alex Elder <elder@xxxxxxxxxx>
---
drivers/net/ipa/gsi.c | 1741 +++++++++++++++++++++++++++++++++++++++++
1 file changed, 1741 insertions(+)
create mode 100644 drivers/net/ipa/gsi.c
diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c
new file mode 100644
index 000000000000..e9dd40c058c6
--- /dev/null
+++ b/drivers/net/ipa/gsi.c
@@ -0,0 +1,1741 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
+ * Copyright (C) 2018-2019 Linaro Ltd.
+ */
+
+#include <linux/types.h>
+#include <linux/bits.h>
+#include <linux/bitfield.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/completion.h>
+#include <linux/io.h>
+#include <linux/bug.h>
+#include <linux/interrupt.h>
+#include <linux/platform_device.h>
+#include <linux/netdevice.h>
+
+#include "gsi.h"
+#include "gsi_reg.h"
+#include "gsi_private.h"
+#include "gsi_trans.h"
+#include "ipa_gsi.h"
+#include "ipa_data.h"
+
+/**
+ * DOC: The IPA Generic Software Interface
+ *
+ * The generic software interface (GSI) is an integral component of the IPA,
+ * providing a well-defined communication layer between the AP subsystem
+ * and the IPA core. The modem uses the GSI layer as well.
+ *
+ * -------- ---------
+ * | | | |
+ * | AP +<---. .----+ Modem |
+ * | +--. | | .->+ |
+ * | | | | | | | |
+ * -------- | | | | ---------
+ * v | v |
+ * --+-+---+-+--
+ * | GSI |
+ * |-----------|
+ * | |
+ * | IPA |
+ * | |
+ * -------------
+ *
+ * In the above diagram, the AP and Modem represent "execution environments"
+ * (EEs), which are independent operating environments that use the IPA for
+ * data transfer.
+ *
+ * Each EE uses a set of unidirectional GSI "channels," which allow transfer
+ * of data to or from the IPA. A channel is implemented as a ring buffer,
+ * with a DRAM-resident array of "transfer elements" (TREs) available to
+ * describe transfers to or from other EEs through the IPA. A transfer
+ * element can also contain an immediate command, requesting the IPA perform
+ * actions other than data transfer.
+ *
+ * Each TRE refers to a block of data--also located DRAM. After writing one
+ * or more TREs to a channel, the writer (either the IPA or an EE) writes a
+ * doorbell register to inform the receiving side how many elements have
+ * been written. Writing to a doorbell register triggers an interrupt on
+ * the receiver.
+ *
+ * Each channel has a GSI "event ring" associated with it. An event ring
+ * is implemented very much like a channel ring, but is always directed from
+ * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
+ * events by adding an entry to the event ring associated with the channel;
+ * when it writes the event ring's doorbell register the EE is interrupted.
+ * Each entry in an event ring contains a pointer to the channel TRE whose
+ * completion the event represents.
+ *
+ * Each TRE in a channel ring has a set of flags. One flag indicates whether
+ * the completion of the transfer operation generates an entry (and possibly
+ * an interrupt) in the channel's event ring. Oother flags allow transfer
+ * elements to be chained together, forming a single logical transaction.
+ * TRE flags are used to control whether and when interrupts are generated
+ * to signal completion of channel transfers.
+ *
+ * Elements in channel and event rings are completed (or consumed) strictly
+ * in order. Completion of one entry implies the completion of all preceding
+ * entries. A single completion interrupt can communicate the completion of
+ * many transfers.
+ *
+ * Note that all GSI registers are little-endian, which is the assumed
+ * endianness of I/O space accesses. The accessor functions perform byte
+ * swapping if needed (i.e., for a big endian CPU).
+ */
+
+/* Delay period for interrupt moderation (in 32KHz IPA timer ticks) */
+#define IPA_GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
+
+#define GSI_CMD_TIMEOUT 5 /* seconds */
+
+#define GSI_MHI_ER_START 10 /* First reserved event number */
+#define GSI_MHI_ER_END 16 /* Last reserved event number */
+
+#define GSI_RESET_WA_MIN_SLEEP 1000 /* microseconds */
+#define GSI_RESET_WA_MAX_SLEEP 2000 /* microseconds */
+
+#define GSI_ISR_MAX_ITER 50
+
+/* Hardware values from the error log register error code field */
+enum gsi_err_code {
+ GSI_INVALID_TRE_ERR = 0x1,
+ GSI_OUT_OF_BUFFERS_ERR = 0x2,
+ GSI_OUT_OF_RESOURCES_ERR = 0x3,
+ GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4,
+ GSI_EVT_RING_EMPTY_ERR = 0x5,
+ GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6,
+ GSI_HWO_1_ERR = 0x8,
+};
+
+/* Hardware values from the error log register error type field */
+enum gsi_err_type {
+ GSI_ERR_TYPE_GLOB = 0x1,
+ GSI_ERR_TYPE_CHAN = 0x2,
+ GSI_ERR_TYPE_EVT = 0x3,
+};
+
+/* Fields in an error log register at GSI_ERROR_LOG_OFFSET */
+#define GSI_LOG_ERR_ARG3_FMASK GENMASK(3, 0)
+#define GSI_LOG_ERR_ARG2_FMASK GENMASK(7, 4)
+#define GSI_LOG_ERR_ARG1_FMASK GENMASK(11, 8)
+#define GSI_LOG_ERR_CODE_FMASK GENMASK(15, 12)
+#define GSI_LOG_ERR_VIRT_IDX_FMASK GENMASK(23, 19)
+#define GSI_LOG_ERR_TYPE_FMASK GENMASK(27, 24)
+#define GSI_LOG_ERR_EE_FMASK GENMASK(31, 28)
+
+/* Hardware values used when programming an event ring */
+enum gsi_evt_chtype {
+ GSI_EVT_CHTYPE_MHI_EV = 0x0,
+ GSI_EVT_CHTYPE_XHCI_EV = 0x1,
+ GSI_EVT_CHTYPE_GPI_EV = 0x2,
+ GSI_EVT_CHTYPE_XDCI_EV = 0x3,
+};
+
+/* Hardware values used when programming a channel */
+enum gsi_channel_protocol {
+ GSI_CHANNEL_PROTOCOL_MHI = 0x0,
+ GSI_CHANNEL_PROTOCOL_XHCI = 0x1,
+ GSI_CHANNEL_PROTOCOL_GPI = 0x2,
+ GSI_CHANNEL_PROTOCOL_XDCI = 0x3,
+};
+
+/* Hardware values representing an event ring immediate command opcode */
+enum gsi_evt_ch_cmd_opcode {
+ GSI_EVT_ALLOCATE = 0x0,
+ GSI_EVT_RESET = 0x9,
+ GSI_EVT_DE_ALLOC = 0xa,
+};
+
+/* Hardware values representing a channel immediate command opcode */
+enum gsi_ch_cmd_opcode {
+ GSI_CH_ALLOCATE = 0x0,
+ GSI_CH_START = 0x1,
+ GSI_CH_STOP = 0x2,
+ GSI_CH_RESET = 0x9,
+ GSI_CH_DE_ALLOC = 0xa,
+ GSI_CH_DB_STOP = 0xb,
+};
+
+/** gsi_gpi_channel_scratch - GPI protocol scratch register
+ *
+ * @max_outstanding_tre:
+ * Defines the maximum number of TREs allowed in a single transaction
+ * on a channel (in Bytes). This determines the amount of prefetch
+ * performed by the hardware. We configure this to equal the size of
+ * the TLV FIFO for the channel.
