Re: [RFC PATCH v5 04/16] slub: Slab defrag core
From: Roman Gushchin
Date: Mon May 20 2019 - 20:55:24 EST
On Mon, May 20, 2019 at 03:40:05PM +1000, Tobin C. Harding wrote:
> Internal fragmentation can occur within pages used by the slub
> allocator. Under some workloads large numbers of pages can be used by
> partial slab pages. This under-utilisation is bad simply because it
> wastes memory but also because if the system is under memory pressure
> higher order allocations may become difficult to satisfy. If we can
> defrag slab caches we can alleviate these problems.
>
> Implement Slab Movable Objects in order to defragment slab caches.
>
> Slab defragmentation may occur:
>
> 1. Unconditionally when __kmem_cache_shrink() is called on a slab cache
> by the kernel calling kmem_cache_shrink().
>
> 2. Unconditionally through the use of the slabinfo command.
>
> slabinfo <cache> -s
>
> 3. Conditionally via the use of kmem_cache_defrag()
>
> - Use Slab Movable Objects when shrinking cache.
>
> Currently when the kernel calls kmem_cache_shrink() we curate the
> partial slabs list. If object migration is not enabled for the cache we
> still do this, if however, SMO is enabled we attempt to move objects in
> partially full slabs in order to defragment the cache. Shrink attempts
> to move all objects in order to reduce the cache to a single partial
> slab for each node.
>
> - Add conditional per node defrag via new function:
>
> kmem_defrag_slabs(int node).
>
> kmem_defrag_slabs() attempts to defragment all slab caches for
> node. Defragmentation is done conditionally dependent on MAX_PARTIAL
> _and_ defrag_used_ratio.
>
> Caches are only considered for defragmentation if the number of
> partial slabs exceeds MAX_PARTIAL (per node).
>
> Also, defragmentation only occurs if the usage ratio of the slab is
> lower than the configured percentage (sysfs field added in this
> patch). Fragmentation ratios are measured by calculating the
> percentage of objects in use compared to the total number of objects
> that the slab page can accommodate.
>
> The scanning of slab caches is optimized because the defragmentable
> slabs come first on the list. Thus we can terminate scans on the
> first slab encountered that does not support defragmentation.
>
> kmem_defrag_slabs() takes a node parameter. This can either be -1 if
> defragmentation should be performed on all nodes, or a node number.
>
> Defragmentation may be disabled by setting defrag ratio to 0
>
> echo 0 > /sys/kernel/slab/<cache>/defrag_used_ratio
>
> - Add a defrag ratio sysfs field and set it to 30% by default. A limit
> of 30% specifies that more than 3 out of 10 available slots for objects
> need to be in use otherwise slab defragmentation will be attempted on
> the remaining objects.
>
> In order for a cache to be defragmentable the cache must support object
> migration (SMO). Enabling SMO for a cache is done via a call to the
> recently added function:
>
> void kmem_cache_setup_mobility(struct kmem_cache *,
> kmem_cache_isolate_func,
> kmem_cache_migrate_func);
>
> Co-developed-by: Christoph Lameter <cl@xxxxxxxxx>
> Signed-off-by: Tobin C. Harding <tobin@xxxxxxxxxx>
> ---
> Documentation/ABI/testing/sysfs-kernel-slab | 14 +
> include/linux/slab.h | 1 +
> include/linux/slub_def.h | 7 +
> mm/slub.c | 385 ++++++++++++++++----
> 4 files changed, 334 insertions(+), 73 deletions(-)
Hi Tobin!
Overall looks very good to me! I'll take another look when you'll post
a non-RFC version, but so far I can't find any issues.
A generic question: as I understand, you do support only root kmemcaches now.
Is kmemcg support in plans?
Without it the patchset isn't as attractive to anyone using cgroups,
as it could be. Also, I hope it can solve (or mitigate) the memcg-specific
problem of scattering vfs cache workingset over multiple generations of the
same cgroup (their kmem_caches).
Thanks!
>
> diff --git a/Documentation/ABI/testing/sysfs-kernel-slab b/Documentation/ABI/testing/sysfs-kernel-slab
> index 29601d93a1c2..c6f129af035a 100644
> --- a/Documentation/ABI/testing/sysfs-kernel-slab
> +++ b/Documentation/ABI/testing/sysfs-kernel-slab
> @@ -180,6 +180,20 @@ Description:
> list. It can be written to clear the current count.