+ * @outstanding_threshold:
+ * Defines the threshold (in Bytes) determining when the sequencer
+ * should update the channel doorbell. We configure this to equal
+ * the size of two TREs.
+ */
+struct gsi_gpi_channel_scratch {
+ u64 rsvd1;
+ u16 rsvd2;
+ u16 max_outstanding_tre;
+ u16 rsvd3;
+ u16 outstanding_threshold;
+} __packed;
+
+/** gsi_channel_scratch - channel scratch configuration area
+ *
+ * The exact interpretation of this register is protocol-specific.
+ * We only use GPI channels; see struct gsi_gpi_channel_scratch, above.
+ */
+union gsi_channel_scratch {
+ struct gsi_gpi_channel_scratch gpi;
+ struct {
+ u32 word1;
+ u32 word2;
+ u32 word3;
+ u32 word4;
+ } data;
+} __packed;
+
+/* Enable or disable an event interrupt */
+static void
+_gsi_irq_control_event(struct gsi *gsi, u32 evt_ring_id, bool enable)
+{
+ u32 mask = BIT(evt_ring_id);
+ u32 val;
+
+ if (enable)
+ gsi->event_enable_bitmap |= mask;
+ else
+ gsi->event_enable_bitmap &= ~mask;
+
+ val = gsi->event_enable_bitmap;
+ iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+}
+
+static void gsi_irq_enable_event(struct gsi *gsi, u32 evt_ring_id)
+{
+ _gsi_irq_control_event(gsi, evt_ring_id, true);
+}
+
+static void gsi_irq_disable_event(struct gsi *gsi, u32 evt_ring_id)
+{
+ _gsi_irq_control_event(gsi, evt_ring_id, false);
+}
+
+/* Enable or disable all interrupt types */
+static void _gsi_irq_control_all(struct gsi *gsi, bool enable)
+{
+ u32 val;
+
+ /* Inter EE commands / interrupt are no supported. */
+ val = enable ? GSI_CNTXT_TYPE_IRQ_MSK_ALL : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
+
+ val = enable ? GENMASK(GSI_CHANNEL_MAX - 1, 0) : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
+
+ val = enable ? GENMASK(GSI_EVT_RING_MAX - 1, 0) : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
+
+ /* IEOB interrupts are managed individually */
+ val = enable ? gsi->event_enable_bitmap : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+
+ val = enable ? GSI_CNTXT_GLOB_IRQ_ALL : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
+
+ /* Never enable GSI_BREAK_POINT */
+ val = enable ? GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK : 0;
+ iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
+}
+
+static void gsi_irq_disable_all(struct gsi *gsi)
+{
+ _gsi_irq_control_all(gsi, false);
+}
+
+static void gsi_irq_enable_all(struct gsi *gsi)
+{
+ _gsi_irq_control_all(gsi, true);
+}
+
+/* Return the channel id associated with a given channel */
+u32 gsi_channel_id(struct gsi_channel *channel)
+{
+ return channel - &channel->gsi->channel[0];
+}
+
+/* Return the hardware's notion of the current state of a channel */
+static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
+{
+ u32 channel_id = gsi_channel_id(channel);
+ struct gsi *gsi = channel->gsi;
+ u32 val;
+
+ val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
+
+ return u32_get_bits(val, CHSTATE_FMASK);
+}
+
+/* Return the hardware's notion of the current state of an event ring */
+static enum gsi_evt_ring_state
+gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
+{
+ u32 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
+
+ return u32_get_bits(val, EV_CHSTATE_FMASK);
+}
+
+/* Channel control interrupt handler */
+static void gsi_isr_chan_ctrl(struct gsi *gsi)
+{
+ u32 channel_mask;
+
+ channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
+ iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
+
+ while (channel_mask) {
+ u32 channel_id = __ffs(channel_mask);
+ struct gsi_channel *channel;
+
+ channel_mask ^= BIT(channel_id);
+
+ channel = &gsi->channel[channel_id];
+ channel->state = gsi_channel_state(channel);
+
+ complete(&channel->completion);
+ }
+}
+
+static void gsi_isr_evt_ctrl(struct gsi *gsi)
+{
+ u32 evt_mask;
+
+ evt_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
+ iowrite32(evt_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
+
+ while (evt_mask) {
+ u32 evt_ring_id = __ffs(evt_mask);
+ struct gsi_evt_ring *evt_ring;
+
+ evt_mask ^= BIT(evt_ring_id);
+
+ evt_ring = &gsi->evt_ring[evt_ring_id];
+ evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
+
+ complete(&evt_ring->completion);
+ }
+}
+
+static void
+gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
+{
+ if (code == GSI_OUT_OF_RESOURCES_ERR) {
+ dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
+ complete(&gsi->channel[channel_id].completion);
+ return;
+ }
+
+ /* Report, but otherwise ignore all other error codes */
+ WARN(true, "channel %u global error ee 0x%08x code 0x%08x\n",
+ channel_id, err_ee, code);
+}
+
+static void
+gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
+{
+ if (code == GSI_OUT_OF_RESOURCES_ERR) {
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ u32 channel_id = gsi_channel_id(evt_ring->channel);
+
+ complete(&evt_ring->completion);
+ dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
+ channel_id);
+ return;
+ }
+
+ /* Report, but otherwise ignore all other error codes */
+ WARN(true, "event ring 0x%08x global error ee %u code 0x%08x\n",
+ evt_ring_id, err_ee, code);
+}
+
+static void gsi_isr_glob_err(struct gsi *gsi)
+{
+ enum gsi_err_type type;
+ enum gsi_err_code code;
+ u32 which;
+ u32 val;
+ u32 ee;
+
+ /* Get the logged error, then reinitialize the log */
+ val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
+ iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
+ iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
+
+ ee = u32_get_bits(val, GSI_LOG_ERR_EE_FMASK);
+ which = u32_get_bits(val, GSI_LOG_ERR_VIRT_IDX_FMASK);
+ type = u32_get_bits(val, GSI_LOG_ERR_TYPE_FMASK);
+ code = u32_get_bits(val, GSI_LOG_ERR_CODE_FMASK);
+
+ if (type == GSI_ERR_TYPE_CHAN)
+ gsi_isr_glob_chan_err(gsi, ee, which, code);
+ else if (type == GSI_ERR_TYPE_EVT)
+ gsi_isr_glob_evt_err(gsi, ee, which, code);
+ else /* type GSI_ERR_TYPE_GLOB should be fatal */
+ WARN(true, "unexpected global error 0x%08x\n", type);
+}
+
+static void gsi_isr_glob_ee(struct gsi *gsi)
+{
+ u32 val;
+
+ val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
+
+ if (val & ERROR_INT_FMASK)
+ gsi_isr_glob_err(gsi);
+
+ iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
+
+ val ^= ERROR_INT_FMASK;
+
+ if (val & EN_GP_INT1_FMASK)
+ dev_err(gsi->dev, "unexpected global INT1\n");
+ val ^= EN_GP_INT1_FMASK;
+
+ WARN(val, "unexpected global interrupt 0x%08x\n", val);
+}
+
+/* Returns true if the interrupt state (enabled or not) changed */
+static bool gsi_channel_intr(struct gsi_channel *channel, bool enable)
+{
+ u32 evt_ring_id = channel->evt_ring_id;
+ struct gsi *gsi = channel->gsi;
+ u32 mask = BIT(evt_ring_id);
+ unsigned long flags;
+ bool different;
+ u32 enabled;
+
+ spin_lock_irqsave(&gsi->spinlock, flags);
+
+ enabled = gsi->event_enable_bitmap & mask;
+ different = enable == !enabled;
+
+ if (different) {
+ if (enabled)
+ gsi_irq_disable_event(channel->gsi, evt_ring_id);
+ else
+ gsi_irq_enable_event(channel->gsi, evt_ring_id);
+ }
+
+ spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+ return different;
+}
+
+/* This function is almost always called in interrupt context,
+ * meaning the interrupt is enabled. The request to disable
+ * the interrupt here will therefore "succeed", that is, it
+ * will disable an enabled interrupt.
+ *
+ * However, this function is also called when cancelling pending
+ * transactions, and when that occurs it's possible interrupts are
+ * already disabled. For that reason we only schedule NAPI if we
+ * actually caused interrupts to become disabled.
+ */
+void gsi_event_handle(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ struct gsi_channel *channel = evt_ring->channel;
+
+ if (gsi_channel_intr(channel, false))
+ napi_schedule(&channel->napi);
+}
+
+static void gsi_isr_ieob(struct gsi *gsi)
+{
+ u32 evt_mask;
+
+ evt_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
+ evt_mask &= ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+ iowrite32(evt_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
+
+ while (evt_mask) {
+ u32 evt_ring_id = __ffs(evt_mask);
+
+ evt_mask ^= BIT(evt_ring_id);
+
+ gsi_event_handle(gsi, evt_ring_id);
+ }
+}
+
+static void gsi_isr_inter_ee_chan_ctrl(struct gsi *gsi)
+{
+ u32 channel_mask;
+
+ channel_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
+ iowrite32(channel_mask, gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_CLR_OFFSET);
+
+ while (channel_mask) {
+ u32 channel_id = __ffs(channel_mask);
+
+ /* not currently expected */
+ dev_err(gsi->dev, "ch %u inter-EE interrupt\n", channel_id);
+ channel_mask ^= BIT(channel_id);
+ }
+}
+
+static void gsi_isr_inter_ee_evt_ctrl(struct gsi *gsi)
+{
+ u32 evt_mask;
+
+ evt_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
+ iowrite32(evt_mask, gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_CLR_OFFSET);
+
+ while (evt_mask) {
+ u32 evt_ring_id = __ffs(evt_mask);
+
+ /* not currently expected */
+ dev_err(gsi->dev, "evt %u inter-EE interrupt\n", evt_ring_id);
+ evt_mask ^= BIT(evt_ring_id);
+ }
+}
+
+static void gsi_isr_general(struct gsi *gsi)
+{
+ u32 val;
+
+ val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
+ iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
+
+ if (val & CLR_BREAK_POINT_FMASK)
+ dev_err(gsi->dev, "breakpoint!\n");
+ val ^= CLR_BREAK_POINT_FMASK;
+
+ WARN(val, "unexpected general interrupt 0x%08x\n", val);
+}
+
+/**
+ * gsi_isr() - Top level GSI interrupt service routine
+ * @irq: Interrupt number (ignored)
+ * @dev_id: Device id pointer supplied to request_irq()
+ *
+ * This is the main handler function registered for the GSI IRQ. The
+ * GSI pointer is supplied as the "device id" value when the handler
+ * is registered, and is provided here. Each type of interrupt has a
+ * separate handler function that is called from here.
+ */
+static irqreturn_t gsi_isr(int irq, void *dev_id)
+{
+ struct gsi *gsi = dev_id;
+ u32 intr_mask;
+ u32 cnt = 0;
+
+ while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
+ /* intr_mask contains bitmask of pending GSI interrupts */
+ do {
+ u32 gsi_intr = BIT(__ffs(intr_mask));
+
+ intr_mask ^= gsi_intr;
+
+ switch (gsi_intr) {
+ case CH_CTRL_FMASK:
+ gsi_isr_chan_ctrl(gsi);
+ break;
+ case EV_CTRL_FMASK:
+ gsi_isr_evt_ctrl(gsi);
+ break;
+ case GLOB_EE_FMASK:
+ gsi_isr_glob_ee(gsi);
+ break;
+ case IEOB_FMASK:
+ gsi_isr_ieob(gsi);
+ break;
+ case INTER_EE_CH_CTRL_FMASK:
+ gsi_isr_inter_ee_chan_ctrl(gsi);
+ break;
+ case INTER_EE_EV_CTRL_FMASK:
+ gsi_isr_inter_ee_evt_ctrl(gsi);
+ break;
+ case GENERAL_FMASK:
+ gsi_isr_general(gsi);
+ break;
+ default:
+ WARN(true, "%s: unrecognized type 0x%08x\n",
+ __func__, gsi_intr);
+ break;
+ }
+ } while (intr_mask);
+
+ if (WARN(++cnt > GSI_ISR_MAX_ITER, "interrupt flood\n"))
+ break;
+ }
+
+ return IRQ_HANDLED;
+}
+
+/* Return the virtual address associated with a 32-bit ring offset */
+void *gsi_ring_virt(struct gsi_ring *ring, u32 offset)
+{
+ return ring->virt + (offset - ring->base);
+}
+
+/* Return the ring index of a 32-bit ring offset */
+u32 ring_index(struct gsi_ring *ring, u32 offset)
+{
+ /* Code assumes channel and event ring elements are the same size */
+ BUILD_BUG_ON(sizeof(struct gsi_tre) !=
+ sizeof(struct gsi_xfer_compl_evt));
+
+ return (offset - ring->base) / sizeof(struct gsi_tre);
+}
+
+/* Return the 32-bit ring offset that precedes the one at the given offset */
+static u32 ring_prev(struct gsi_ring *ring, u32 offset)
+{
+ if (offset == ring->base)
+ offset = ring->end;
+
+ return offset - sizeof(struct gsi_tre);
+}
+
+/* Advance a ring's local write pointer by the given number of slots */
+void gsi_ring_wp_local_add(struct gsi_ring *ring, u32 val)
+{
+ ring->wp_local += val * sizeof(struct gsi_tre);
+ if (ring->wp_local >= ring->end)
+ ring->wp_local -= ring->size;
+}
+
+/* Advance a ring's local read pointer by the given number of slots */
+static void gsi_ring_rp_local_add(struct gsi_ring *ring, u32 val)
+{
+ ring->rp_local += val * sizeof(struct gsi_tre);
+ if (ring->rp_local == ring->end)
+ ring->rp_local -= ring->size;
+}
+
+static void __gsi_evt_tx_update(struct gsi_evt_ring *evt_ring, u32 rp)
+{
+ struct gsi_channel *channel = evt_ring->channel;
+ struct gsi_ring *ring = &evt_ring->ring;
+ struct gsi_xfer_compl_evt *evt;
+ struct gsi_trans *first_trans;
+ struct gsi_trans *last_trans;
+ u32 trans_count;
+ u32 byte_count;
+ u32 tre_offset;
+ u32 tre_index;
+
+ /* Get the first (oldest) un-processed event */
+ evt = gsi_ring_virt(ring, ring->rp_local);
+ /* Get the TRE offset from that, and its associated transaction */
+ tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+ tre_index = ring_index(&channel->tre_ring, tre_offset);
+ first_trans = gsi_channel_trans_mapped(channel, tre_index);
+
+ /* Get the last (newest) un-processed event */
+ evt = gsi_ring_virt(ring, ring_prev(ring, rp));
+ /* Get the TRE offset from that, and its associated transaction */
+ tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+ tre_index = ring_index(&channel->tre_ring, tre_offset);
+ last_trans = gsi_channel_trans_mapped(channel, tre_index);
+
+ /* Report the total number of transactions and bytes that have
+ * been transferred, *including* the last one.