> Available when CONFIG_SLUB_STATS is enabled.
>
> +What: /sys/kernel/slab/cache/defrag_used_ratio
> +Date: May 2019
> +KernelVersion: 5.2
> +Contact: Christoph Lameter <cl@xxxxxxxxxxxxxxxxxxxx>
> + Pekka Enberg <penberg@xxxxxxxxxxxxxx>,
> +Description:
> + The defrag_used_ratio file allows the control of how aggressive
> + slab fragmentation reduction works at reclaiming objects from
> + sparsely populated slabs. This is a percentage. If a slab has
> + less than this percentage of objects allocated then reclaim will
> + attempt to reclaim objects so that the whole slab page can be
> + freed. 0% specifies no reclaim attempt (defrag disabled), 100%
> + specifies attempt to reclaim all pages. The default is 30%.
> +
> What: /sys/kernel/slab/cache/deactivate_to_tail
> Date: February 2008
> KernelVersion: 2.6.25
> diff --git a/include/linux/slab.h b/include/linux/slab.h
> index 886fc130334d..4bf381b34829 100644
> --- a/include/linux/slab.h
> +++ b/include/linux/slab.h
> @@ -149,6 +149,7 @@ struct kmem_cache *kmem_cache_create_usercopy(const char *name,
> void (*ctor)(void *));
> void kmem_cache_destroy(struct kmem_cache *);
> int kmem_cache_shrink(struct kmem_cache *);
> +unsigned long kmem_defrag_slabs(int node);
>
> void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
> void memcg_deactivate_kmem_caches(struct mem_cgroup *);
> diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
> index 2879a2f5f8eb..34c6f1250652 100644
> --- a/include/linux/slub_def.h
> +++ b/include/linux/slub_def.h
> @@ -107,6 +107,13 @@ struct kmem_cache {
> unsigned int red_left_pad; /* Left redzone padding size */
> const char *name; /* Name (only for display!) */
> struct list_head list; /* List of slab caches */
> + int defrag_used_ratio; /*
> + * Ratio used to check against the
> + * percentage of objects allocated in a
> + * slab page. If less than this ratio
> + * is allocated then reclaim attempts
> + * are made.
> + */
> #ifdef CONFIG_SYSFS
> struct kobject kobj; /* For sysfs */
> struct work_struct kobj_remove_work;
> diff --git a/mm/slub.c b/mm/slub.c
> index 66d474397c0f..2157205df7ba 100644
> --- a/mm/slub.c
> +++ b/mm/slub.c
> @@ -355,6 +355,12 @@ static __always_inline void slab_lock(struct page *page)
> bit_spin_lock(PG_locked, &page->flags);
> }
>
> +static __always_inline int slab_trylock(struct page *page)
> +{
> + VM_BUG_ON_PAGE(PageTail(page), page);
> + return bit_spin_trylock(PG_locked, &page->flags);
> +}
> +
> static __always_inline void slab_unlock(struct page *page)
> {
> VM_BUG_ON_PAGE(PageTail(page), page);
> @@ -3634,6 +3640,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
>
> set_cpu_partial(s);
>
> + s->defrag_used_ratio = 30;
> #ifdef CONFIG_NUMA
> s->remote_node_defrag_ratio = 1000;
> #endif
> @@ -3950,79 +3957,6 @@ void kfree(const void *x)
> }
> EXPORT_SYMBOL(kfree);
>
> -#define SHRINK_PROMOTE_MAX 32
> -
> -/*
> - * kmem_cache_shrink discards empty slabs and promotes the slabs filled
> - * up most to the head of the partial lists. New allocations will then
> - * fill those up and thus they can be removed from the partial lists.
> - *
> - * The slabs with the least items are placed last. This results in them
> - * being allocated from last increasing the chance that the last objects
> - * are freed in them.