+ */
+ trans_count = last_trans->trans_count - first_trans->trans_count + 1;
+ byte_count = last_trans->byte_count - first_trans->byte_count;
+ byte_count += last_trans->len;
+
+ ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
+ trans_count, byte_count);
+}
+
+/**
+ * __gsi_evt_rx_update() - Record lengths of received data
+ * @evt_ring: Event ring associated with channel that received packets
+ * @ep: Last event in the ring associated with a completed request
+ *
+ * Events for RX channels contain the actual number of bytes received into
+ * the buffer. Every event has a transaction associated with it, and here
+ * we update each transaction's result code to record the received length.
+ *
+ * This function is called whenever we learn that the GSI hardware has filled
+ * new events since the last time we checked. We need to update transaction
+ * lengths for events starting at the ring's rp_local up to (and including)
+ * the ring offset supplied as an argument.
+ *
+ * Events are sequential within the event ring, and transactions are
+ * sequential within the transaction pool. We compute the first event's
+ * transaction pointer; the next event's transaction will just next one in
+ * the transaction pool.
+ *
+ * Note that @rp always points to an element *within* the event ring.
+ */
+static void __gsi_evt_rx_update(struct gsi_evt_ring *evt_ring, u32 rp)
+{
+ struct gsi_channel *channel = evt_ring->channel;
+ struct gsi_ring *ring = &evt_ring->ring;
+ struct gsi_xfer_compl_evt *evt_last;
+ struct gsi_xfer_compl_evt *evt_end;
+ struct gsi_trans_info *trans_info;
+ struct gsi_xfer_compl_evt *evt;
+ struct gsi_trans *trans_end;
+ struct gsi_trans *trans;
+ u32 byte_count = 0;
+ u32 tre_offset;
+ u32 tre_index;
+
+ /* Start with the first un-processed event */
+ evt = gsi_ring_virt(ring, ring->rp_local);
+ evt_last = gsi_ring_virt(ring, rp);
+ evt_end = gsi_ring_virt(ring, ring->end);
+
+ /* Event xfer_ptr records the TRE it's associated with */
+ tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+ tre_index = ring_index(&channel->tre_ring, tre_offset);
+ /* Get the transaction mapped to the first unprocessed event */
+ trans = gsi_channel_trans_mapped(channel, tre_index);
+ trans_info = &channel->trans_info;
+ trans_end = &trans_info->pool[trans_info->pool_count];
+
+ do {
+ trans->len = __le16_to_cpu(evt->len);
+ trans->result = __le16_to_cpu(evt->len);
+ byte_count += trans->result;
+ if (++evt == evt_end)
+ evt = gsi_ring_virt(&evt_ring->ring, ring->base);
+ if (++trans == trans_end)
+ trans = &trans_info->pool[0];
+ } while (evt != evt_last);
+
+ /* We record RX bytes when they are received */
+ channel->byte_count += byte_count;
+ channel->trans_count++;
+}
+
+static void
+gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ u32 val;
+
+ /* We only need to write the lower 32 bits */
+ val = evt_ring->ring.wp_local;
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
+}
+
+static u32 gsi_channel_max(struct gsi *gsi)
+{
+ u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
+
+ return u32_get_bits(val, NUM_CH_PER_EE_FMASK);
+}
+
+static u32 gsi_evt_ring_max(struct gsi *gsi)
+{
+ u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
+
+ return u32_get_bits(val, NUM_EV_PER_EE_FMASK);
+}
+
+/* Issue a GSI command by writing a value to a register, then wait
+ * for completion to be signaled. Returns true if successful or
+ * false if a timeout occurred.
+ */
+static void
+gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
+{
+ unsigned long ret;
+
+ reinit_completion(completion);
+
+ iowrite32(val, gsi->virt + reg);
+ ret = wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
+ WARN(!ret, "%s timeout reg 0x%08x val 0x%08x\n", __func__, reg, val);
+}
+
+/* Issue an event ring command and wait for it to complete */
+static void evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
+ enum gsi_evt_ch_cmd_opcode op)
+{
+ struct completion *completion = &gsi->evt_ring[evt_ring_id].completion;
+ u32 val = 0;
+
+ val |= u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
+ val |= u32_encode_bits(op, EV_OPCODE_FMASK);
+
+ gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
+}
+
+/* Issue a channel command and wait for it to complete */
+static void
+gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode op)
+{
+ u32 channel_id = gsi_channel_id(channel);
+ u32 val = 0;
+
+ val |= u32_encode_bits(channel_id, CH_CHID_FMASK);
+ val |= u32_encode_bits(op, CH_OPCODE_FMASK);
+
+ gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, &channel->completion);
+}
+
+static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
+{
+ size_t size = roundup_pow_of_two(count * sizeof(struct gsi_tre));
+ dma_addr_t addr;
+
+ /* Hardware requires a power-of-2 ring size (and alignment) */
+ ring->virt = dma_alloc_coherent(gsi->dev, size, &addr, GFP_KERNEL);
+ if (!ring->virt)
+ return -ENOMEM;
+ ring->addr = addr;
+ ring->base = addr & GENMASK(31, 0);
+ ring->size = size;
+ ring->end = ring->base + size;
+ spin_lock_init(&ring->spinlock);
+
+ return 0;
+}
+
+static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
+{
+ dma_free_coherent(gsi->dev, ring->size, ring->virt, ring->addr);
+ memset(ring, 0, sizeof(*ring));
+}
+
+static void gsi_evt_ring_prime(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ struct gsi_ring *ring = &evt_ring->ring;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ring->spinlock, flags);
+
+ memset(ring->virt, 0, ring->size);
+ /* Point the write pointer at the last element */
+ ring->wp_local = ring_prev(ring, ring->base);
+ gsi_evt_ring_doorbell(gsi, evt_ring_id);
+
+ spin_unlock_irqrestore(&ring->spinlock, flags);
+}
+
+static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ u32 val = 0;
+
+ BUILD_BUG_ON(sizeof(struct gsi_xfer_compl_evt) >
+ field_max(EV_ELEMENT_SIZE_FMASK));
+
+ val |= u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
+ val |= EV_INTYPE_FMASK;
+ val |= u32_encode_bits(sizeof(struct gsi_xfer_compl_evt),
+ EV_ELEMENT_SIZE_FMASK);
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
+
+ val = u32_encode_bits(evt_ring->ring.size, EV_R_LENGTH_FMASK);
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
+
+ /* The context 2 and 3 registers store the low-order and
+ * high-order 32 bits of the address of the event ring,
+ * respectively.
+ */
+ val = evt_ring->ring.base;
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
+
+ val = evt_ring->ring.addr >> 32;
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
+
+ /* Enable interrupt moderation by setting the moderation delay */
+ val = u32_encode_bits(IPA_GSI_EVT_RING_INT_MODT, MODT_FMASK);
+ val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
+ iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
+
+ /* No MSI write data, and MSI address high and low address is 0 */
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
+
+ /* We don't need to get event read pointer updates */
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
+}
+
+static void gsi_ring_init(struct gsi_ring *ring)
+{
+ ring->wp = ring->base;
+ ring->wp_local = ring->base;
+ ring->rp_local = ring->base;
+}
+
+static void gsi_evt_ring_scratch_zero(struct gsi *gsi, u32 evt_ring_id)
+{
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_SCRATCH_0_OFFSET(evt_ring_id));
+ iowrite32(0, gsi->virt + GSI_EV_CH_E_SCRATCH_1_OFFSET(evt_ring_id));
+}
+
+static int gsi_evt_ring_alloc_hw(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ unsigned long flags;
+ u32 val;
+
+ evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
+
+ if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
+ dev_err(gsi->dev, "evt_ring_id %u allocation bad state %u\n",
+ evt_ring_id, evt_ring->state);
+ return -EIO;
+ }
+
+ gsi_evt_ring_program(gsi, evt_ring_id);
+ gsi_ring_init(&evt_ring->ring);
+ gsi_evt_ring_prime(gsi, evt_ring_id);
+
+ spin_lock_irqsave(&gsi->spinlock, flags);
+
+ /* Enable the event interrupt (clear it first in case pending) */
+ val = BIT(evt_ring_id);
+ iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
+ gsi_irq_enable_event(gsi, evt_ring_id);
+
+ spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+ return 0;
+}
+
+static void gsi_evt_ring_free_hw(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ unsigned long flags;
+
+ spin_lock_irqsave(&gsi->spinlock, flags);
+
+ /* Disable the event interrupt */
+ gsi_irq_disable_event(gsi, evt_ring_id);
+
+ spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+ evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
+
+ gsi_evt_ring_program(gsi, evt_ring_id);
+ gsi_ring_init(&evt_ring->ring);
+ gsi_evt_ring_scratch_zero(gsi, evt_ring_id);
+ gsi_evt_ring_prime(gsi, evt_ring_id);
+
+ evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
+}
+
+static int gsi_evt_ring_id_alloc(struct gsi *gsi)
+{
+ u32 evt_ring_id;
+
+ if (gsi->event_bitmap == ~0U)
+ return -ENOSPC;
+
+ evt_ring_id = ffz(gsi->event_bitmap);
+ gsi->event_bitmap |= BIT(evt_ring_id);
+
+ return (int)evt_ring_id;
+}
+
+static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
+{
+ gsi->event_bitmap &= ~BIT(evt_ring_id);
+}
+
+void gsi_channel_doorbell(struct gsi_channel *channel)
+{
+ u32 channel_id = gsi_channel_id(channel);
+ struct gsi *gsi = channel->gsi;
+ u32 val;
+
+ channel->tre_ring.wp = channel->tre_ring.wp_local;
+
+ /* We only need to write the lower 32 bits */
+ val = channel->tre_ring.wp_local;
+ iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
+}
+
+static void __gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id)
+{
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+ u32 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
+ struct gsi_channel *channel = evt_ring->channel;
+ struct gsi_ring *tre_ring = &channel->tre_ring;
+ struct gsi_ring *ring = &evt_ring->ring;
+ u32 rp = ioread32(gsi->virt + offset);
+ struct gsi_xfer_compl_evt *evt;
+ struct gsi_trans *trans;
+ u32 tre_offset;
+ u32 tre_index;
+ u32 rp_last;
+
+ /* If we have nothing new to process we're done */
+ if (ring->rp_local == rp)
+ return;
+
+ /* Extract information from the newly-completed events. For TX
+ * channels, report the number of transferred bytes they represent.
+ * For RX channels, update each transaction with the number of bytes
+ * actually received.
+ */
+ if (channel->toward_ipa)
+ __gsi_evt_tx_update(evt_ring, rp);
+ else
+ __gsi_evt_rx_update(evt_ring, rp);
+
+ /* Get the TRE pointer from the latest completion event, and get
+ * the transaction associated with that. Move all new transactions
+ * up to and including that one to the completed list.
+ */
+ rp_last = ring_prev(ring, rp);
+ evt = gsi_ring_virt(ring, rp_last);
+ tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+ tre_index = ring_index(tre_ring, tre_offset);
+ trans = gsi_channel_trans_mapped(channel, tre_index);
+ gsi_trans_move_complete(trans);
+
+ /* We need nothing more from these TREs, so consume them */
+ tre_ring->rp_local = tre_offset;
+ gsi_ring_rp_local_add(tre_ring, 1);
+
+ /* Record that we're caught up on these events, and give the
+ * completed ones back to the hardware for reuse.