> - */
> -int __kmem_cache_shrink(struct kmem_cache *s)
> -{
> - int node;
> - int i;
> - struct kmem_cache_node *n;
> - struct page *page;
> - struct page *t;
> - struct list_head discard;
> - struct list_head promote[SHRINK_PROMOTE_MAX];
> - unsigned long flags;
> - int ret = 0;
> -
> - flush_all(s);
> - for_each_kmem_cache_node(s, node, n) {
> - INIT_LIST_HEAD(&discard);
> - for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
> - INIT_LIST_HEAD(promote + i);
> -
> - spin_lock_irqsave(&n->list_lock, flags);
> -
> - /*
> - * Build lists of slabs to discard or promote.
> - *
> - * Note that concurrent frees may occur while we hold the
> - * list_lock. page->inuse here is the upper limit.
> - */
> - list_for_each_entry_safe(page, t, &n->partial, slab_list) {
> - int free = page->objects - page->inuse;
> -
> - /* Do not reread page->inuse */
> - barrier();
> -
> - /* We do not keep full slabs on the list */
> - BUG_ON(free <= 0);
> -
> - if (free == page->objects) {
> - list_move(&page->slab_list, &discard);
> - n->nr_partial--;
> - } else if (free <= SHRINK_PROMOTE_MAX)
> - list_move(&page->slab_list, promote + free - 1);
> - }
> -
> - /*
> - * Promote the slabs filled up most to the head of the
> - * partial list.
> - */
> - for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
> - list_splice(promote + i, &n->partial);
> -
> - spin_unlock_irqrestore(&n->list_lock, flags);
> -
> - /* Release empty slabs */
> - list_for_each_entry_safe(page, t, &discard, slab_list)
> - discard_slab(s, page);
> -
> - if (slabs_node(s, node))
> - ret = 1;
> - }
> -
> - return ret;
> -}
> -
> #ifdef CONFIG_MEMCG
> static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
> {
> @@ -4317,6 +4251,287 @@ int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
> return err;
> }
>
> +/*
> + * Allocate a slab scratch space that is sufficient to keep pointers to
> + * individual objects for all objects in cache and also a bitmap for the
> + * objects (used to mark which objects are active).
> + */
> +static inline void *alloc_scratch(struct kmem_cache *s)
> +{
> + unsigned int size = oo_objects(s->max);
> +
> + return kmalloc(size * sizeof(void *) +
> + BITS_TO_LONGS(size) * sizeof(unsigned long),
> + GFP_KERNEL);
> +}
I'd pass a single number (s->max) instead of s here.
> +
> +/*
> + * move_slab_page() - Move all objects in the given slab.
> + * @page: The slab we are working on.
> + * @scratch: Pointer to scratch space.
> + * @node: The target node to move objects to.
> + *
> + * If the target node is not the current node then the object is moved
> + * to the target node. If the target node is the current node then this
> + * is an effective way of defragmentation since the current slab page
> + * with its object is exempt from allocation.
> + */
> +static void move_slab_page(struct page *page, void *scratch, int node)
> +{
> + unsigned long objects;
> + struct kmem_cache *s;
> + unsigned long flags;
> + unsigned long *map;
> + void *private;
> + int count;
> + void *p;
> + void **vector = scratch;
> + void *addr = page_address(page);
> +
> + local_irq_save(flags);
> + slab_lock(page);
> +
> + BUG_ON(!PageSlab(page)); /* Must be a slab page */
> + BUG_ON(!page->frozen); /* Slab must have been frozen earlier */
> +
> + s = page->slab_cache;
> + objects = page->objects;
> + map = scratch + objects * sizeof(void **);
> +
> + /* Determine used objects */
> + bitmap_fill(map, objects);
> + for (p = page->freelist; p; p = get_freepointer(s, p))
> + __clear_bit(slab_index(p, s, addr), map);
> +
> + /* Build vector of pointers to objects */
> + count = 0;
> + memset(vector, 0, objects * sizeof(void **));
> + for_each_object(p, s, addr, objects)
> + if (test_bit(slab_index(p, s, addr), map))
> + vector[count++] = p;
> +
> + if (s->isolate)
> + private = s->isolate(s, vector, count);
> + else
> + /* Objects do not need to be isolated */
> + private = NULL;
> +
> + /*
> + * Pinned the objects. Now we can drop the slab lock. The slab
> + * is frozen so it cannot vanish from under us nor will
> + * allocations be performed on the slab. However, unlocking the
> + * slab will allow concurrent slab_frees to proceed. So the
> + * subsystem must have a way to tell from the content of the
> + * object that it was freed.