+ */
+ ring->rp_local = rp;
+ ring->wp_local = rp_last;
+ gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id);
+}
+
+/* Consult hardware, move any newly completed transactions to completed list */
+static void gsi_channel_update(struct gsi_channel *channel)
+{
+ struct gsi_evt_ring *evt_ring;
+ unsigned long flags;
+
+ evt_ring = &channel->gsi->evt_ring[channel->evt_ring_id];
+
+ spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+ __gsi_evt_ring_update(channel->gsi, channel->evt_ring_id);
+
+ spin_unlock_irqrestore(&evt_ring->ring.spinlock, flags);
+}
+
+/**
+ * gsi_channel_poll_one() - Return a single completed transaction on a channel
+ * @channel: Channel to be polled
+ *
+ * @Return: Transaction pointer, or null if none are available
+ *
+ * This function returns the first entry on a channel's completed
+ * transaction list. If that list is empty, the hardware is consulted
+ * to determine whether any new transactions have completed. If so,
+ * they're moved to the completed list and the new first entry is
+ * returned. If there are no more completed transactions, a null
+ * pointer is returned.
+ */
+static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
+{
+ struct gsi_trans *trans;
+
+ /* Get the first transaction from the completed list */
+ trans = gsi_channel_trans_complete(channel);
+ if (!trans) {
+ /* List is empty; see if there's more to do */
+ gsi_channel_update(channel);
+ trans = gsi_channel_trans_complete(channel);
+ }
+
+ if (trans)
+ gsi_trans_move_polled(trans);
+
+ return trans;
+}
+
+/**
+ * gsi_channel_poll() - NAPI poll function for a channel
+ * @napi: NAPI structure for the channel
+ * @budget: Budget supplied by NAPI core
+
+ * @channel_id: Channel to be reset
+ *
+ * @Return: Number of items polled (<= budget)
+ *
+ * Single transactions completed by hardware are polled until either
+ * the budget is exhausted, or there are no more. Each transaction
+ * polled is passed to gsi_trans_complete(), to perform remaining
+ * completion processing and retire/free the transaction.
+ */
+static int gsi_channel_poll(struct napi_struct *napi, int budget)
+{
+ struct gsi_channel *channel;
+ int count = 0;
+
+ channel = container_of(napi, struct gsi_channel, napi);
+ while (count < budget) {
+ struct gsi_trans *trans;
+
+ trans = gsi_channel_poll_one(channel);
+ if (!trans)
+ break;
+ gsi_trans_complete(trans);
+ }
+
+ if (count < budget) {
+ napi_complete(&channel->napi);
+ (void)gsi_channel_intr(channel, true);
+ }
+
+ return count;
+}
+
+/* The event bitmap represents which event ids are available for
+ * allocation. Set bits are not available, clear bits can be used.
+ * This function initializes the map so all events supported by the
+ * hardware are available, then precludes any reserved events from
+ * being allocated.
+ */
+static u32 gsi_event_bitmap_init(u32 evt_ring_max)
+{
+ u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
+
+ return event_bitmap | GENMASK(GSI_MHI_ER_END, GSI_MHI_ER_START);
+}
+
+/* Setup function for event rings */
+static int gsi_evt_ring_setup(struct gsi *gsi)
+{
+ u32 evt_ring_max;
+ u32 evt_ring_id;
+
+ evt_ring_max = gsi_evt_ring_max(gsi);
+ dev_dbg(gsi->dev, "evt_ring_max %u\n", evt_ring_max);
+ if (evt_ring_max != GSI_EVT_RING_MAX)
+ return -EIO;
+
+ for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++) {
+ struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+
+ evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
+ if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
+ return -EIO;
+ }
+
+ /* Enable all event interrupts */
+ gsi_irq_enable_all(gsi);
+
+ return 0;
+}
+
+/* Inverse of gsi_evt_ring_setup() */
+static void gsi_evt_ring_teardown(struct gsi *gsi)
+{
+ gsi_irq_disable_all(gsi);
+}
+
+static void gsi_channel_scratch_write(struct gsi_channel *channel)
+{
+ u32 channel_id = gsi_channel_id(channel);
+ struct gsi_gpi_channel_scratch *gpi;
+ union gsi_channel_scratch scr = { };
+ struct gsi *gsi = channel->gsi;
+ u32 val;
+
+ /* See comments above definition of gsi_gpi_channel_scratch */
+ gpi = &scr.gpi;
+ gpi->max_outstanding_tre = channel->data->tlv_count *
+ sizeof(struct gsi_tre);
+ gpi->outstanding_threshold = 2 * sizeof(struct gsi_tre);
+
+ val = scr.data.word1;
+ iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
+
+ val = scr.data.word2;
+ iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
+
+ val = scr.data.word3;
+ iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
+
+ /* We must preserve the upper 16 bits of the last scratch
+ * register. The next sequence assumes those bits remain
+ * unchanged between the read and the write.
+ */
+ val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
+ val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
+ iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
+}
+
+static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
+{
+ u32 channel_id = gsi_channel_id(channel);
+ struct gsi *gsi = channel->gsi;
+ u32 wrr_weight = 0;
+ u32 val = 0;
+
+ BUILD_BUG_ON(sizeof(struct gsi_tre) > field_max(ELEMENT_SIZE_FMASK));
+
+ val |= u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
+ if (channel->toward_ipa)
+ val |= CHTYPE_DIR_FMASK;
+ val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
+ val |= u32_encode_bits(sizeof(struct gsi_tre), ELEMENT_SIZE_FMASK);
+ iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
+
+ val = u32_encode_bits(channel->tre_ring.size, R_LENGTH_FMASK);
+ iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
+
+ /* The context 2 and 3 registers store the low-order and
+ * high-order 32 bits of the address of the channel ring,
+ * respectively.
+ */
+ val = channel->tre_ring.addr & GENMASK(31, 0);
+ iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
+
+ val = channel->tre_ring.addr >> 32;
+ iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
+
+ if (channel->data->wrr_priority)
+ wrr_weight = field_max(WRR_WEIGHT_FMASK);
+ val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
+
+ /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
+ if (doorbell)
+ val |= USE_DB_ENG_FMASK;
+ iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
+}
+
+static void
+__gsi_channel_config(struct gsi_channel *channel, bool doorbell_enable)
+{
+ gsi_channel_program(channel, doorbell_enable);
+ gsi_ring_init(&channel->tre_ring);
+ gsi_channel_scratch_write(channel);
+}
+
+void gsi_channel_config(struct gsi *gsi, u32 channel_id, bool doorbell_enable)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ mutex_lock(&gsi->mutex);
+
+ __gsi_channel_config(channel, doorbell_enable);
+
+ mutex_unlock(&gsi->mutex);
+}
+
+/* Setup function for a single channel */
+static int gsi_channel_setup_one(struct gsi_channel *channel)
+{
+ struct gsi *gsi = channel->gsi;
+ int ret;
+
+ if (!gsi)
+ return 0; /* Ignore uninitialized channels */
+
+ channel->state = gsi_channel_state(channel);
+ if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
+ return -EIO;
+
+ mutex_lock(&gsi->mutex);
+
+ ret = gsi_evt_ring_alloc_hw(gsi, channel->evt_ring_id);
+ if (ret) {
+ mutex_unlock(&gsi->mutex);
+
+ return ret;
+ }
+
+ gsi_channel_command(channel, GSI_CH_ALLOCATE);
+ ret = channel->state == GSI_CHANNEL_STATE_ALLOCATED ? 0 : -EIO;
+ if (ret) {
+ gsi_evt_ring_free_hw(gsi, channel->evt_ring_id);
+ mutex_unlock(&gsi->mutex);
+
+ return ret;
+ }
+
+ __gsi_channel_config(channel, true);
+
+ mutex_unlock(&gsi->mutex);
+
+ gsi->channel_stats.allocate++;
+
+ if (channel->toward_ipa)
+ netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
+ gsi_channel_poll, NAPI_POLL_WEIGHT);
+ else
+ netif_napi_add(&gsi->dummy_dev, &channel->napi,
+ gsi_channel_poll, NAPI_POLL_WEIGHT);
+
+ return 0;
+}
+
+/* Inverse of gsi_channel_setup_one() */
+static void gsi_channel_teardown_one(struct gsi_channel *channel)
+{
+ struct gsi *gsi = channel->gsi;
+
+ if (!gsi)
+ return;
+
+ netif_napi_del(&channel->napi);
+
+ mutex_lock(&gsi->mutex);
+
+ gsi_channel_command(channel, GSI_CH_DE_ALLOC);
+
+ gsi->channel_stats.free++;
+
+ gsi_evt_ring_free_hw(gsi, channel->evt_ring_id);
+
+ mutex_unlock(&gsi->mutex);
+
+ gsi_channel_trans_exit(channel);
+}
+
+/* Setup function for channels */
+static int gsi_channel_setup(struct gsi *gsi)
+{
+ u32 channel_max;
+ u32 channel_id;
+ int ret;
+
+ channel_max = gsi_channel_max(gsi);
+ dev_dbg(gsi->dev, "channel_max %u\n", channel_max);
+ if (channel_max != GSI_CHANNEL_MAX)
+ return -EIO;
+
+ ret = gsi_evt_ring_setup(gsi);
+ if (ret)
+ return ret;
+
+ for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) {
+ ret = gsi_channel_setup_one(&gsi->channel[channel_id]);
+ if (ret)
+ goto err_unwind;
+ }
+
+ return 0;
+
+err_unwind:
+ while (channel_id--)
+ gsi_channel_teardown_one(&gsi->channel[channel_id]);
+ gsi_evt_ring_teardown(gsi);
+
+ return ret;
+}
+
+/* Inverse of gsi_channel_setup() */
+static void gsi_channel_teardown(struct gsi *gsi)
+{
+ u32 channel_id;
+
+ for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) {
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ gsi_channel_teardown_one(channel);
+ }
+
+ gsi_evt_ring_teardown(gsi);
+}
+
+/* Setup function for GSI. GSI firmware must be loaded and initialized */
+int gsi_setup(struct gsi *gsi)
+{
+ u32 val;
+
+ /* Here is where we first touch the GSI hardware */
+ val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
+ if (!(val & ENABLED_FMASK)) {
+ dev_err(gsi->dev, "GSI has not been enabled\n");
+ return -EIO;
+ }
+
+ /* Initialize the error log */
+ iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
+
+ /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
+ iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
+
+ return gsi_channel_setup(gsi);
+}
+
+/* Inverse of gsi_setup() */
+void gsi_teardown(struct gsi *gsi)
+{
+ gsi_channel_teardown(gsi);
+}
+
+/* Initialize a channel's event ring */
+static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
+{
+ struct gsi *gsi = channel->gsi;
+ struct gsi_evt_ring *evt_ring;
+ int ret;
+
+ ret = gsi_evt_ring_id_alloc(gsi);
+ if (ret < 0)
+ return ret;
+ channel->evt_ring_id = ret;
+
+ evt_ring = &gsi->evt_ring[channel->evt_ring_id];
+ evt_ring->channel = channel;
+
+ ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->data->event_count);
+ if (ret)
+ goto err_free_evt_ring_id;
+
+ return 0;
+
+err_free_evt_ring_id:
+ gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
+
+ return ret;
+}
+
+/* Inverse of gsi_channel_evt_ring_init() */
+static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
+{
+ struct gsi *gsi = channel->gsi;
+ struct gsi_evt_ring *evt_ring;
+
+ evt_ring = &gsi->evt_ring[channel->evt_ring_id];
+ gsi_ring_free(gsi, &evt_ring->ring);
+
+ gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
+}
+
+/* Init function for event rings */
+static void gsi_evt_ring_init(struct gsi *gsi)
+{
+ u32 evt_ring_id;
+
+ BUILD_BUG_ON(GSI_EVT_RING_MAX >= BITS_PER_LONG);
+
+ gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_MAX);
+ gsi->event_enable_bitmap = 0;
+ for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++)
+ init_completion(&gsi->evt_ring[evt_ring_id].completion);
+}
+
+/* Inverse of gsi_evt_ring_init() */
+static void gsi_evt_ring_exit(struct gsi *gsi)
+{
+ /* Nothing to do */
+}
+
+/* Init function for a single channel */
+static int
+gsi_channel_init_one(struct gsi *gsi, const struct gsi_ipa_endpoint_data *data)
+{
+ struct gsi_channel *channel;
+ int ret;
+
+ if (data->ee_id != GSI_EE_AP)
+ return 0; /* Ignore non-AP channels */
+
+ if (data->channel_id >= GSI_CHANNEL_MAX)
+ return -EIO;
+ channel = &gsi->channel[data->channel_id];
+
+ channel->gsi = gsi;
+ channel->toward_ipa = data->toward_ipa;
+ channel->data = &data->channel;
+
+ init_completion(&channel->completion);
+
+ ret = gsi_channel_evt_ring_init(channel);
+ if (ret)
+ return ret;
+
+ ret = gsi_ring_alloc(gsi, &channel->tre_ring, channel->data->tre_count);
+ if (ret)
+ goto err_channel_evt_ring_exit;
+
+ ret = gsi_channel_trans_init(channel);
+ if (ret)
+ goto err_ring_free;
+
+ return 0;
+
+err_ring_free:
+ gsi_ring_free(gsi, &channel->tre_ring);
+err_channel_evt_ring_exit:
+ gsi_channel_evt_ring_exit(channel);
+