> + *
> + * If neither RCU nor ctor is being used then the object may be
> + * modified by the allocator after being freed which may disrupt
> + * the ability of the migrate function to tell if the object is
> + * free or not.
> + */
> + slab_unlock(page);
> + local_irq_restore(flags);
> +
> + /* Perform callback to move the objects */
> + s->migrate(s, vector, count, node, private);
> +}
> +
> +/*
> + * kmem_cache_defrag() - Defragment node.
> + * @s: cache we are working on.
> + * @node: The node to move objects from.
> + * @target_node: The node to move objects to.
> + * @ratio: The defrag ratio (percentage, between 0 and 100).
> + *
> + * Release slabs with zero objects and try to call the migration function
> + * for slabs with less than the 'ratio' percentage of objects allocated.
> + *
> + * Moved objects are allocated on @target_node.
> + *
> + * Return: The number of partial slabs left on @node after the
> + * operation.
> + */
> +static unsigned long kmem_cache_defrag(struct kmem_cache *s,
> + int node, int target_node, int ratio)
> +{
> + struct kmem_cache_node *n = get_node(s, node);
> + struct page *page, *page2;
> + LIST_HEAD(move_list);
> + unsigned long flags;
> +
> + if (node == target_node && n->nr_partial <= 1) {
> + /*
> + * Trying to reduce fragmentation on a node but there is
> + * only a single or no partial slab page. This is already
> + * the optimal object density that we can reach.
> + */
> + return n->nr_partial;
> + }
> +
> + spin_lock_irqsave(&n->list_lock, flags);
> + list_for_each_entry_safe(page, page2, &n->partial, lru) {
> + if (!slab_trylock(page))
> + /* Busy slab. Get out of the way */
> + continue;
> +
> + if (page->inuse) {
> + if (page->inuse > ratio * page->objects / 100) {
> + slab_unlock(page);
> + /*
> + * Skip slab because the object density
> + * in the slab page is high enough.
> + */
> + continue;
> + }
> +
> + list_move(&page->lru, &move_list);
> + if (s->migrate) {
> + /* Stop page being considered for allocations */
> + n->nr_partial--;
> + page->frozen = 1;
> + }
> + slab_unlock(page);
> + } else { /* Empty slab page */
> + list_del(&page->lru);
> + n->nr_partial--;
> + slab_unlock(page);
> + discard_slab(s, page);
> + }
> + }
> +
> + if (!s->migrate) {
> + /*
> + * No defrag method. By simply putting the zaplist at
> + * the end of the partial list we can let them simmer
> + * longer and thus increase the chance of all objects
> + * being reclaimed.
> + */
> + list_splice(&move_list, n->partial.prev);
> + }
> +
> + spin_unlock_irqrestore(&n->list_lock, flags);
> +
> + if (s->migrate && !list_empty(&move_list)) {
> + void **scratch = alloc_scratch(s);
> + if (scratch) {
> + /* Try to remove / move the objects left */
> + list_for_each_entry(page, &move_list, lru) {
> + if (page->inuse)
> + move_slab_page(page, scratch, target_node);
> + }
> + kfree(scratch);
> + }
> +
> + /* Inspect results and dispose of pages */
> + spin_lock_irqsave(&n->list_lock, flags);
> + list_for_each_entry_safe(page, page2, &move_list, lru) {
> + list_del(&page->lru);
> + slab_lock(page);
> + page->frozen = 0;
> +
> + if (page->inuse) {
> + /*
> + * Objects left in slab page, move it to the
> + * tail of the partial list to increase the
> + * chance that the freeing of the remaining
> + * objects will free the slab page.
> + */
> + n->nr_partial++;
> + list_add_tail(&page->lru, &n->partial);
> + slab_unlock(page);
> + } else {
> + slab_unlock(page);
> + discard_slab(s, page);
> + }
> + }
> + spin_unlock_irqrestore(&n->list_lock, flags);
> + }
> +
> + return n->nr_partial;
> +}
> +
> +/**
> + * kmem_defrag_slabs() - Defrag slab caches.