+ return ret;
+}
+
+/* Inverse of gsi_channel_init_one() */
+static void gsi_channel_exit_one(struct gsi_channel *channel)
+{
+ gsi_channel_trans_exit(channel);
+ gsi_ring_free(channel->gsi, &channel->tre_ring);
+ gsi_channel_evt_ring_exit(channel);
+}
+
+/* Init function for channels */
+static int gsi_channel_init(struct gsi *gsi, u32 data_count,
+ const struct gsi_ipa_endpoint_data *data)
+{
+ int ret = 0;
+ u32 i;
+
+ gsi_evt_ring_init(gsi);
+ for (i = 0; i < data_count; i++) {
+ ret = gsi_channel_init_one(gsi, &data[i]);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+/* Inverse of gsi_channel_init() */
+static void gsi_channel_exit(struct gsi *gsi)
+{
+ u32 channel_id;
+
+ for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++)
+ gsi_channel_exit_one(&gsi->channel[channel_id]);
+ gsi_evt_ring_exit(gsi);
+}
+
+/* Init function for GSI. GSI hardware does not need to be "ready" */
+int gsi_init(struct gsi *gsi, struct platform_device *pdev, u32 data_count,
+ const struct gsi_ipa_endpoint_data *data)
+{
+ struct resource *res;
+ resource_size_t size;
+ unsigned int irq;
+ int ret;
+
+ gsi->dev = &pdev->dev;
+ init_dummy_netdev(&gsi->dummy_dev);
+
+ /* Get GSI memory range and map it */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
+ if (!res)
+ return -ENXIO;
+
+ size = resource_size(res);
+ if (res->start > U32_MAX || size > U32_MAX - res->start)
+ return -EINVAL;
+
+ gsi->virt = ioremap_nocache(res->start, size);
+ if (!gsi->virt)
+ return -ENOMEM;
+
+ ret = platform_get_irq_byname(pdev, "gsi");
+ if (ret < 0)
+ goto err_unmap_virt;
+ irq = ret;
+
+ ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
+ if (ret)
+ goto err_unmap_virt;
+ gsi->irq = irq;
+
+ ret = enable_irq_wake(gsi->irq);
+ if (ret)
+ dev_err(gsi->dev, "error %d enabling gsi wake irq\n", ret);
+ gsi->irq_wake_enabled = ret ? 0 : 1;
+
+ spin_lock_init(&gsi->spinlock);
+ mutex_init(&gsi->mutex);
+
+ ret = gsi_channel_init(gsi, data_count, data);
+ if (ret)
+ goto err_mutex_destroy;
+
+ return 0;
+
+err_mutex_destroy:
+ mutex_destroy(&gsi->mutex);
+ if (gsi->irq_wake_enabled)
+ (void)disable_irq_wake(gsi->irq);
+ free_irq(gsi->irq, gsi);
+err_unmap_virt:
+ iounmap(gsi->virt);
+
+ return ret;
+}
+
+/* Inverse of gsi_init() */
+void gsi_exit(struct gsi *gsi)
+{
+ gsi_channel_exit(gsi);
+
+ mutex_destroy(&gsi->mutex);
+ if (gsi->irq_wake_enabled)
+ (void)disable_irq_wake(gsi->irq);
+ free_irq(gsi->irq, gsi);
+ iounmap(gsi->virt);
+}
+
+/* Returns the maximum number of pending transactions on a channel */
+u32 gsi_channel_trans_max(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ return channel->data->tre_count;
+}
+
+/* Returns the maximum number of TREs in a single transaction for a channel */
+u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ return channel->data->tlv_count;
+}
+
+/* Wait for all transaction activity on a channel to complete */
+void gsi_channel_trans_quiesce(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+ struct gsi_trans_info *trans_info;
+ struct gsi_trans *trans = NULL;
+ struct gsi_evt_ring *evt_ring;
+ struct list_head *list;
+ unsigned long flags;
+
+ trans_info = &channel->trans_info;
+ evt_ring = &channel->gsi->evt_ring[channel->evt_ring_id];
+
+ spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+ /* Find the last list to which a transaction was added */
+ if (!list_empty(&trans_info->alloc))
+ list = &trans_info->alloc;
+ else if (!list_empty(&trans_info->pending))
+ list = &trans_info->pending;
+ else if (!list_empty(&trans_info->complete))
+ list = &trans_info->complete;
+ else if (!list_empty(&trans_info->polled))
+ list = &trans_info->polled;
+ else
+ list = NULL;
+
+ if (list) {
+ struct gsi_trans *trans;
+
+ /* The last entry on this list is the last one allocated.
+ * Grab a reference so we can wait for it.
+ */
+ trans = list_last_entry(list, struct gsi_trans, links);
+ refcount_inc(&trans->refcount);
+ }
+
+ spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+ /* If there is one, wait for it to complete */
+ if (trans) {
+ wait_for_completion(&trans->completion);
+ gsi_trans_free(trans);
+ }
+}
+
+/* Make a channel operational */
+int gsi_channel_start(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ if (channel->state != GSI_CHANNEL_STATE_ALLOCATED &&
+ channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC &&
+ channel->state != GSI_CHANNEL_STATE_STOPPED) {
+ dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+ (u32)channel->state);
+ return -ENOTSUPP;
+ }
+
+ napi_enable(&channel->napi);
+
+ mutex_lock(&gsi->mutex);
+
+ gsi_channel_command(channel, GSI_CH_START);
+
+ mutex_unlock(&gsi->mutex);
+
+ gsi->channel_stats.start++;
+
+ return 0;
+}
+
+/* Stop an operational channel */
+int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+ int ret;
+
+ if (channel->state == GSI_CHANNEL_STATE_STOPPED)
+ return 0;
+
+ if (channel->state != GSI_CHANNEL_STATE_STARTED &&
+ channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC &&
+ channel->state != GSI_CHANNEL_STATE_ERROR) {
+ dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+ (u32)channel->state);
+ return -ENOTSUPP;
+ }
+
+ gsi_channel_trans_quiesce(gsi, channel_id);
+
+ mutex_lock(&gsi->mutex);
+
+ gsi_channel_command(channel, GSI_CH_STOP);
+
+ mutex_unlock(&gsi->mutex);
+
+ if (channel->state == GSI_CHANNEL_STATE_STOPPED)
+ ret = 0;
+ else if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC)
+ ret = -EAGAIN;
+ else
+ ret = -EIO;
+
+ gsi->channel_stats.stop++;
+
+ if (!ret)
+ napi_disable(&channel->napi);
+
+ return ret;
+}
+
+/* Reset a GSI channel */
+int gsi_channel_reset(struct gsi *gsi, u32 channel_id)
+{
+ struct gsi_channel *channel = &gsi->channel[channel_id];
+
+ if (channel->state != GSI_CHANNEL_STATE_STOPPED) {
+ dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+ (u32)channel->state);
+ return -ENOTSUPP;
+ }
+
+ /* In case the reset follows stop, need to wait 1 msec */
+ usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
+
+ mutex_lock(&gsi->mutex);
+
+ gsi_channel_command(channel, GSI_CH_RESET);
+
+ /* workaround: reset RX channels again */
+ if (!channel->toward_ipa) {
+ usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
+ gsi_channel_command(channel, GSI_CH_RESET);
+ }
+
+ __gsi_channel_config(channel, true);
+
+ /* Cancel pending transactions before the channel is started again */
+ gsi_channel_trans_cancel_pending(channel);
+
+ mutex_unlock(&gsi->mutex);
+
+ gsi->channel_stats.reset++;
+
+ return 0;
+}
--
2.20.1