> + * @node: The node to defrag or -1 for all nodes.
> + *
> + * Defrag slabs conditional on the amount of fragmentation in a page.
> + *
> + * Return: The total number of partial slabs in migratable caches left
> + * on @node after the operation.
> + */
> +unsigned long kmem_defrag_slabs(int node)
> +{
> + struct kmem_cache *s;
> + unsigned long left = 0;
> + int nid;
> +
> + if (node >= MAX_NUMNODES)
> + return -EINVAL;
> +
> + /*
> + * kmem_defrag_slabs() may be called from the reclaim path which
> + * may be called for any page allocator alloc. So there is the
> + * danger that we get called in a situation where slub already
> + * acquired the slub_lock for other purposes.
> + */
> + if (!mutex_trylock(&slab_mutex))
> + return 0;
> +
> + list_for_each_entry(s, &slab_caches, list) {
> + /*
> + * Defragmentable caches come first. If the slab cache is
> + * not defragmentable then we can stop traversing the list.
> + */
> + if (!s->migrate)
> + break;
> +
> + if (node >= 0) {
> + if (s->node[node]->nr_partial > MAX_PARTIAL) {
> + left += kmem_cache_defrag(s, node, node,
> + s->defrag_used_ratio);
> + }
> + continue;
> + }
> +
> + for_each_node_state(nid, N_NORMAL_MEMORY) {
> + if (s->node[nid]->nr_partial > MAX_PARTIAL) {
> + left += kmem_cache_defrag(s, nid, nid,
> + s->defrag_used_ratio);
> + }
> + }
> + }
> + mutex_unlock(&slab_mutex);
> + return left;
> +}
> +EXPORT_SYMBOL(kmem_defrag_slabs);
> +
> +/**
> + * __kmem_cache_shrink() - Shrink a cache.
> + * @s: The cache to shrink.
> + *
> + * Reduces the memory footprint of a slab cache by as much as possible.
> + *
> + * This works by:
> + * 1. Removing empty slabs from the partial list.
> + * 2. Migrating slab objects to denser slab pages if the slab cache
> + * supports migration. If not, reorganizing the partial list so that
> + * more densely allocated slab pages come first.
> + *
> + * Not called directly, called by kmem_cache_shrink().
> + */
> +int __kmem_cache_shrink(struct kmem_cache *s)
> +{
> + int node;
> + int left = 0;
> +
> + flush_all(s);
> + for_each_node_state(node, N_NORMAL_MEMORY)
> + left += kmem_cache_defrag(s, node, node, 100);
> +
> + return left;
> +}
> +EXPORT_SYMBOL(__kmem_cache_shrink);
> +
> void kmem_cache_setup_mobility(struct kmem_cache *s,
> kmem_cache_isolate_func isolate,
> kmem_cache_migrate_func migrate)
> @@ -5168,6 +5383,29 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
> }
> SLAB_ATTR_RO(destroy_by_rcu);
>
> +static ssize_t defrag_used_ratio_show(struct kmem_cache *s, char *buf)
> +{
> + return sprintf(buf, "%d\n", s->defrag_used_ratio);
> +}
> +
> +static ssize_t defrag_used_ratio_store(struct kmem_cache *s,
> + const char *buf, size_t length)
> +{
> + unsigned long ratio;
> + int err;
> +
> + err = kstrtoul(buf, 10, &ratio);
> + if (err)
> + return err;
> +
> + if (ratio > 100)
> + return -EINVAL;
> +
> + s->defrag_used_ratio = ratio;
> + return length;
> +}
> +SLAB_ATTR(defrag_used_ratio);
> +
> #ifdef CONFIG_SLUB_DEBUG
> static ssize_t slabs_show(struct kmem_cache *s, char *buf)
> {
> @@ -5492,6 +5730,7 @@ static struct attribute *slab_attrs[] = {
> &validate_attr.attr,
> &alloc_calls_attr.attr,
> &free_calls_attr.attr,
> + &defrag_used_ratio_attr.attr,
> #endif
> #ifdef CONFIG_ZONE_DMA
> &cache_dma_attr.attr,
> --
> 2.21.0
>